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Modern computer algebra systems allow the computation of complicated
examples in Commutative Algebra, Algebraic Geometry and Arithmetic Ge-
ometry. During the last couple of years such computations have helped to
predict and check many theorems. Vice versa, inspired by complicated ex-
amples coming from theory, computer algebra developers have refined their
algorithms and implementations. The main goals of this meeting were to

e give developers of computer algebra systems and those who apply com-
puter algebra in their theoretical research the possibility of exchanging
ideas,

e to initiate cooperation between developers of different computer algebra
systems,

e to present new algorithms and systems and recent theoretical develop-
ments as well.

In order to achieve our goals we kept the number of talks to roughly four per
day. This allowed plenty of time for discussions at a blackboard or in front of
a terminal, software demonstrations and introductionary tutorials, or other
activities like a meeting on OpenMath.



1 Grobner, Buchberger, Faugere in a Nut-
shell
Dave Bayer, Barnard College, Columbia University

Faugere’s talk at this meeting on a new approach to computing Grébner
bases generated much excitement. In response, the organizers requested this
survey talk for nonspecialists, a presentation of Grobner bases and Faugere’s
method which assumed only ”groups, rings, fields”. After a review of Grébner
bases for polynomial ideals which included term orders, S-pairs, and their ge-
ometric interpretation as the limit of a flat family, we described Faugere’s
method: In a nutshell, he determines in a combinatorial phase a minimal
basis of monomials which support the computation of a Grébner basis. He
then forms a matrix and applies modern, fast methods of linear algebra to
the resulting elimination problem. In contrast, Buchberger’s algorithm can
be understood as combining these phases, with the linear algebra steps de-
termined by the S-pairs.

It was an honor and great fun to describe Buchberger’s and Faugere’s algo-
rithms to an audience that included Buchberger and Faugere. In the question
and answer period, Faugere grinned, and Buchberger made some amplifying
remarks.

2 The Hull Resolution
Dave Bayer, Barnard College, Columbia University

This talk describes joint work with Bernd Sturmfels, based on earlier joint
work with Bernd Sturmfels and Irena Peeva. We develop a theory of ”cellular
resolutions” of monomial ideals, which are chains of syzygies modeled after
the chain complex which computes the cellular homology of a regular cell
complex. We extend this theory to include "monomial modules”, which gen-
eralize monomial ideals to submodules of the Laurent polynomial ring. We
then develop an equivalence of categories between toric ideals and monomial
modules, and transfer the theory of cellular resolutions to toric ideals.

Extending a construction of Scarf, we define the "hull resolution” for mono-
mial modules and toric ideals, as a cellular resolution supported on the convex
hull of a rescaling of the generating exponents.



3 Composing power series over a finite ring
in essentially linear time

D. J. Bernstein, University of Illinois at Chicago

Fix a finite commutative ring R. Let u and v be power series over R, with
v(0) = 0. I presented an algorithm that computes the first n terms of the
composition u(v), given the first n terms of u and v, in nt+oM) ring opera-
tions. The algorithm is very fast in practice when char R is a product of
small primes.

4 Functors for Implementing Polynomial
Ideal Theory (The Theorema Project)

Bruno Buchberger, RISC, Austria

The Theorema Project aims at integrating proving support into computer
algebra systems. It is motivated by past work in constructive polynomial
ideal theory. The emphasis of the project is on proof generation for rou-
tine parts of proofs, structured proof presentation in natural language, and
smooth interaction with the existing solving and computing facilities of com-
puter algebra systems. Our present system frame is Mathematica 3.0.

We give an overview on the Theorema Project emphasizing the interaction
between functors and special provers. A special prover is developed together
with each functor. Provers can either be the know ”black box” provers relying
on algebraic methods or provers that emphasize the imitation of human proof
styles. These provers give output in natural language and present proofs in
nested cells so that browsing the proofs becomes easy.

The talk is accompanied by demos.

5 Chaos in Commutative Algebra

Ragnar-Olaf Buchweitz, University of Toronto

In this talk we discussed results and problems concerning the Hilbert-Kunz
function of a ring in positive characteristic.

