
Internationales Begegnungs- und

Forschungszentrum für Informatik

Schloß Dagstuhl

Seminar Report 9737

Parallel and Distributed Algorithms

September 8 – 12, 1997

O v e r v i e w

The fifth Dagstuhl Seminar on Parallel and Distributed Algorithms was orga-
nized by Ernst W. Mayr (TU München), Friedhelm Meyer auf der Heide (Uni-
versität Paderborn), and Larry Rudolph (The Hebrew University, Jerusalem).
It brought together 31 participants from 8 countries, 12 of them came from
overseas.

The 28 talks presented covered a wide range of topics including routing and
sorting on interconnection networks, models of parallel computation, network-
aware applications, instruction-level parallelism, etc. In addition, several open
problems were posed during an evening session.

Enjoying the pleasant atmosphere provided by the Dagstuhl Center, the
participants used the surroundings for lively discussions as well as recreational
hiking. We would like to thank all those who contributed to the success of the
seminar.

Reported by Ben Juurlink and Berthold Vöcking

3



Participants

Jean-Loup Baer, Seattle, USA
Yosi Ben-Asher, Haifa, Israel
Artur Czumaj, Paderborn, Germany
Ralf Diekmann, Paderborn, Germany
Martin Dietzfelbinger, Dortmund, Germany
Pierre Fraigniaud, Paris, France
Thomas Gross, Zürich, Switzerland
Torben Hagerup, Saarbrücken, Germany
Ben Juurlink, Paderborn, Germany
Clyde P. Kruskal, College Park, USA
Ludek Kucera, Prague, Czech Republic
Miroslaw Kutylowski, Paderborn, Germany
Klaus-Jörn Lange, Tübingen, Germany
Krzysztof Lorys, Wroclaw, Poland
Ernst W. Mayr, Munich, Germany
Friedhelm Meyer auf der Heide, Paderborn, Germany
Andrea Pietracaprina, Padova, Italy
Christine Rüb, Saarbrücken, Germany
Vijaya Ramachandran, Austin, USA
Larry Rudolph, Cambridge, USA
Wojciech Rytter, Warsaw, Poland
Uwe Schwiegelshohn, Dortmund, Germany
Jop Sibeyn, Saarbrücken, Germany
Peter Steenkiste, Pittsburgh, USA
H. Raymond Strong, San Jose, USA
Ted Szymanski, Montreal, Canada
Pilar de la Torre, Durham, USA
Eli Upfal, San Jose, USA
Berthold Vöcking, Paderborn, Germany
Uzi Vishkin, College Park, USA
Rolf Wanka, Paderborn, Germany

4



Contents

Abstracts of Talks

Jean-Loup Baer

On the Performance of Cluster Architectures

Yosi Ben-Asher

The Partitioned PRAM Model, Re-Doing Basic PRAM Algorithms with Limited Re-
sources

Artur Czumaj

Adaptitive Allocation Processes

Ralf Diekmann

Load Balancing Strategies for Scientific Computing Applications

Martin Dietzfelbinger

On Analyzing the Cost of Communication in Networks

Pierre Fraigniaud

A General Theory for Deadlock Avoidance

Hubertus Franke

The Kitchawan Scalable Shared Memory Multiprocessor Operating System

Thomas Gross

Network-aware Applications: New Challenges for Parallel and Distributed Computing

Ben Juurlink

Experimental Validation of Parallel Computation Models on the Intel Paragon

Ludek Kucera

Edge-disjoint Paths and Network Routing

Miros law Kuty lowski

Generating Random Permutation on Parallel and Distributed Systems

Klaus-Jörn Lange

New Criteria for Parallelization

Ernst W. Mayr

Efficient Embeddings of Treelike Graphs into Hypercubes

Andrea Pietracaprina

Deterministic Routing of h-Relations on the Multibutterfly

Vijaya Ramachandran

QSM: A General Purpose Shared-Memory Model for Parallel Computation

Larry Rudolph

How Parallel Programs Execute on Next Generation Parallel Machines

5



Christine Rüb

On Batcher’s Merge Sorts as Parallel Sorting Algorithms

Wojciech Rytter

Parallel Tree-Contraction and Fibonacci Numbers

Uwe Schwiegelshohn

A Distributed Scheduling Algorithm for Parallel Discrete Event Simulation

Jop F. Sibeyn

Solving List Ranking Almost as Fast as Sorting

Peter Steenkiste

Application-specific Resource Management in Darwin

Ray Strong

Practical Membership Protocols

Ted H. Szymanski

Parallel Computing with Optical Interconnects

Torben Hagerup

Allocating Independent Tasks to Parallel Processors: An Experimental Study

Eli Upfal

Dynamic Analysis of Communication Processes

Uzi Vishkin

From Algorithm Parallelism to Instruction-Level Parallelism: An Encode-Decode Chain
Using Prefix-Sum

