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1 Preface

The purpose of the seminar was to bring together scientists working in the field
of object-oriented software development. This includes object-oriented requirements
analysis, specification and design, programming, testing and maintenance. The topics
ranged from theoretical foundations to practical development projects.

In the paradigm of object-orientation, software systems are considered to be dy-
namic collections of autonomous objects that interact with each other. Autonomy
means that each object encapsulates all features needed to act as an independent com-
puting agent: individual attributes (data), methods (operations), behavior (process),
and communication facilities. And each object has a unique identity that is immutable
throughout its lifetime. Coincidentally, object-orientation comes with an elaborate
system of types and classes, facilitating structuring and reuse of software.

The object paradigm is widely discussed in software technology, there are object-
oriented programming languages, database systems, and software development meth-
ods. The basic idea is not new, essential concepts were already present in the program-
ming language Simula, in the end sixties. Wider acceptance, however, only came with
Smalltalk in the beginning eighties. But still, in many application areas, object-oriented
methods and systems are not state of the art yet.

While the object paradigm is fairly successful in practice, it finds more scepticism
than enthusiasm among theoreticians. But there is growing interest in clean concepts
and reliable foundations. In fact, object-orientation badly needs theoretical underpin-
ning, for improving practice and facilitating teaching.

The seminar organizers came from three continents: Europe, Asia and America.
This indicates another purpose of the seminar, namely to bring together scientists who
do not meet easily because they work in distant parts of the world.

27 participants accepted the invitation and came to the seminar, among them sci-
entists from China and Japan, the US, and several European countries.

The seminar program covered four days, from Monday to Thursday. Each morning
had two talk sessions. Each afternoon except Wednesday had another talk session
followed by a working group session. On Wednesday afternoon, there was the obligatory
excursion.

Three working groups were set up, one on requirements engineering, one on con-
currency, and one on object-oriented models, formalisms and methods for component
software design. The first two working groups were organized and chaired by Roel
Wieringa and Barbara Paech, respectively. The third working group was coorganized
and cochaired by Yulin Feng and Zhenyu Qian. Participation was well balanced among
the working groups, and discussion was lively. The findings of the working groups were
presented and discussed in a plenary session. the chairpersons prepared summaries that
are included in this report.

The talks showed a broad spectrum of topics around object-orientation and soft-
ware, from requirements engineering via modelling, specification and design towards
programming and testing. Interest is shifting towards distributed systems, bringing
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concurrency and communication problems into focus. Evidently, object-oriented con-
cepts and methods are fruitfully applied to a variety of areas. Although there is still
a way to go, confusion about fundamental concepts and notions is diminishing and
mutual understanding is growing, due after all to a growing body of object theory.

There was beautiful weather during the seminar week, quite unusual for that time of
the year. The workshop atmosphere was favorably influenced by much sun and warmth,
and the excursion on Wednesday afternoon was a highly welcomed opportunity to enjoy
a foretaste of summer.

The Organizers

Hans-Dieter Ehrich Yulin Feng David Kung
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2 Final Seminar Program

Monday, April 7, 1997

9:00 Opening Remarks
Hans-Dieter Ehrich, Germany

Session 1, 9:45 - 12:30

Chair: Hans-Dieter Ehrich

9:45 Object State Testing and Fault Analysis for Reliable Software
Systems
David Kung, USA

10:30 BREAK

Chair: Alfs Berztiss

11:00 From Structured Analysis to Object-Oriented Design: Choosing the
Best of Both Worlds
Roel Wieringa, The Netherlands

11:45 Modelling Business Rules with Situation/Activation Diagrams
Micheal Schrefl, Austria

Session 2, 14:00 - 18:00

Chair: Gerhard Goos

14:00 Component Software Engineering in Object Orientation
Yulin Feng, China

14:45 A Combined Reference Model- and View-Based Approach to System
Specification
Gregor Engels, The Netherlands

15:30 BREAK

16:00 Parallel Working Groups:

WG 1: Requirements Engineering
Chair: Roel Wieringa, The Netherlands

WG 2: Concurrency
Chair: Babara Paech, Germany

WG 3: Object-oriented Models, Formalisms and Methods for Com-
ponent Software Design
Chair: Yulin Feng, China and Zhenyu Qian, Germany
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Tuesday, April 8, 1997

Session 3, 9:00 - 12:30

Chair: Reind Van de Riet

9:00 Problems Related to Combination of Dynamic Semantics with Static
Semantics in Programming
Chi-Song Tang, China

9:45 Interactive Foundations of Computing
Peter Wegner, USA

10:30 BREAK

Chair: Gilles Bernot

11:00 Tools and Object-Oriented Methods - from the viewpoint of software
development process -
Masao Ito, Japan

11:45 Analysing Object Specialization Hierarchies for Database
Integration
Gunter Saake, Germany

Session 4, 14:00 - 18:00

Chair: Gunter Saake

14:00 Simple Functional Programming and Parameterized Classes for
Java
Zhenyu Qian, Germany

14:45 Functional Object-Oriented Programming: A Gentle Introduction
to Object-Gofer
Wolfram Schulte, Germany

15:30 BREAK

16:00 Parallel Working Groups:

WG 1: Requirements Engineering
Chair: Roel Wieringa, The Netherlands

WG 2: Concurrency
Chair: Babara Paech, Germany

WG 3: Object-oriented Models, Formalisms and Methods for Com-
ponent Software Design
Chair: Yulin Feng, China and Zhenyu Qian, Germany
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Wednesday, April 9, 1997