We presented earlier results by Kunz, characterizing regular rings through
their Hilbert-Kunz functions, Monsky, describing Hilbert-Kunz functions of
one dimensional rings and showing that the Hilbert-Kunz multiplicity always



exists.

We then reported on joint work (appeared in J. of Algebra) with Qun Chen
calculating the Hilbert-Kunz functions both for elliptic curves in character-
istic different from two (the remaining case was settled by Monsky) and for
Cayley’s cubic surface. As a consequence we obtain that the theoretical lower
bound for the Hilbert-Kunz multiplicity of curves or surfaces is always at-
tained.

We then turned our attention to the chaotic features of Hilbert-Kunz func-
tions: Monsky showed that the Hilbert-Kunz function for certain families
of quartic plane curves is governed by a “p-adic dynamical system” and
determined the Hilbert-Kunz multiplicity in terms of the “escape time”
of that system. Another chaotic phenomenon appears when one studies
d(i, j, k) = dimg K[z,y]/(F', G/, H*); char K = p > 0; as a function of
(i,j,k) for given pairwise coprime homogeneous polynomials F,G,H. When
these polynomials are linear, Han showed that d(i,j,k) can be interpreted as
the distance from a fractal that is similar to a Sierpinski sponge, or else, a
three dimensional version of Pascal’s triangle mod p.

In the meantime we have shown that d is a generalized taxicab distance from
a fractal if only one of the three polynomial is linear. This result uses Kro-
necker’s description of syzygies in terms of cointinued fraction expansions.

In all the results mentioned, heavy use was made of computer calculations
and experiments, mainly using Macaulay and Maple. In fact, most results
were predicted on the basis of computer experiments.

6 Yet Another Ideal Decomposition Algo-
rithm

Massimo Caboara, Pasqualina Conti, and Carlo Traverso,

Dipartimento di Matematica, Pisa and Dipartimento di Matem-
atica applicata, Pisa

The problem of decomposing an ideal into pure-dimensional components
(resp. reduced pure-dimensional components) is a key step in several ba-
sic algorithms of commutative algebra.

Several algorithms have been proposed for this computation, and fall mainly
into two classes: the family of projection algorithms, whose prototype is the
primary decomposition algorithm of [2], and the direct, syzygy-based algo-
rithms, like [3].



The superiority of one type of algorithms over the other has not been settled;
in [3] it is argued that the direct methods are superior since for projection
methods “sufficiently generic” projections are needed. This assertion is only
marginally true for the current literature — already in [4] “generic linear
combinations” are needed only for finding a single univariate polynomial,
through linear algebra and a variation of [5], and the algorithms of [6] and
[7] compute triangular decompositions through characteristic sets without
changes of coordinates.

Moreover projection algorithms do not have the limitation to large character-
istics of [3], in particular the example of D. Jaffe in [3] can be easily handled
by our algorithm (and indeed by all projection algorithms).

In this paper we describe algorithms for equidimensional decompositions,
that can be seen as a marginal modification of an algorithm of [4], but that
completely avoid generic or random projections, and does not need lexico-
graphic Grébner bases or characteristic sets, hence can be a candidate to a
best competitor against direct algorithms. Some tests seem to support the
belief that our algorithms are much faster than direct algorithms.

The basic computational tools used in this paper are Grobner bases with re-
spect to suitable orderings, and ideal saturation, i.e. affine variety difference.
We stress again that no projection in generic (or random) direction, addition
of random linear forms, etc. are used. Computation of the dimension and of
the multiplicity are used to guide some steps of the algorithms.

The relation of flatness with variation of staircases, that is our main proof
tool, has already been considered in [1]; specialization of Grébner bases is
already a main tool in [2].
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7  “Solving” Problems with redlog
The Real Enneper Surface

Andreas Dolzmann, University of Passau

We demonstrate how REDLOG can be used to solve a problem in real algebraic
geometry: The complex Enneper surface is given explicitly as the image of a
polynomial parameterization and implicitly as the complex variety of a poly-
nomial. We show that the corresponding real variety is exactly produced by
the restriction of the given parameterization to real parameters. We explain
all necessary computation steps, and sketch the algorithms involved.