Berthold Vöcking

Exploiting Locality for Data Management in Systems of Limited Bandwidth

Rolf Wanka

Sorting on a Massively Parallel System Using a Library of Basic Primitives

Open Problems

Posed by
Ernst W. Mayr

Friedhelm Meyer auf der Heide

Andrea Pietracaprina

Christine Rüb

Ted H. Szymanski

6



Abstracts

On the Performance of Cluster Architectures

by Jean-Loup Baer (joint work with Xiaohan Qin)

We consider the performance of shared-memory cluster-based architectures where each
cluster is a shared-bus multiprocessor augmented with a protocol processor maintaining
cache coherence across clusters.

We first evaluate the performance of various cluster configurations including the impact of
adding a remote shared cache in each cluster. We use Mean Value Analysis to estimate
intra and inter-cluster cache miss latencies as well as overall execution time. Architectural
parameters are carefully selected and application parameters, such as frequency and types
of cache misses, are obtained through trace-driven simulation.

The model exercised –and validated – on three applications shows that without remote
caches the performance of cluster-based architectures is mixed. With remote caches, clus-
ters consistently outperform the single bus system.

We then show, via simulation, that with the introduction of user-based communication
primitives, the overhead of a software implementation on the protocol processor can be
overcome and the performance is competitive with that of a hardware based cache coherence
solution.

The Partitioned PRAM Model, Re-Doing Basic PRAM Algorithms with Lim-

ited Resources

by Yosi Ben-Asher

The attempt is to research phenomena of practical parallel execution in a theoretical set-
ting. We argue that practice and theory do not have a common model which both sides can
use (due to their diffrent nature). Hence, the best one can do, is to propose a theoretical
setting where the gap of practical parallel programming can be studied as a theoretical
problem. Programmers can then use the model to write parallel programs, however, since
there is no real meeting between theory and practice, then the implementation of the model
is a puerly practical thing and theory can not handel this problem. The theoretical setting
should use the following rules:

The theoretical analog for practical parallel programming will be the concept of trade-
off (TD) relating the execution time to the available resources T = f(x1, . . . , xk). The
complexity of a problem is obtained when the lower bound TD is equal the upper bound
TD achieved by an actual algorithm A(x1, . . . xk) for every possible value of x1, . . . , xk.
Thus the realization of an algorithm as a program require x1, . . . xk to be actual param-
eters of the program. TD should be classified according to scalability properties of the
form f(x1, . . . , c · xi, . . . xk) = c · f(x1, . . . , xi, . . . xk) (replacing the notion of speedup and
efficiency). Experiments should be made to prove the following Meta claim:

7



1- Any parallel execution follows the a curve similar to that of the TD. 2- Optimal ex-
perimental values of x1, . . . , xk (when A() achieves the complexity of the problem) implies
optimal performances against any possible program for the same problem.

x1, . . . , xn reflect theoretical resources whose value is determined experimentally, thus ele-
vating the model from the messy details of the underlying architecture. The model should
be conductive for actual programming stiles (either message passing or shared memory).

In this talk I have presented such a model described a simple lower bound for computing
the sum of n numbers and discussed experimental results with Matrix multiplication. The
proposed PPRAM model is a modification of the m-PRAM (proposed by Vishkin and
Wigderson 1985) with the requirment that the imput should be partitined between the
processors.

Adaptitive Allocation Processes

by Artur Czumaj (joint work with Volker Stemann)

We investigate various randomized processes allocating balls into bins that arise in applica-
tions in dynamic resource allocation and on-line load balancing. We consider the scenario
when m balls arriving sequentially are to be allocated into n bins on-line and without using
a global controller.

Traditionally, the main aim of allocation processes is to place the balls into bins to minimize
the maximum load in bins. However, in many applications it is equally important to
minimize the number of trails performed by the balls (the allocation time). We study
adaptive allocation schemes that achieve optimal tradeoffs between the maximum load,
the maximum allocation time, and the average allocation time.