Session 5, 9:00 - 12:30

Chair: Peter Wegner

9:00 Object orientation in domain analysis for reuse
Alfs Berztiss, USA

9:45 A Seamless Transition from Processes to Object Models
Barbara Paech, Germany

10:30 BREAK

Chair: Grit Denker

11:00 An Object Classifier Based on Galois Approach
Hele-Mai Haav, Estonia

11:45 Web-Based Object Animation
Martin Gogolla, Germany

∗ ∗ ∗ AFTERNOON EXCURSION ∗ ∗ ∗

Thursday, April 10, 1997

Session 6, 9:00 - 12:30

Chair: Yulin Feng

9:00 Specification of Objects in Cyberspace using Linguistically Oriented
Tools
Reind Van de Riet, The Netherlands

9:45 A Way of Specifying with Transactions Using Linear Temporal
Logic
Grit Denker, Germany

10:30 BREAK

Chair: Hele-Mai Haav

11:00 ETOILE-Specifications and Real-Time-Issues
Gilles Bernot, France

11:45 Formal Semantics of Basic Message Sequence Charts: an Algebraic
Approach
Piotr Kosiuczenko, Germany
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Session 7, 14:00 - 18:00

Chair: Arne Sølvberg

14:00 Multi-Aspect System Descriptions for Object-Oriented
Programming
Keijiro Araki, Japan

14:30 ALBERT at the age of five: a progress report
Pierre-Yves Schobbens, Belgium

15:00 Temporal Object Specification
Hans-Dieter Ehrich, Germany

15:30 BREAK

16:00 Working Groups: Plenary Session

18:00 Closing Remarks
Hans-Dieter Ehrich, Germany

Friday, April 11, 1997

no program
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3 Abstracts of Presentations
The following abstracts appear in alphabetical order of the speakers.

Multi-Aspect System Descriptions for
Object-Oriented Programming

Keijiro Araki1

Kyushu University
Fukuoka, JAPAN

We report our case study of a system development with a variety of descriptions and
analyses using Z, ML and Smalltalk. We get a set of system descriptions from various
viewpoints including abstract functional aspects, system structural aspects, implemen-
tation feasibility aspects, and so on. We need not necessarily start from an abstract
formal specification and refine it to a final concrete program, but we may start wher-
ever easy to start. We discuss the roles of such descriptions and their interrelationships.
Especially, we use ML as an executable specification language. By describing a system
in ML, we would get insigts for abstract formal specifications as well as for system
architectures and design issues. We intend to accumulate much experience in system
development with a set of various descriptions and build up a road map for system
development based on formal methods.

ETOILE-Specifications and Real-Time issues
Gilles Bernot2

Université d’Evry
Evry France

ETOILE is an object based formal specification theory. After a short introduction
about the way ETOILE-specifications are structured, we describe the syntax of the
specification of object types and we show how they can be combined to specify object
systems.

An object type specification can be described as a sort of ”star”, the center of which
is the type of interest, the branches being types of objects that can be used by an object
of the center. (”etoile” is the French translation of ”star”). A system of objects is then
obtained by putting together several such stars. We follow the principle to match each
branch of a star with the center of another one.

Then we show that adding a new object to an already existing system can entirely
modify the system properties. Thus, if we want to establish formally the properties of

This work has been done with Han-Myung Chang and Toshiyuki Tanaka.
This is joint work with Marc Aiguier and Stefan Beroff.
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an object system, we cannot proceed by establishing some lemmas on a small system,
and complete the lemmas incrementally after adding objects one by one to the system,
until we reach the full system under interest. Consequently, an incremental proving
method cannot be obtained this way.

To allow to establish properties on an incremental way, we propose instead a method
based on ”object refinements”. Within our ETOILE theory, we have defined a theory
of refinement which has the interesting property that: if a system SYS1 correctly
implements an object type O, and if SYS2 is a system that contains O and satisfies
a property phi, then the system SYS3 obtained by replacing O by SYS1 in SYS2 still
satisfies phi. This allow to start from a small, very abstract system with a small number
of very abstract object types; and to make the system incrementally bigger and more
precise, by successive refinements of its object types.

Real-time aspects are also currently an important topic for ETOILE. ETOILE spec-
ifications are used since 5 years to specify hardware/software systems for the co-design
of some telecommunication systems and we often need to introduce statements about
some delays in actual nanoseconds.

We have only defined such real time formulas for systems made of a unique object
(i.e. systems with a unique global state). The idea is to add a special data type which
represents time durations, with some built-in operations and predicates. This allows
to specify methods that modify dynamically their behaviours according to their own
execution time for example. An example is fully described to illustrate the approach.

Object orientation in domain analysis for reuse
Alfs Berztiss

University of Pittsburgh
Pittsburgh, USA and

University of Stockholm
Stockholm, Sweden

We consider domain analysis in the context of reuse-based development of software
systems. Domain models are expressed in terms of processes, and a process is defined as
an ordered set of tasks. A generic task is first formulated as a cliche in natural language,
and reuse is achieved by adapting it for several specific applications. We follow an
object-oriented approach to the definition of processes, with the understanding that
object orientation has two aspects. One relates to data, but there is also a process
aspect, and this latter aspect is our primary concern here. We consider process models
and object orientation in reuse-driven development of information systems and control
systems. Our method of defining application domains in terms of generic processes,
where a process is regarded as a collection of tasks, is used to define the domain of
repairs. This domain includes repair of machinery, road repirs, surgical procedures,
and software debugging. We specialize the generic process for the last application. We
also consider situations, by which we mean tasks that are so general that they arise in
several domains.
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A Way of Specifying With Transactions Using
Linear Temporal Logic

Grit Denker3

Technische Universität Braunschweig
Braunschweig, Germany

Our concern is the high level specification of reactive software systems such as in-
formation systems. We adopt an object oriented, temporal logic based approach to
specification. The notion of transaction incorporates various application domains, for
instance transactions as abstractions from processes as known from refinement theory,
transactions as abstractions from business processes as known in business process mod-
elling or database transactions. We investigate object specifications with transactions.
We illustrate the use of transactions by examples given in an object oriented speci-
fication style. A linear temporal logic with transactions (Tosl) serves as denotional
model for object specifications. We explain how Tosl is semantically defined in terms
of life cycles. Semantics is given to object specifications via translation to Tosl. We
illustrate the translation by means of an example.