The REDUCE package REDLOG by A. Dolzmann and T. Sturm provides sym-
bolic algorithms on first-order formulas. Its focus is on simplification of
quantifier-free formulas and on real quantifier elimination. Besides the built-
in algorithm for quantifier elimination REDLOG provides interfaces to two
external implementations of quantifier elimination algorithms: QEPCAD by
H. Hong and RQEPRRC by the author.

8 Projective Codes: Construction and Prob-
lems
Noam D. Elkies, Harvard University

We recall the construction of Goppa’s codes: these are the spaces I'(L) where
L is a line bundle on a curve X of genus g with N > deg L rational points
over a finite field F'. Here each ¢ € I'(L) is regarded as an N-tuple of elements
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of F' by arbitrarily identifying each of the N fibers above X (F') with F'. By
Riemann-Roch this code consists of at least |F'|9¢L+1-9 words, any two of
which agree on at most deg L coordinates. If F'is fixed and X is “asymptot-
ically optimal” — i.e. varies in a family with ¢ — oo and N/g — |F|'/? — 1
(the maximum allowed by Drinfeld-Vladut, which is attained when |F|/2 € Z
by suitable modular curves X) — the resulting codes have excellent param-
eters; in particular they have the best parameters known if |F'| is a square
> 49. We observed recently that one does even better by using instead the
set C' of all rational functions f € F(X) whose degree (as maps from X to
P) is at most h, considered as N-tuples of elements of

bfP'(F). Any two such can agree on at most 2h coordinates, and we can
show that for h in the range of interest and X asymptotically optimal the
number M of codewords is ((|F|+ 1)/|F|)¥+°™) times that of the corre-
sponding Goppa codes (with deg L = 2h). We then raise several algorithmic
questions suggested by this construction:

1) Given a curve X over some field F', a list py,...,py of points and el-
ements cy,...,cy € PYF), and an integer h < N/2, does there exist a
function f € F(X) of degree < h such that f(c¢;) = p; for each i? [The
corresponding problem is “easy” for Goppa’s codes since it reduces to linear
algebra; one can also solve it here by linear algebra if X is rational, or of
small genus, but we are interested in large g.]

2) More generally, if h + e < N/2 and f(¢;) = p; holds fo all but e choices of
i € [1,N], recover f. [This is tractable for Goppa if the number e of errors
is small enough, but open if e is allowed to be as large as (N —deg L)/2.]

3) Find an easily computable injection {1,2,..., M1=¢} — C, i.e. a labeling
of “most” of C, preferably with the inverse map also easily computable. [The
corresponding problem for Goppa is again trivial, even with € = 0, once a
basis for I'(L) is computed.]

Also, a more conceptual question:

4) The factor ((q+1)/q)N*°®™) (which arises essentially as Lx(1)/Lx(2), as
in Schanuel’s theorem) means that if X is asymptotically optimal and we
choose a random map ¢ : X — P!(F) and arbitrarily identify P*(F) — ¢(p)
with F for each p € X (F') then the subcode {c € C' : Vp € X(F),c, # ¢(p)},
considered as a subset of F'VV, is asymptotically just as good a code as Gop-
pa’s. Is there a conceptual reason for this coincidence?

Finally, a question about the construction of asymptotically optimal curves X.
All the known examples of simple explicit equations for optimal towers (see
Garcia-Stichtenoth) are of the form: X has coordinates x1, ..., z, and rela-



tions ®(xj,z;41) = 0 (1 < j < r) for some fixed irreducible polynomial ¢
and r — oo. All such towers turn out to be modular in an appropriate sense
(classical Xo(+), Shimura, or Drinfeld).

5) If @ gives rise to an asymptotically optimal tower of curves, is the tower
necessarily modular?

9 Efficient Algorithms and Softwares for
Solving Polynomial Equations

Jean-Charles Faugere, Paris VI

This talk presents new algorithms for solving polynomial systems and in
particular a new efficient algorithm for computing Groebner bases. To avoid
as much as possible intermediate computation, the F4 algorithm computes
successive truncated Groebner bases and replaces the classical polynomial
reduction found in the Buchberger algorithm by the simultaneous reduction
of several polynomials. This powerful reduction mechanism is achieved by
means of a symbolic precomputation and by extensive use of sparse linear
algebra methods.