We investigate allocation processes that may reallocate the balls. We provide a tight
analysis of the maximum load of processes that during placing a new ball may reassign the
balls in up to d randomly chosen bins.

We study infinite processes, in which in each step a random ball is removed and a new ball
is placed according to some scheduling rule. We present a novel approach that establishes
a tight estimation of the time needed for the infinite process to be in the state near to its
equilibrium.

Load Balancing Strategies for Scientific Computing Applications

by Ralf Diekmann

In this talk, I will focus on applications from the field of Scientific Computing, a class
of problems which classically demand for very large amounts of computations, but which
are also able to exploit the potentials of large massively parallel systems. Examples are
Finite Element or Finite Difference simulations of fluid dynamics or structural mechanics
problems. Such applications typically iterate quite simple algorithms on large data-sets
which are structured as a two- or three-dimensional graphs (called meshes).

8



If the simulation is static, i.e. the mesh is known in advance and does not change during
run-time, the load balancing problem reduces to the task of mapping the application graph
onto the processor network. For modern parallel architectures, this problem can further
be relaxed to graph partitioning. I will give a short survey of existing graph partitioning
algorithms and present a new one which, if applied to the 2-way partitioning problem, is
able to meet bounds on the bisection width of regular graphs.

Modern techniques in numerical simulation are dynamic in the sense that they adapt
the mesh based on error estimates of the current solution. In this case, a dynamic load
balancing problem arises: The distribution of the mesh over the processors has to be
adjusted in order to keep the workload balanced. A number of different dynamic load
balancing strategies can be used to handle this problem. For this talk, I will focus on a
two-step approach: The first step determines how much load to move where and the second
actually identifies the data-items to move. For the first step, local iterative methods can be
used. I will shortly introduce existing methods and discuss some performance and usability
issues of diffusive algorithms.

The second step is crucial for certain numerical algorithms, especially for preconditioners
which are based on domain decomposition. Here the shape of subdomains heavily influ-
ences the overall run-time. I will present some first attempts to consider this shape while
migrating load items.

On Analyzing the Cost of Communication in Networks

by Martin Dietzfelbinger

We study the question of how many bits must be exchanged in an asynchronous network
to compute a function f , if the input components are distributed among the processors.
Tiwari (1987) showed how this problem can be reduced (for many networks, in particu-
lar those with a large diameter) to the following very simple scenario: k + 1 processors
P0, . . . , Pk, connected by k links to form a linear array, are to compute a function f(x, y),
x ∈ X, y ∈ Y , on a finite domain X×Y , where x is only known to P0, y is only known to Pk;
the intermediate processors P1, . . . , Pk−1 do not have any information. The processors com-
pute f(x, y) by exchanging binary messages across the links, according to some protocol Φ.
Let Dk(f) denote the minimal complexity of such a protocol Φ, i. e., the total number of bits
sent across all links for the worst case input, and let D(f) = D1(f) denote the (standard)
2-party communication complexity of f . Tiwari proved that Dk(f) ≥ k · (D(f)−O(1)) for
almost all functions f and conjectured this inequality to be true for all f . His conjecture
was falsified by Kushilevitz, Linial, and Ostrovsky (1996): they exhibited a function f for
which Dk(f) is essentially bounded above by 3

4
k · D(f). The best general lower bound

known is Dk(f) ≥ k · (
√

D(f) − log k − 3). We prove

Dk(f) ≥ 0.146 · k · D(f), for arbitrary f and k.

Applying the general framework provided by Tiwari, we may derive lower bounds for the
communication complexity of computing functions in general asynchronous networks on

9



the basis of their two-party communication complexity.

A General Theory for Deadlock Avoidance

by Pierre Fraigniaud (joint work with E. Fleury)

Deadlock occurs while routing in a network when several messages M1, . . . , Mk block each
other: Mi is holding some resources (namely buffers) that are required by Mi−1 to proceed
further, this for all i. Several characterizations of deadlock-free routing function have been
derived in the literature, each of them for a particular type of routing function: static vs.

adaptive, vertex-dependent vs. input-dependent, unicast vs. multicast, etc. In this talk,
we will present a framework that allows to unify all these characterizations in a single
theorem. This framework is based on a simple though general description of what is a
routing function.