We use temporal logics as a semantical basis for object oriented specifications. Tem-
poral logic is appropriate for specifying system dynamics, integrity constraints of the
system and its components, relations between objects of the system, etc. But there
exists the following problem: Temporal operators such as next, previous, etc. assume a
specific time scale, i.e., a specific granularity of actions they refer to. But the granularity
of an action may change, e.g., through application of refinement. Thus, a specification
should be formulated in terms of transactions. But since the length of a transaction
is not known a priori because its instantiation may be state-dependent, we formulate
specification requirements relative to the begin or end, respectively, of the transaction.
Tosl is a logic that provides concepts for specifying in terms of transactions. This way,
we can specify system requirements as sets of Tosl formulae which are independent
from the level of granularity. Thus, we may specify requirements of a system which will
hold true on different levels of abstraction.

Temporal Object Specification
Hans-Dieter Ehrich

Technische Universität Braunschweig
Braunschweig, Germany

The Troll and OmTroll languages and the method supported by them aim at
specifying distributed information systems on a high level of abstraction. The approach

This is joint work with Jaime Ramos, Carlos Caleiro, and Amı́lcar Sernadas, Technical University
Lisbon, Portugal.
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integrates ideas from object orientation, abstract data types, conceptual modeling, be-
haviour modeling, specification of reactive systems, and concurrency theory. The talk
gives an overview of the state of development of the Troll language and method and
its underlying semantic foundations. One of the highlights of the most recent version,
Troll 3, is to incorporate true concurrency and interaction issues. Specifications are
based on distributed temporal logics, using sequential linear temporal logic for spec-
ifying local object behaviour, and adding communication expressions for specifying
interaction. Different styles for the interaction parts of the logics and their interrela-
tionships are being investigated.

A Combined Reference Model- and View-Based
Approach to System Specification

Gregor Engels4

Leiden University
Leiden, The Netherlands

The idea of a combined reference model- and view-based specification approach has
been proposed recently in the software engineering community. We present a specifi-
cation technique based on graph transformations which supports such a development
approach. The use of graphs and graph transformations allows to satisfy the general
requirements of an intuitive understanding and the integration of static and dynamic
aspects on a well-defined and sound semantical base. On this background, formal no-
tions of view and view relation are developed and the behaviour of views is described by
a loose semantics. View relations are shown to preserve the behaviour of views. More-
over, we define a construction for the automatic integration of views which assumes
that the dependencies between different views are described by a reference model. The
views and the reference model are kept consistent manually, which is the task of a model
manager. In case of more than two views more general scenarios are developed and
discussed. We are able to show that the automatic view integration is compatible with
the loose semantics, i.e., the behaviour of the system model is exactly the integration of
the behaviours of the views. All concepts and results are illustrated at the well-known
example of a banking system.

This is joint work with Hartmut Ehrig, Reiko Heckel, Gabi Taentzer, Technical University of
Berlin, Germany.
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Component Software Engineering in Object
Orientation

Yulin Feng
Chinese Academy of Sciences

Beijing, China

The development of object oriented technology causes a great changes to tradi-
tional methods of application software design and such changes make it possible that
application systems can be constructed through some software components. A com-
ponent framework is not simply a set of prepackaged solutions from which a customer
may pick and choose, it involves an actual custom tailoring and reengineering during
the later 1990’s mass customization. The tolk is prepared to a brief description of
our research on component software engineering in object orientation, including object
models, specification languages, design methodology and OO trends and perspectives
etc.

Web-Based Object Animation
Martin Gogolla5

University of Bremen
Bremen, Germany

The current activities of our group comprises concrete case studies arising from prac-
tical projects: (1) Reengineering of a tram simulation system and (2) development of a
material information system. Both projects use object-oriented description techniques
on a semi-formal (OMT-like) and formal (TROLL-like) level. Semi-formal techniques
are also the topic of a student project (18 students, 2 years). The aim of this student
project is the development of an OMT design system.

The formal basis for the above activities is the object description language TROLL
light. Our group already has experience with implementations of this language on
different platforms. The current implementation uses persistent Java developed recently
in a project at Glasgow University.

The talk explains the user-interface of the current animation system which is based
on HTML documents. Thus any Web browser can be employed for the validation of
specifications. For demonstration purposes we use a small description of a car rentals
case system.

This is joint work with Mark Richter.
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An Object Classifier Based on Galois Approach

Hele-Mai Haav
Institute of Cybernetics

Tallinn, Estonia

Conventional object-oriented database systems (OODBS) provide good facilities for
creating objects according to the static class lattice, but lack classification mechanism
for existing objects. We propose the application of Galois approach to dynamic classi-
fication of objects in OODB. First, we define an object model as the Galois lattice of
binary relationship between objects and classes they belong to. Second, we show that
an object classifier can be built on the basis of construction of such a model. We argue
that the object classifier can be used for recovering class lattice, controlling object mi-
gration, maintaining OO views as well as for retrieval of meta-information concerning
context of object base.