Some previously untractable problems (Cyclic 9) are presented as well as an
empirical comparison of a first implementation of the algorithms with other
well known programs.

10 Computations with Approximate Ideals

P. Gianni and B. Trager, Dipartimento di Matematica, Pisa and
IBM Watson Research Center

In this talk we present methods designed for working on zero—dimensional ide-
als defined by polynomials with “approximate” coefficients. We state bounds
sufficient for determining a linear basis for the elements of the ideal in fixed
degree.

As an application we find the special adjoints for an approximate plane curve
with quadratic singularities. Similar techniques allow one to compute the
multiplication matrices for the residue algebra. We show how to use re-
ordered Shur factorization to reduce the multivariate problem to a univariate
one. This allows us to find the roots of a system of multivariate equations
even in the case of multiple roots in a numerically stable way.



11 Overview of Singular

Gert-Martin Greuel, Universitat Kaiserslautern

Singular is a special-purpose computer algebra system for commutative alge-
bra, algebraic geometry and singularity theory. The main features of Singular
are:

e Computations in very general rings (polynomial rings, localizations of
rings at a prime ideal, tensor products of rings) over many ground
fields (rational numbers, mod p numbers, Galois fields, transcenden-
tal/algebraic extensions) and monomial orderings (all standard mono-
mial orderings, including matrix orderings)

e Very fast standard (resp. Groebner) bases computations
e Polynomial factorization, resultant, and gcd computations

e Large variety of implemented related algorithm: FGLM, Hilbert-driven,
Factorizing Buchberger; Minimal resolutions, Primary decomposition;
Usual ideal theoretic operations; standard combinatorial algorithms.

e Efficient and flexible communication links based on the MP protocol
and library

e Easy-to-use, command-driven user-interface
e Intuitive, C-like programming language

e Extensive libraries of procedures, written in Singular’s programming
language

e Written in C/C++. Available as binary program for common hard- and
software platforms (including most Un*x variants, MS-DOG, MacOS)

12 Computing the Normalization of a Re-
duced Noetherian Ring R

Theo de Jong, Universitat des Saarlandes, Saarbriicken

In this talk we consider the problem of computing the normalization of a
reduced Noetherian ring R. Basic is the following normality criterion.

Theorem. Let I be a radical ideal of R. Suppose that for all prime ideals p



of R with R- not normal, it follows that p D I. Then R = Hompg(7, I) if and
only if R is normal.

For I one can take for example the reduced ideal of the singular locus of
R, but there might be many more possibilities. It follows from the Cayley-
Hamilton theorem that Hompg(/, I) is a subring of the normalization. Now
suppose the normalization of R is finitely generated over R.

So if we define Ry = R, and R;11 := Hompgj(l;, I;) fo some ideal ; satisfying
the conditions of the theorem, we eventually have that R; is equal to the
normalization.

13 FOXBOX

Erich Kaltofen, North Carolina State University

The FOXBOX system puts in practice the black box representation of sym-
bolic objects and provides algorithms for performing the symbolic calculus
with such representations. Black box objects are stored as functions.

For instance:a black box polynomial is a procedure that takes values for
the variables as input and evaluates the polynomial at that given point.
FOXBOX can compute the greatest common divisor and factorize polynomi-
als in black box representation, producing as output new black boxes. It also
can compute the standard sparse distributed representation of a black box
polynomial, for example, one which was computed for an irreducible factor.
We establish that the black box representation of objects can push the size of
symbolic expressions far be yond what standard data structures could handle
before.

Furthermore, FOXBOX demonstrates the generic program design method-
ology. The FOXBOX system is written in C++. C++ template arguments
provide for abstract domain types. Currently, FOXBOX can be compiled
with SA CLIB 1.1, Gnu-MP 1.0, and NTL 2.0 as its underlying field and
polynomial arithmetic. Multiple arithmetic plugins can be used in the same
computation.