An abstract version of this paper will appear in the proceedings of the 10th International
Conference on Parallel and Distributed Computing (PDCS ’97), New Orleans, Oct. 1997.

The Kitchawan Scalable Shared Memory Multiprocessor Operating System

by Hubertus Franke (joint work with Orran Krieger, Marc Auslander, Bryan Rosen-
burg, Bob Wisniewski, and Marc Snir)

We are developing a new general-purpose operating system for cache-coherent multipro-
cessors. Target systems range from the small-scale multiprocessors that we expect will
become ubiquitous, to the very large-scale non-symmetric multiprocessors that are becom-
ing increasingly important in both commercial and technical environments. By designing
the system from the start for cache-coherent multiprocessors, we expect to achieve a high
degree of spatial and temporal locality in code and data. This locality will result in sub-
stantial performance advantages, even on small-scale servers. To support large servers,
Kitchawan is designed to scale to hundreds of processors and to address the reliability,
fault-containment, and fault-tolerance requirements of large commercial applications. We
exploit the 64-bit addressing capability of modern processors to improve performance on
the full range of systems and to facilitate scalability on large systems. We employ microker-
nel and object-oriented technology to make the system easier to maintain, easier to extend
to support new platforms and new applications, and easier to customize to support the
needs of important subsystems (e.g., databases, web servers). Due to the in-cache locking
facilities provided by future architectures, we are targeting very fine grain locking schemes
with very little memory and runtime overhead for the uncontended case. One of the key
technologies we employ are building block compositions, which are abstract topologies of
system level facilities, e.g. memory management. Trusted servers can replace parts of
these topologies by downloading refined implementation into the topology for particular
applications. We treat IPCs as method invocations on objects located in different address
spaces. This allows us to have the IPC facility select an available thread thus avoiding
potential bottlenecks in the system. Further it enables us to pass arguments via registers
or use handoff scheduling. We are developing the OS concurrently on x86 and on PowerPC

10



architectures to keep us honest with respect to portability (e.g. endian issues, memory
layout, etc.).

Network-aware Applications: New Challenges for Parallel and Distributed

Computing

by Thomas Gross

Parallel and distributed applications execute on systems that are based on general-purpose,
shared networks. The performance (bandwidth, latency, etc.) of such networks changes
during the course of a computation. A user may experience unpredictable response-time
(if the application requires more resources than the network can provide) or may not take
full advantage of available resources (if the application conservatively limits its demands).
Network-aware applications adjust their resource demands in response to resource avail-
ablility (and system-aware applications consider all aspects of the execution environment,
in addition tothe network). This talk discusses the construction of such adaptive applica-
tions. We report on a framework that was developed to simplify application development
for a variety of network architectures.

Further information on this research can be found via the homepage of the CMCL Labo-
ratory at Carnegie Mellon: http://www.cs.cmu.edu/~cmcl

Experimental Validation of Parallel Computation Models on the Intel Paragon

by Ben Juurlink

New experimental data validating some of the proposed parallel computation models on
the Intel Paragon is presented. This architecture is characterized by a large bandwidth and
a relatively large startup cost of a message transmission, which makes it very important to
send a few large messages instead of many small ones. For this reason, we implemented a
BSP library on top of the native NX message passing library that postpones communication
until the end of the superstep and combines all packets destined for the same processor into
a single message. Our results show that on the Paragon this technique cannot reduce g to a
value which is comparible to the reciprocal of the bisection bandwidth of the communication
network, because the link speed is so high that memory access time and buffer management
account for a significant part of the communication overhead. Furthermore, it is shown
that the execution time of an algorithm implementation can be significantly reduced if the
number of startups is taken into consideration, even if reducing the number of startups
increases the communication volume and the number of supersteps.