Tools and Object-Oriented Methods - from the
viewpoint of software development process -

Masao Ito
Nil Software Corporation

Tokyo, Japan

There is no single software development method (SDM) applicable to every problem
domain. If a problem domain would change, we have to vary our development method
and, at the same time, our software development environment (SDE) that is supporting
it. Especially changing the SDE with commercial off-the-shelf (COTS) tools is not easy
work. This is because of the clear differences in viewpoint between the developers who
create the tools and the environment builders who use these tools. Developers usually
try to make their tools as general-purpose as possible. On the other hand, environment
builders and users want specific tools which will fit into their specialized environments.

In my presentation, I proposed a mechanism which is able to fill up this gap by
using the concept of ”prime modeling component(PMC)”. I mean the word ”prime”
that the prime modeling component is the minimum but essential tool that cannot be
divided. And the user can combine them in the process-centered way in order to get
their own SDE, that is, they only arrange those PMCs according to the process that a
SDM needs.

I use some object-oriented methods to explain my idea. These are the ”Object Mod-
eling Technique (OMT)”, and ”Shlaer and Mellor Method (SMM)”, ”Fusion method
(Fusion)”.
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Formal Semantics of Basic Message Sequence
Charts: an Algebraic Approach

Piotr Kosiuczenko
LMU München

München, Germany

The aim of my talk was to present a new and complete semantics for basic Message
Sequence Charts (MSC). MSC have been introduced to provide a trace language for
description and specification of communication behaviour of system components and
their environment by means of message interchange. They have been recommended as
a standard by International Telecommunication Union [ITU 93]. MSC present commu-
nication behaviour of a distributed system in a very intuitive and transparent manner.
They support many different methodologies for specification, design, testing, simula-
tion, and documentation of systems. MSC may be independently used for requirement
specification, interface specification, validation and simulation, test case specification,
and documentation of real-time systems [ITU 96]. There are two MSC standards:
MSC-92 [ITU 93] defining basic MSC and its extended version MSC-96 [ITU 96] defin-
ing also higher level MSC (see also [RGG 96]). In this paper we consider only basic
MSC, but this semantics can be extended to MSC 96. This will be a subject of further
research. There are some formal semantics for basic MSC but they are unsufficient, and
neither MSC-92 nor MSC-96 possess a satisfactory semantics. In general, the existing
semantics do not formalize notions like decomposition, environment, local actions (c.
f. [LaLe 95a]). It is worth of noticing, that the high level MSC, and in general most of
the new features of MSC-96 still do not have any satisfactory semantics either. In this
talk we proposed a new semantics for MSC-92 based on multiset algebras and asyn-
chronous transition relations. Our model simplifies Maude language (c. f. [Mes 92],
[MeWi 92]) and can be understood as a special case of a Simple Maude specification.
Maude is an algebraic specification language based on term rewriting [Mes 92]. Like in
Maude we describe a configuration of a distributed system as a multiset of objects and
messages. A configuration can be understood as a snapshot of the system. Each object
has a unique name and certain attributes. Each message has a unique address, and
signature. The model makes computational progress by executing actions like reading
or sending a messages, creating or deleting an object. Actions of a specified system
are modeled by transition relations. The model provides an asynchronous composition
operator allowing to describe a system composed of independent, asynchronously com-
municating agents. We introduceed a natural notion of conditions which are assumed
to define sets of configurations. We propose here two kinds of composition operators.
The first one is a vertical composition allowing to compose different system components
to work in parallel. The second one is a horizontal composition corresponding to week
sequencing. We discussed properties of these composition operators and their relation
to conditions.
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Object State Testing and Fault Analysis for
Reliable Software Systems

David Kung6

The Univ. of Texas at Arlington
Arlington, USA

Object state behavior implies that the effect of an operation on an object may de-
pend on the states of the object and other objects. It may cause state changes to more
than one object. Thus, the combined or composite effects of the object operations
must be analyzed and tested. We show that certain object state behavior errors cannot
be detected readily by conventional testing methods. We describe an object state test
method consisting of an object state model, a reverse engineering tool, and a composite
object state testing tool. The object state test model is an aggregation of hierarchical,
concurrent, communicating state machines envisioned mainly for object state testing.
The reverse engineering tool produces an object state model from any C++ program.
The composite object state testing tool analyzes the object state behaviors and gener-
ates test cases for testing object state interactions. We show the detection of several
composite object state behavior errors that exist in a well-known thermostat example.

This is joint work with Yao Lu, Neena Venugopalan, Pei Hsia.
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A seamless Transition from Processes to Object
Models

Barbara Paech
TU München

München, Germany

In this talk we propose a description technique which serves as an intermediate
between process descriptions und object models. Process descriptions are used during
requirements engineering to capture the information of how the system is going to be
used (e.g. workflow descriptions) and object models describe the (conceptual) design
of a system. In the transition from processes to object models a lot of decisions have to
be taken. Processes describe exemplary, isolated behaviour and the behaviour is given
in term of data dependencies between activities. Object models describe the behaviour
in terms of services and the definition of the services has to take into account the
integration of different processes on the data of the object.

As an intermediate we propose to use roles, which also structure the behaviour in
services, but only describe the behaviour relevant to a given context. The services are
described by input/output - state transition diagrams and the integrated behaviour of
the services (related to the context) is derived by interleaving of the state transition
diagrams.

Our approach relates to Jacobsons’ OOSE, but we use process diagrams instead of
text for the use cases and, because of the concurrency of services, we can capture the
control part of the use cases in the design within services and do not need to create
control objects.