FOXBOX provides an MPI-compliant distribution mechanism that allows for
parallel and distributed execution of FOXBOX programs. Finally, FOXBOX
plugs into a server/client-style Maple application interface.
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14 Solving Systems, Prime Decomposition
and Triangular Sets

Daniel Lazard, Université de Poitiers

For solving polynomials systems, Groebner basis have intinsically a double
exponential complexity. An alternative approach consists in splitting the
problem during the computation and to describe the solutions as a set of tri-
angular systems. There are several methods for such an approach (Kalbren-
ner, myself, Dongming Wang,...). Recent implementation of these meth-
ods by M. Moreno-Maza and P. Aubry have made significant progresses in
the practical efficiency of these algorithms. Nevertheless, much work is yet
needed to make them competitive with Groebner base approach, and reach
the simple exponential complexity with practically efficient algorithms.

15 Linear Algebra with a View towards Poly-
nomial System Solving

B. Mourrain, INRIA, Sophia Antipolis

This talk is an introduction to linear algebra methods for solving a poly-

nomial system f; = ... = f,, = 0. The approach is illustrated by explicit
computations in MAPLE. We first describe the quotient algebra A by the
ideal I = (fi,..., fi) in terms of the multiplication operators. We show how

resultant matrices allow to handle this structure, in the generic case.Next,
we consider Bezoutian matrices which allow to solve many effective problems
for a wider class of polynomial systems. We give a brief description of alge-
braic residues and some of its numerous applications. The matrices involved
in these computations have a structure that we recall. We end with the de-
scription of complete methods for solving polynomial systems, exploiting the
tools and the structure of the matrices, previously described.

16 Quadratic Algebras — New results.
Jan-Erik Roos, University of Stockholm

Let k be a field, k[xy, o, ..., z,] the commutative polynomial ring in the
x1,..., T, and let R = k[xy,...,x,)/(f1,- .., ft) where the f; are quadratic
forms in the z;.

We say that R is a quadratic algebra. Let V be the k-vector space gener-
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ated by the x;, and let T'(V') be the tensor algebra on V. We can write
R = T(V)/(W) where W C V®;V is the subvector space generated by
the f; and the 3 ® xr — zp ® 5. Now define the dual quadratic algebra
R' of R by R' = T(V*)/(W+), where V* = Homy(V, k) and W+ = {f €
V*®@ V*, s.t. flIW = 0} One proves that R' is a graded Hopf algebra and
that furthermore R' = U(n) (= the enveloping algebra of a graded super Lie
algebra n = n' ©n? @ ---). The Hilbert series of R' will be denoted by R'(t)
and according to the Poincaré-Birkhoff-Witt theorem
(1+t)m  (1+t3)m

R!(t) — (1 — t2)?72 . (1 — t4)774 e (*)

(in (*) n' is the rank of n). If 5 is nilpotent of some degree v, then (*) is
a finite product and R'(t) converges for |t| < 1. D. Anick and C. Lofwall
asked 15 years ago if there existed R such that n = nr was not nilpotent, but
nevertheless R'(t) converged for |t| < 1 ( then R'(t) is an irrational function).
Such examples of R were found by computers studies using MACAULAY and
BERGMAN, and the simplest example seems to be

klx,y, z,u,v]

(Y2, yz + xu, 22 — yu — xv, zu + yv, u?)’
for which the ranks of the 7’ are (when chark = 0)
57 57 37 37 57 67 37 37 57 67 37 37

If char k = p # 0 we have a similar behavior, but the series R'(t) are different
for all p. This has applications in algebraic topology (existence of lots of
torsion in integral loop space homology of some finite, simply-connected CW-
complexes of dimension < 4).
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17 Riemann Surfaces, Plane Algebraic
Curves and their Period Matrices

Robert Silhol, Université Montpellier, and Patricia Gianni, Di-
partimento di Matematica, Pisa, Mika Seppala, University of
Helsinki, and Barry Trager, IBM Watson Research Center

The aim of this talk is to present a theoretical basis for computing a repre-
sentation of a compact Riemann surface as an algebraic plane curve and to
compute an numerical approximation for its period matrix. We will describe
a program CARSS that can be used to define Riemann surfaces for computa-
tions. CARS allows one also to perform the Fenchel-Nielsen twist and other
deformations on Riemann surfaces.