Edge-disjoint Paths and Network Routing

by Ludek Kucera

Let us start by an example motivationg the talk: 16-64 workstations connected to an
interconnection network through PCI or SBus cards (1Gbit/s) and using packets of 64
bytes or more. In such a distributed multiprocessor system, considered by many as the

11



most important distributed parallel architecture of the near future, is it possible to achieve
(hardware) packet latencies of order of 50 ns? Since a packet length, expressed in time
units, is at least 512 ns, i.e. 10 times more that the required latency, there is practically no
difference between standard packet switching and circuit switching. Moreover, if one packet
is blocked by another one in a network, the average waiting time is 256 ns (assuming random
traffic), and therefore it has to occure only very infrequently, which is difficult to guarantee
is nonadaptive‘ or minimal adaptive routing is used. This is why we study deflection (fully
adaptive) circuit switching, which essentially means to respond to a communication request
by connecting a packet source with its destination by a path which is edge-disjoint with
other paths that have already been established, and to keep the path for some time. The
problem addressed in the talk is to estimate the probability that such a path does not
exist, assuming random network traffic. Using theory of random graphs, we show that, in
a typical network, there are 3 phases: 1. low load (e.g. in 8x8 torus, less than about 14
nodes is connected by a free path (not necessarily of minimal length). Even naive routing
algorithms can find such a path. 2. medium load (e.g. in 8x8 torus, 14-35 be connected,
but some exceptions (usually isolated nodes) are likely. Some naive‘ algorithms fail, more
sophisticated ones still give good results (low latency). 3. high load - only a minority
of node pairs are connected by free paths, no efficient circuit switching is possible. It is
shown that the first two load ranges cover practically all sustainable bandwidth of packet
switching algorithms with limited or no adaptability, but exhibit much smaller latencies
for medium load - 50 ns seens to be feasible is good deflection algorithms are used.

Generating Random Permutation on Parallel and Distributed Systems

by Miros law Kuty lowski (joint work with Artur Czumaj, Przemka Kanarek, and
Krzysztof Loryś)

We consider the problem of permuting items at random according to uniform probability
distribution in parallel and distributed systems. Till now, there have been three different
approaches to construct algorithms for solving this problem:

• the approach based on integer sorting (the items to be permuted receive random keys
and are sorted according to these keys);

• the approach based on parallelizing shuffle algorithm (which is a simple sequential
strategy to shuffle card decks at random);

• the approach based on dart-throwing (each processor acting on behalf of an item
throws a dart into an array, the order of darts in the array implicitly determines a
permutation).

We propose two new paradigms for solving this problem. The first one is to generate a
certain random network and to deliver packets according to the routes given by the network.
This results in a CREW PRAM algorithm with runtime O(log log n). The drawback of this

12



method is that it uses concurrent read operations and hypergeometric random generators.
On the other hand, the permutations are generated exactly uniformly at random.

Another approach is based on a simple randomized protocol, called distributed mixing.
The Markov chain defined by the protocol has property of rapid mixing in polylogarithmic
time. A fast simulation of this process on parallel machines leads to novel algorithms for
generating random permutations. For example, this gives an O(

√
log n)-time algorithm

on the QRQW PRAM, or an O(log logn)-time algorithm on the OCPC-computer. Never-
theless, the distributed mixing protocol itself and the proof methods used for its analysis
(a special way of utilizing coupling techniques on Markov chains) seem to have numerous
applications in many remote areas.

New Criteria for Parallelization

by Klaus-Jörn Lange

This talk presents some results concerning the classification of problems and algorithms
wrt. their parallelization. Parallel complexity theory offers the notions of P–completeness
vs NC–membership to distinguish between inherent sequential and well parallelizable prob-
lems. But using reducibilities allowing polynomial growth this approach only characterizes
the possibility of decreasing polynomial running times down to polylogarithmic ones. In
addition, this approach doesn’t preserve the order of processor-time-products and hence
cannot treat matters of efficiency and real speed-up.

In order to treat the question of decreasing a polynomial running time down to a smaller
polynomial one, Klaus Reinhardt introduced the notion of strict sequential P–completeness.
He exhibited a hardest inherent sequential problem in the following sense: the problem is
solvable in linear time on a RAM, but if there should exist a parallel algorithm with runing
time O(n1−ǫ) using a polynomial number of processors then every problem in P would enjoy
a considerable speed-up.

Concerning the lack of reasonable reducibility notions which would preserve time-processor-
products and would be based on moderate parallel models it seems to be reasonable to look
for other criteria which are related to the existence of efficient parallel solutions. Recently,
Rolf Niedermeier introduced the notion of recursive divisibility. An algorithm is recursively
divisible if it consists in a fixed number of layers where each layer consists in an asy and
regular data movement followed by the parallel execution of n ǫ totally independent identical
tasks. On the hand, this notion seems to favour well structured parallel algorithms as they
are typically designed for grids. On the other hand, it seems to be closely related to the
classes NC and NC1.