Simple Functional Programming and
Parameterized Classes for Java

Zhenyu Qian
Universität Bremen
Bremen, Germany

There exist several suggestions for additional features for Java. However, all the
suggestions we know are either inconsistent with some existing Java features or require
nontrivial extensions for Java Bytecode. We suggest a new approach, which extends
Java with parametrized classes, algebraic types, higher-order functions, binary opera-
tions, ML-polymorphism and self types. The main features of the approach are that it
is consistent with Java arrays and the type theory is much simpler than the existing
approaches. In addition, a translation of our extension to Java has been provided, so
that no extensions for Java Bytecode are necessary.
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Analysing Object Specialization Hierarchies for
Database Integration

Gunter Saake7

Otto-von-Guericke-Universität Magdeburg
Magdeburg, Germany

Analysing and merging of object specialization hierarchies is an important step in
the process of building a database federation. Federated database systems enable a
homogeneous access to distributed, heterogeneous databases still allowing local appli-
cations. For building an integrated view on the stored data, the local schemata have
to be analysed and integrated into a global database schema. The local schemata of-
ten contain specialization hierarchies. Such hierarchies are often encompassed by local
schemata even implicitly by a relational schema via foreign keys. Therefore, differ-
ent specialization hierarchies including extensional and intension aspects have to be
analysed and integrated into one minimal but complete specialization hierarchy.

We present an integration approach using the database integration model GIM.
Based on an extensional and intensional analysis the local classes are partitioned into
disjoint extensions (potential class populations) and presented in a two-dimensional
GIM matrix showing the intensional and extensional properties of database classes.
Using this representation, we discuss algorithms based on formal concept analysis which
allow to automatically generate an integrated specialization hierarchy. Our approach
generalize and formalize other approaches (e.g. by S. Spaccapietra and by S. Navathe).
The integrated hierarchy can produced automatically by an efficient algorithm.

ALBERT at the age of five: a progress report
Pierre-Yves Schobbens

Université Notre-Dame de la Paix
Namur, Belgium

The Albert language for expressing requirements is based on a structuration in
’agents’ and on a real-time temporal logic.

We summarize here recent developments of this language and its environment.

1. Semantics

In response to industrial case studies, we have slightly changed the formal seman-
tics of Albert. The new semantics ensures: - time continuity: while in previous
versions of Albert the state of the system was only known at ”snapshots”, now
we ensure that it is known at any time. - invariance under stuttering: the intro-
duction of a different division of time is now guaranteed to be irrelevant.

This is joint work with Ingo Schmitt.
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2. Tools

Several tools are currently developed: 1- a graphical and textual syntax editor;
2- a type checker; 3- a proof assistant based on PVS; 4- (in project) tools for
abstracting specifications, and for real-time model checking.

Modelling Business Rules with
Situation/Activation Diagrams

Michael Schrefl8

Universität Linz
Linz, Austria

Business rules are statements about business policies and can be formulated ac-
cording to the event-condition-action structure of rules in active database systems.
However, modeling business rules at the conceptual level from an external user’s per-
spective requires a different set of concepts than currently provided by active database
systems. This talk identifies requirements on the event language and on the semantics
of rule execution for modeling business rules and presents a graphical object-oriented
language, called Situation/Activation diagrams, meeting these requirements.

A paper on the topic of this talk appears in the Proceedings of the IEEE Interna-
tional Conference on Data Engineering 1997.

Functional Object-Oriented Programming: A
Gentle Introduction to Object-Gofer

Wolfram Schulte
Universität Ulm
Ulm, Germany

Object-Gofer is a strict superset of the functional programming language Gofer
which incorporates the following ideas from the object-oriented community: objects
and classes, subtype and implementation inheritance, method redefinition, late binding
and self-type specialization. Since Object-Gofer is a strict superset of Gofer, the benefits
of functional programming are still available, that is, the language has type inference,
algebraic datatypes, higher-order functions, lazy evaluation and most notably ease of
reasoning. The semantics of Object-Gofer is defined by the translation into Gofer.
Although this restricts the design space, it turns out that using a suitable framework
of monads, higher-order polymorphism, and overloading, objects smooth well with
functions.

This is joint work with P. Lang and W. Obermair.

22



Problems Related to Combination of Dynamic
Semantics with Static Semantics in Programming

Chi-Song Tang
Chinese Academy of Sciences

Beijing, China

XYZ/E is a TLL (Temporal Logic Language) to combine the dynamic semantics
with the static semantics in an uniform TL framework. This paper is used to explain
the meaning and impact of this approach historically and technically. In 2−4, some
meaningful problems are discussed in more detail: (1) A method is introduced to
evaluate a specification which is a mixture of the commands of state transition with the
commands of pre-post assertion. This method can be considered as a new approach for
rapid-prototyping for our TLL System. (2) A new concept ”agent” is defined in XYZ/E
for OOP, in which the static semantics of repository data module can be combined
coherently with the dynamic semantics of message-passing. This concept can be used
to solve the difficult problem of autonomous object concept in OOP. (3) In contrast to
the linear decomposable modularity of OOP oriented toward the domain of a program,
the linear decomposability of the semantics of parallel statement is considered to be
the basis of a kind of modularity oriented toward the process to solve the problem.
The author of this article believes that a more desirable approach of the modularity for
programming in large is to combine these two kind of modularity coherently.

Specification of Objects in Cyberspace using
Liguistically Oriented Tools

Reind Van de Riet
Vrije Universiteit

Amsterdam, The Netherlands

Objects in Cyberspace come in two (different) forms:

• objects as passive things, which can be inspected and retrieved by:

• subjects as dynamic things, representing human beings.