Almost all theoretical results presented here are well known in classical com-
plex analysis and algebraic geometry. The contribution of this talk is the
design of an algorithm which is based on the classical results and computes
first an approximation of a polynomial representing a given compact Riemann
surface as a plane algebraic curve and further computes an approximation
for a perio d matrix of this curve. This algorithm thus solves an important
problem in the general case. (This problem was first solved, in the case of
symmetric Riemann surfaces.)

18 Computing Differential Galois Groups
Michael F. Singer, North Carolina State University

At present, we do not know a general algorithm that will compute the Galois
group of a linear differential equation with coefficients in a differential field
k, even when k = Q(x), where Q is the algebraic closure of the rational num-
bers. In this talk we give an introduction to differential Galois theory and
give an overview of the techniques used to compute Galois groups in special
circumstances. We will focus on two particular techniques:

1. the use of representation theoretic techniques to give algorithms that
determine the Galois groups of linear differential equations over Q(z)
of orders 2,3, and 4, and

2. the use of constructive invariant theory to give algorithms that compute

the Galois groups of linear differential equations over Q)(z), assuming
that the Galois group is reductive.

Detailed treatements of these subjects (and further references) can be found
in the papers Direct and Inverse Problems in Differential Galois Theory
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and Computing Galois Groups of Completely Reducible Differential Equa-
tions (with E. Compoint) available at http://www4.ncsu.edu/ singer

19 Finite Flat Algebras and the Lemma of
Diamond
Bart de Smit

In the Springer-volume on the Boston conference on Wiles’s proof of Fer-
mat’s Last Theorem, one finds Rubin’s improvement of the Wiles-Faltings
criterion for complete intersections, which avoids the standard limiting pro-
cess. In recent work of F. Diamond, (Inventiones, 1997) this limiting process
is introduced again to give a stronger result.

Diamond raises the question whether one can do this also purely in terms
of Artinian rings. This leads to the following fundamental question. Let
A C B be a finite flat extension of split local artin algebras over a field with
the same embedding dimension. Then is it true that every finite B-module
which is flat over A is also flat over B? We discuss some partial answers.

20 Higher dimensional partial fractions

Jeremy Teitelbaum, University of Illinois at Chicago

In this talk, which dealt with work in progress, I described a generalization
of the decomposition of a univariate rational function into partial fractions
to the case of a multivariate rational function with denominator a product
of linear forms. In the one-variable case, the coefficients of a partial fraction
decomposition may be computed locally by means of residues. In higher di-
mensions, one must consider a residue which is computed along a complete
flag of linear subvarieties of P". I defined this residue, described its basic
properties, and described the extent to which this type of residue may be
used to compute the higher dimensional partial fraction expansion.

The partial fraction decomposition I discussed was originally constructed by
Varchenko and Gelfand (see Theorem 21 of Varchenko, A. N. and Gelfand,
[.LM., Heaviside Functions of a Configuration of Hyperplanes, Functional
Analysis and its Applications, Vol. 21, No. 4, 1987, pp. 1-18.) The re-
sults on residues grow out of joint work with Peter Schneider of Muenster,
Germany, on p-adic symmetric spaces.
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21 Normalization

Barry Trager and Patrizia Gianni, IBM Watson Research Cen-
ter and Dipartimento di Matematica, Pisa

After giving a proposition which reduces the problem of computing the inte-
gral closure of a general noetherian ring to the three problems of:

e Compute a universal denominator d (non-zero divisor in the conductor).
e Compute radical of the ideal generated by d.
e Compute ideal quotients

We show that for the common case of affine domains, i.e. domains which are
finitely generated over fields of characteristic zero, we can use an effective
localization in order to perform most of the computation in one dimensional
rings where it can be done with linear algebra, i.e. hermite normal form
computations.

22 Computational Geometry Problems in
REDLOG

Volker Weispfenning, Universitat Passau

REDLOG is a REDUCE-package for first order logic developed by A. Dolzmann
and T. Sturm. Its main goal is low-degree real quantifier elimination with
answers. We outline the elimination method by test-terms and illustrate
the scope of the package by a series of examples in computational geometry.
They include automatic theorem proving in geometry, shading and aspects of
objects under parallel and central projections, reconstruction of objects from
a projection, computation of equidistance surfaces and offsets, and collision
problems.

We conclude with some examples in computational solid modeling concerning
autoamtic rounding and blending of solids.
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