These results have been obtained within the project KOMET (DFG: La618/3-2).

Efficient Embeddings of Treelike Graphs into Hypercubes

by Ernst W. Mayr (joint work with Volker Heun)

We consider the problem of embedding binary trees and treelike graphs (i.e., graphs which

13

---



have small extended edge bisection width, a concept which gets defined in the talk and is
related to standard bisection width with respect to vector weights) into the boolean hyper-
cube and its many variants. Basic parameters to measure the quality of such embeddings
are the load, the dilation, the expansion and the (node) congestion. We present an efficient
algorithm to embed any graph with small extended edge bisection width, requiring only
an efficient subroutine for computing the extended edge bisectors. We give applications of
the general theorem for the following families of graphs: graphs with small treewidth or
pathwidth, circular arc and interval graphs, k-outerplanar graphs.

In the second part of the talk we present a deterministic algorithm for embedding dy-
namically growing binary trees into the hypercube. The algorithm migrates vertices of
the binary tree to different hypercube nodes if the embedding in a subrange of the tree
becomes congested. If the binary tree grows by at most one leaf per step, our algorithm
exhibits amortized overhead bounded by a constant factor.

Deterministic Routing of h-Relations on the Multibutterfly

by Andrea Pietracaprina

In this paper we devise an optimal on-line deterministic algorithm for routing h-relations
on an N -input/output multibutterfly. The algorithm, which is obtained by generalizing the
circuit-switching techniques of Arora, Leighton, and Maggs (1996), routes any h-relation
with messages of X bits, in O(h(X+logN)) steps in the bit model, and in O(h⌈X/ logN⌉+
log N) communication steps (which account only for link transfers) in the word model.
Unlike other recently developed algorithms, our algorithm does not need extra levels of
expanders added to the multibutterfly, thus reducing the overall network layout area.
Moreover, the network topology does not depend on h.

QSM: A General Purpose Shared-Memory Model for Parallel Computation

by Vijaya Ramachandran

A fundamental challenge in parallel processing is to develop effective models for parallel
computation that balance simplicity, accuracy, and broad applicability. In particular, a
simple “bridging” model, i.e., a model that spans the range from algorithm design to
architecture to hardware, is an especially desirable one.

We propose the Queuing Shared Memory (QSM) model as a bridging shared-memory model
for parallel computation. The QSM provides a high-level shared-memory abstraction for
parallel algorithm design, as well as the capability to model bandwidth limitations and
other features of current parallel machines, as evidenced by a randomized work-preserving
emulation of the QSM on the BSP, which is a lower-level, distributed-memory model. In
addition to the QSM model and its emulation on the BSP, we present algorithmic results
for several basic problems on the QSM.

14



How Parallel Programs Execute on Next Generation Parallel Machines

by Larry Rudolph

The next generation parallel machines will consist of a collection of commodity symmetric
multiprocessors (SMPs), a high speed network, and an intellegent processor to network
interface unit (NIU). The naive way to program such a machine is to exploit shared memory
within the SMP and message-passing between SMP sites. However, parallel programs
should not know about such a structure. Instead, they should scale naturally across SMP
boundries.

We show that message-passing is really just an efficient implementation of a shared queue.
Such a shared queue, as well as many other shared memory operations are a special case
of ”memory-with-strange-semantics.” In fact, because of memory consistency problems
arising from compiler and microprocessor optimizations, all of shared memory has strange
semantics. It is thus better that the programmer is aware of these semantics.

The parallel job scheduler will also affect how programs execute. A good scheduler will
dynamically identify those jobs that should be gang-scheduled, those that may, and those
that may-not be.

Finally, we describe the MIT StarT-Voyager machine that is currently under construction.
We show how it implements memory-with-strange-semantics, for message passing and for
distributed shared memory. We also describe its parallel job scheduler.

On Batcher’s Merge Sorts as Parallel Sorting Algorithms

by Christine Rüb

We examine the average running times of Batcher’s bitonic merge sort and Batcher’s odd-
even merge sort when they are used as parallel merging algorithms. It can be shown that
the average running time of these two algorithms can be improved considerably by keeping
the amount of communication at a minimum and by always sending the smaller elements
to the processor with the smaller index. Here we average over all possible permutations of
the input.