The latter can be simulated/implemented/realized by active objects (in the technical
sense of the word) and can be seen as a combination of e-mail and Social Security
Number; they are called: Alter-egos. To model or specify the static and dynamic prop-
erties of alter-egos a tool is being used, called COLOR-X. With this tool it is possible
to specify the behaviour of alter-egos in a way close to a specification in Natural Lan-
guage. A Lexicon is being used for this: WordNet, which gives the meaning of concepts
(or words) such as :”to borrow”. To specify more precisely the behaviour and static
aspects of the alter-ego a language CPL is used which has been derived from another
linguistic tool: Functional Grammar, in use by linguists to define meaning of words and
of sentences. Using these semantically rich tools it is possible to automatically derive:
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• Verbalizations of the model in NL sentences;

• State Transition Diagrams for all the objects involved, using again the lexicon to
exploit the fact that ”to borrow” is the antonym of ”to lend”;

• Mokum programs so that simulation of the processe is possible (Mokum is an
object-oriented active database system, in use and developed in our group).

In ongoing work Work Flow Diagrams, similar to COLOR-X models are being used to
derive Security and Privacy rules for and about the alter-egos.

Interactive Foundations of Computing
Peter Wegner

Brown University
Providence, USA

Interactive systems are shown to have richer behavior than algorithms. The proof
that Turing machines cannot model interaction machines is surprisingly simple: in-
teraction is not expressible by a finite input string. Interaction machines extend the
Chomsky hierarchy, are modeled by interaction grammars, and precisely capture fuzzy
concepts like open systems and empirical computer science.

We examine extensions to interactive models for algorithms, machines, grammars,
and semantics, and consider the expressiveness of different forms of interaction. In-
teractive identity machines are already more powerful than Turing machines, while
noninteractive parallelism and distribution are algorithmic. The extension of Turing to
interaction machines parallels that of the lambda to the pi calculus, but the ability to
model shared state allows interaction machines to express more powerful behavior than
calculi. Asynchronous and nonserializable interaction are shown to be more expressive
than sequential interaction (multiple streams are more expressive than a single stream).

It is shown that interaction machines cannot be described by sound and complete
first-order logics (a form of Godel incompleteness), and that incompleteness is inher-
ently necessary to realize greater expressiveness. In the final section the robustness
of interactive models in expressing open systems, programming in the large, graphical
user interfaces, and agent-oriented artificial intelligence is compared to the robustness
of Turing machines. Applications of interactive models to coordination, objects and
components, patterns and frameworks, software engineering, and AI are examined else-
where in [We5, We6]. The main results of this work are embodied in propositions P1
to P36 below:
P1 (interaction machines): Interaction machines cannot be modeled by Turing ma-
chines.
P2 (nonenumerability): The interaction histories of an interaction machine are nonenu-
merable.
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P3 (diagonalization): Diagonalization proofs express nonenumerability by interactive
processes.
P4 (on-line algorithms): On-line processes with the closed-system property are on-line
algorithms.
P5 (dynamic interaction): Dynamic interaction is more expressive than on-line algo-
rithms.
P6 (complexity): Some problems with algorithmic complexity NP have interactive com-
plexity P.
P7 (constraints): Constraints can specify nonalgorithmic noncompositional emergent
behavior.
P8 (grammars): Interactive listening machines can express richer behavior than gener-
ative grammars.
P9 (inclusion): Dynamic inclusion refines set inclusion as a measure of expressive power.
P10 (expressiveness): Bisimulation, dynamic inclusion, and game semantics are equally
expressive.
P11 (irreducibility): Extensional behavior cannot express intensional behavior and vice
versa.
P12 (concurrency): Interleaving models, enhanced operational semantic models, and
true concurrency have progressively greater expressive power.
P13 (nonmonotonicity): Openness and interactiveness are nonmonotonic system prop-
erties.
P14 (duality): Observation/control duality in control theory mirrors algorithm/interaction
duality.
P15 (noncompositionality): Process and object behavior is not compositional.
P16 (frameworks): Frameworks can be specified by constraints on constituent compo-
nents.
P17 (identity): Interactive identity machines can express richer behavior than Turing
machines.
P18 (agents): Agents interacting with nonalgorithmic systems have nonalgorithmic be-
havior.
P19 (management): Interactive management is more expressive than rule-based man-
agement.
P20 (orthogonality): Interaction, parallelism, and distribution are orthogonal forms of
behavior.
P21 (transactions): Interactive correctness conditions are more natural than serializ-
ability.
P22 (unicasting): Unicasting models computational, chemical, biological, and sexual
interaction.
P23 (processes): Process calculi have algorithmic reduction rules and interactive con-
trol rules.
P24 (pi calculus): The pi calculus has the expressive power of serializable interaction
machines.
P25 (asynchrony): Asynchronous is more expressive than synchronous interacton.
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P26 (nonserializability): Nonserializable is more expressive than serializable interac-
tion.
P27 (physics): Distinctions between Newtonian, relativistic, chaos, and quantum-
theory models of physics can be characterized by styles of interactive computing.
P28 (openness): Openness in mathematics, physics, and computing has a common
foundation.
P29 (logic): Logic is too weak to model interactive computation.
P30 (models): Sound and complete models have an enumerable number of true state-
ments.
P31 (incompleteness): Interaction machines have no sound and complete first-order
logic.
P32 (errors): Systems for finding errors in programs are neither sound nor complete.
P33 (robustness): Interaction has many alternative models with the same expressive
power.
P34 (systems): Software engineering systems have interactive, nonalgorithmic models.
P35 (empiricism): The intuition that empiricism extends rationalism can be proved for
computing.
P36 (empirical CS): Interaction machines precisely characterize empirical computer sci-
ence.