To derive upper bounds for the average running times of the two sorting algorithms we first
examine the two underlying merging algorithms. To make sure that the second condition
from above is fulfilled, the two sorted input sequences have to be stored alternatively at
the processors – in the case of bitonic merge this means that the underlying network is
the balanced merge network. We show that for both merging algorithms the running time
for a specific input is closely related to the maximum rank distance for elements in the
two input sequences. Then we prove upper bounds on the average rank distance for two
randomly generated sorted sequences. This leads to a bound of Θ((n/p)(1+log(1+p2/n)))
for the average running time of odd-even merge and of O((n/p)(1+ log(1+ p2/n))) for the
average running time of bitonic merg (here n is the size of the input and p is the number
of processors used). Additionally we show that the probability that j more steps than the
average number of steps is executed is bounded by (1/2)(2j)2 for both algorithms. From

15



this follows that the average running time of the two sorting algorithms is not much larger
than the sum of the average running times of the recursive calls to the merging algorithm.
Namely, we show that these average running times are bounded by O((n/p)(logn+(log(1+
p2/n))2)).

We also present experimental results, obtained by a simulation program, for various sizes
of input and numbers of processors.

Parallel Tree-Contraction and Fibonacci Numbers

by Wojciech Rytter (joint work with W.Plandowski and T.Szymacha)

We show a new property of Fibonacci numbers which is related to the analysis of a very
simple and natural parallel tree contraction algorithm called the Simultaneous Substitutions

method. We show that the size of the smallest tree which requires t contractions equals
exactly the t-th Fibonacci number. This implies the sharp bound on the number of
iterations of the tree contraction algorithm to be logΦ n+const, where Φ is the golden ratio
and Φ is the smallest constant with this property. We contribute also to combinatorics of
trees.

A Distributed Scheduling Algorithm for Parallel Discrete Event Simulation

by Uwe Schwiegelshohn (joint work with Edwin Naroska)

Assume a parallel processor with distributed memory and a discrete event simulation prob-
lem. The simulation problem is partitioned and distributed onto the nodes of the parallel
processor. The processes assigned to a node are to be scheduled such that causality is
preserved (conservative simulation) and blocking of processes on other nodes is avoided
as much as possible. At the same time the amount of communication between the nodes
must be limited to prevent network congestion. We propose to use a non blocking Chandy–
Misra–Bryant algorithm with null messages. The number of null messages is limited by
restricting them to edges (signal links) between processes of different partitions. These null
messages provide so called lookahead information, i.e. the earliest time instant any process
on a partition may cause an event at the target process of a second partition. Now, all
available events on a node are processed in order of increasing lookahead instead of us-
ing the time stamps of the events directly. The lookahead computation is done by using
precomputed shortest path data as all time delays between the processes are assumed to
be constant. In case of a VLSI simulation problem (e.g. VHDL) the amount of computa-
tion can further be reduced by taking into account activation edges which represent clock
signals. Finally, some simulation and speed–up results are presented.

Solving List Ranking Almost as Fast as Sorting

by Jop F. Sibeyn

Novel algorithms are presented for parallel and external memory list-ranking. The same
algorithms can be used for computing basic tree functions, such as the depth of a node.

16



The parallel algorithm stands-out by its low memory use, its simplicity and its performance.
For a large range of problem sizes, it is as fast as the fastest previous algorithms. On a
Paragon with 100 PUs, each holding 106 nodes, we obtain speed-up 30.

For external-memory list-ranking, the best algorithm so far is an optimized version of
independent-set-removal. Actually, this algorithm is not good at all: for a list of length
N , the paging volume is about 72 · N . Our new algorithm reduces this to 18 · N . The
algorithm has been implemented, and the theoretical results are confirmed. Programs are
available from http://www.mpi-sb.mpg.de/∼jopsi/dprog/prog.html.

Application-specific Resource Management in Darwin

by Peter Steenkiste

We envision the deployment of an electronic services market that will deliver a wide range
of electronic services over the network. This market will allow applications to combine re-
sources at endpoints with resources inside the network to deliver high-quality products to
end-users. Electronic services will range from simple data delivery services to sophisticated
value-added services such as video conferencing and data mining. Complex services will
often be implemented in terms of lower-level services, so the market will have a hierarchical
structure. The Darwin project is developing a comprehensive set of resource management
mechanisms supporting such a market based on three basic mechanisms. The resources
allocated to an application will be integrated in a virtual application mesh that forms the
basis of runtime resource management and quality of service optimization. Each resource
is managed by a hierarchical resource manager that satisfies the combined priorities and
constraints of the services and applications sharing the resource. Finally, since both net-
work conditions and application requirements can change, application-specific adaptation
is needed to optimize quality of service at runtime.