From Structured Analysis to Object-Oriented
Design: Choosing the Best of Both Worlds

Roel Wieringa
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Software system specification can be partitioned into the specification of external in-
teractions and the specification of an internal decomposition. By and large, structured
and object-oriented analysis methods offer comparable techniques and heuristics for the
specification of external interactions but differ in the techniques and heuristics used for
the specification of an internal decomposition. This talk explains this claim and makes
it as precise as possible (but not more precise, because that would be pedantic as well
as useless - assuming it would be possible).

We assume a simple framework for specification methods borrowed from systems
engineering and from other work in software engineering methodology. The framework
distinguishes external interactions from internal decomposition, and distinguishes for
kinds of properties of external interactions that we can specify: functions, behavior,
communication and all other properties. We can describe these properties of external
system interactions, but also of each system component.

In structured analysis, the system components are themselves functions, or more
precisely, data processes, control processes and data stores. In object-oriented analysis,
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the components are objects. In the talk we discuss the techniques used by Yourdon
structured analysis and by the UML for the specification of external system interactions,
of a system decomposition, and of the interactions of components.

The comparison leads us to conclude that there is no fundamental incompatibility
between techniques for specifying interactions - be they interactions of the system or of
its components. Examples of these techniques are the statement of purpose, a function
refinement tree, event-response pairs, a context diagram, use case diagrams, message
sequence charts and state transition diagrams. This does not imply that all of these
should be used in one specification, but it does imply that the specifyer has the freedom
to choose from these techniques as he or she sees fit.

The specification techniques for the internal decomposition are incompatible in that
structured techniques separate the representation of memory (data stores), data pro-
cesses (functions) and control processes (state machines), whereas object-oriented tech-
niques encapsulate all of these into objects. Other than that, we can find some unex-
pected compatibilities: the decomposition criteria of functional decomposition, event-
partitioning, device partitioning and domain partitoning, can all be used in structured
models or in object-oriented models. There is no fundamental incompatibility here and
the choice is up to the designer.

The talk ends with a non sequitur, viz. a plea for formal foundations of semiformal
(diagram-based) techniques.
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4 Summary of Working Groups

Working Group 1:
Requirements Engineering

Chair: Roel Wieringa, The Netherlands

The working group on requirements engineering started with defining two of the
key terms, “requirements engineering” and “object-orientation”. Two views on re-
quirements engineering came forward:

• Requirements are desired properties of systems. These may be properties of
external interactions or of internal decomposition, so this turns out to be a white
box view of requirements: Any desired property of an external interaction or of
a component is a requirement.

• The second view that came forward was that a requirement is a contract between
customer and software engineer in which they agree that the software will be
delivered according to the requirements. This view is more of the black box kind,
because the customer will not generally state required properties of the internal
decomposition.

Despite their apparent difference, these two views were compatible enough to proceed
as if there were agreement.

Discussion on the second key term, “object-orientation”, was considerable shorter.
We agreed to follow Peter Wegner’s characterization and took the encapsulation of
actions with state as the minimal feature of object-oriented software. This differs from
the encapsulation of operations with data, for that would merely be a definition of an
abstract data type. It is essential that objects have dynamics, hence they have local
actions and a local state. This also implies that they have an identity which persists
through change.

After settling on our terminology, we discussed three questions.

1. What is the contribution of object-orientation to requirements engineering?

2. Is an object-oriented software model a requirements specification or a design
specification?

3. Can we move beyond object-orientation in requirements engineering?

In answer to the first question it was remarked that the use of scenarios and message
sequence charts is definitely not a contribution of object-orientation. These techniques
have been in use for a long time in the telecommunications area and are not invented
by object-oriented methodologists. Object-orientation did make two closely related
contributions.
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• Requirements are structured into classes. This allows the collection of data about
the implementation of classes, and hence cost and schedule predictions on the
basis of the characteristics of class specifications.

• Requirements are structured into classes on the basis of the heuristic of domain
modeling. The objects found in the application domain of the software are used
to model software objects, on top of which software functions are defined. It was
observed that this idea is more than 30 years old, since it arose in Simula67, and
is also closely related to JSD, which is 15 years old. Nevertheless, the idea reached
widespread acceptance through the object-oriented methods.

The second question, whether an object-oriented software model is a requirements
specification or a design specification, provoked a renewed discussion about what re-
quirements are. If we restrict ourselves strictly to external interactions of a system,
then requirements do not refer to the system state. It is as if we view the entire sys-
tem as an object and only refer to its external interactions. In this restricted view of
requirements, object models have no place because they structure the state of the soft-
ware into objects. After some discussion we reached some kind of an agreement that
object models are part of requirements in the wider sense and can be called conceptual
design, which is distinct from physical design. They structure the software, but do so
in terms of the application domain, which should be meaningful to the user.

The third question, whether we can move beyond object-orientation, quickly led to
the observation that in order to advance the state of the art, we need domain-specific
techniques. Once we deal with, say, traffic regulation systems, we can build domain
models and reuse them in the specification and design of traffic regulation systems. This
observation ties in well with the observation that the contribution of object-orientation
to requirements engineering is domain modeling.

In a second discussion round, we considered agent-orientation as a way of advancing
the state of the art. Realizing that the concept of agent is vague and that there
is no single widely accepted definition, we settled on the provisional definition that
an agent is an object with intentions, by which it tries to reach goals, and beliefs, by
which it maintains information about its external world. Requirements engineerin could
incorporate this by viewing the system and its environment as agents. The implication
is that requirements engineers should consider the goals of the environment and as well
as of the system, including priorities of these goals.

The discussion then took an unexpected turn because the question was raised why
we should use formal logic for the specification of agents. Why not use what we know
from psychology and sociology about intentions, goals and beliefs? This quickly led
to the question whether everything can be formalized, or whether there are certain
phenomena, such as intention and belief, that resist formalization. We retreated from
this question to another one, namely whether it is useful to formalize the formalizable.
We reached agreement about the facts that customer wishes may be vague and incon-
sistent, but that product requirements must be made precise. There are however two
different interpretations of the word “precise”:
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• Testable

• Formal

These interpretations are not the same. It seems reasonable enough to demand that
requirements can be tested so that the customer can know why he or she should ac-
cept the delivered system. One argument for formalization upon which we agreed is
that software tool support requires formalization. An example of this is the execution
semantics of statecharts, which is formal. Having strayed this far from our original
working group goal, and given the fact the the time was up, we decided that it would
be nice to report our results back to the plenary session.

Working Group 2:
Concurrency

Chair: Barbara Paech, Germany

The aim of this working group was to identify and discuss topics related to concur-
rency and relevant to the work of all the participants. A first overview on that work
showed the following structure:

Most of the participants were concerned with inter-object concurrency (message
passing), while intra-object concurrency (shared state) was only a minor issue. The
concurrency between the objects was due to the problem domain (e.g. workflow),
but also to the solution domain (e.g. hardware). All the participants were using
specification languages for concurrency, but no concurrent object-oriented program-
ming languages. Therefore issues like synchronization constraints were not discussed
in details.

Following this overview, the discussion concentrated on the following two issues:

• composition of specifiations and

• specification of communication patterns.

Composition of Specification Influenced by Peter Wegners talk, the group concen-
trated on the specification of open systems whose execution environment can not
be determined at specification time. To deal with this problem, according to the
approach of Abadi/Lamport assumptions about the environment can be incor-
porated into the specification. When composing such assumption/commitment
specifications, these assumptions have to be verified. If no assumptions are made
about the environment, the behaviour emerging through composition has to
be constrained in order to allow for the composition of the specifications. An
example of such constraints is given in Gilles Bernods talk on ETOILE.
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Specification of Communication Pattern The experience of the participants
showed that in the specification of distributed object systems the main effort
has to be invested into the specification of the communication behaviour, while
the functional behaviour of the objects can be specified straightforwardly. This
problem can be alleviated through so called communication structures which
capture typical communication behaviour in the same sense that data and control
structure capture typical functional behaviour. Connectors like Pipes and Filters
which are identified in the area of software architectures are an example of such
communication structures. While the question for good communication structure
still remains (and has to be solved in the context of specific application domains),
the group discussed the question of specification languages for such communica-
tion structures. There is an overwhelming variety of specification languages for
distributed systems. The group looked at the distinction between specification
languages which describe communication from a global viewpoint in contrast to
a local viewpoint . The latter being exemplified by TROLLs distributed tem-
poral logic. The first one allows to introduce special language constructs for
communication structures, while in the latter such a structure would be captured
in some kind of controller object enforcing the communication structure between
the other objects. In both cases, it would be desirable to have a collection of
structures (similar to design patterns, but concentrating on communication) al-
lowing for reuse. However, the issue of communication seems to be so fundamental
that a further structuring of such a collection into basic primitives and results on
substitutability between communication structures is important.

Working Group 3:
Object-oriented Models, Formalisms and Methods

for Component Software Design

Chair: Yulin Feng, China, and Zhenyu Qian, Germany

Component Software Design supports the independent production of software com-
ponents for a component market and/or later composition. The components should be
allowed to interoperate. The user of the components cannot change the components.
Open research questions in this area include formal and informal methods for

1. Interface specifications: How to specify a component? What informtion should
be provided and in which style? How can this information be used to compose
the design?

2. Implementations: How to implement a component based on a specification? How
to test, verify, etc.
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3. Architecture: What is a proper architecture for Component Software Design.

4. Designing process: How to combine composition actitivies with usual OO design
methods?

5. Supporting tools: visualization, code generation, etc.

6. Standards: COM/OLE 2, Corba/SOM/OpenDoc, Java/JavaBeans.

7. Consistency problems between components.

8. Protocols

The results
The discussion shows that the problem with Component Software Design is very

complex. The main reason is that the complete usability of a software component does
not seem to be expressible by the currently known formal approaches. The participants
come to the following conclusions.

The behavior of a software component may be specified by an interface, which
consists of a type specification and a protocol. The type specification specifies the
static properties and the protocol the dynamic ones. Specification of the dynamic
behavior is still a research topic. The protocols can be specified either formally or
informally. A protocol is a set of operation sequences that the user of the component
can execute.

It seems that the existing mathematical approaches could not describe the complete
dynamic behavior of a software component independently of the environment, where
the component is intended to be used. Practice is leading theory.

The participants discussed about the Interaction Machine (IM) proposed by P.
Wegner. IM’s are more powerful than Turing Machines and useful for specifying today’s
software components. But a formal definition of IM is still to be developed.

Sometimes implementions lead to unavoidable errors w.r.t. specifications. Verifica-
tion of an implementation against a specification is not always possible, although it
is very important in safety-critical applications. The reasons are that most practical
specifications are not formal, and that verification may sometimes be very difficult.
Testing and validation is more important than verification. It seems that we could not
achieve safety, efficiency and usability at the same time. Tradeoffs should be made for
concrete applications.

COM, CORBA and JavaBeans are useful technology for the time being. However,
they are still too restricted in one or the other way for the real interoperability. The
participants are expecting big changes.
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