In this talk, we review the goals of the Darwin project, describe the three resource man-
agement mechanisms used in Darwin, and outline some of the algorithmic problems raised
by the project.

Practical Membership Protocols

by Ray Strong (joint work with John Palmer and Eli Upfal)

The context for this work is the management of regular parallel computations consisting of
alternating phases of computation and communication among a group of member processes.
In this context a membership protocol is used, together with failure detection protocol in
order to allow a parallel computation to reorganize in response to slow or crashed members.
A participant in a membership protocol takes a membership view (set of names of members)
as input, exchanges views with other members, and is intended to output a coordinated
view of the membership as quickly and consistently as possible. The ideal membership
protocol would be fast, safe, andnontrivial. Here fast means guaranteed termination within
a small number of timed view exchanges. The number may depend on the number of

17



members but not on their behavior. The safety property is symmetric: if Alice and Bob are
members with differing views, then Alice is not in Bob’s view and Bob is not in Alice’s view.
In a WDAG96 paper, Dwork, Ho, and Strong showed that there is no ideal membership
protocol. In this paper, we provide a fast membership protocol that satisfies the following
asymmetric safety property: if Alice and Bob are members with differing output views,
then either Alice is not in Bob’s view or Bob is not in Alice’s view. Moreover, if no
failures are causally concurrent with its execution, then the protocol terminates within at
worst 3 rounds of view exchange with symmetric safety and preserves a maximal clique of
members that communicate unhampered by earlier failures. If failures are neither causally
concurrent nor causally prior to its execution, then the protocol terminates in one round,
preserving the entire membership.

Parallel Computing with Optical Interconnects

by Ted H. Szymanski

Continuing increases in microprocessor technology will place heavy demands on the inter-
connection networks of the future. There is a growing consensus that bit-parallel optical
interconnects will appear in commercial systems wihtin a few product generations. In this
talk, we consider how bit-parallel optical interconnects can impact shared memory multi-
processors in the near future. A one dimensional reconfigurable optical ring-like network,
which is under development in Canada, is described. The network can support 10 .. 100’s
of bit-parallel channels. Each channel supports full broadcasting, and can also be parti-
tioned into multiple independent smaller segments. The one dimensional optical network
can be generalized to two or more dimensions. Such a network can in principle support 10’s
of terabits of low latency bandwidth, and can potentially act as an enabling technology for
a new generation of bandwidth intensive computing machines.

Allocating Independent Tasks to Parallel Processors: An Experimental Study

by Torben Hagerup

We study a scheduling or allocation problem with the following characteristics: The goal is
to execute a number of unspecified tasks on a parallel machine in any order and as quickly
as possible. The tasks are maintained by a central monitor that will hand out batches of a
variable number of tasks to requesting processors. A processor works on the batch assigned
to it until it has completed all tasks in the batch, at which point it returns to the monitor
for another batch. The time needed to execute a task is assumed to be a random variable
with known mean and variance, and the execution times of distinct tasks are assumed to
be independent. Moreover, each time a processor obtains a new batch from the monitor,
it suffers a fixed delay. The challenge is to allocate batches to processors in such a way as
to achieve a small expected overall finishing time. We introduce a new allocation strategy,
the Bold strategy, and show that it outperforms other strategies suggested in the literature
in a number of simulations.

18



Dynamic Analysis of Communication Processes

by Eli Upfal

Most theoretical work on communication networks has focused on batch, or static routing:
A set of packets is injected into the system at time 0, and the routing algorithm is measured
by the time it takes to deliver all these packets to their destinations, assuming that no more
packets are injected into the system in the meantime. This communication paradigm leads
to a reach and interesting theory but rarely reflects the practical reality of communication
networks. Most real-life networks operate in a dynamic mode whereby new packets are
continuously injected into the system. Each processor usually controls only the rate at
which it injects its own packets and has only a limited knowledge of the global state. This
situation is better modeled by a stochastic paradigm whereby packets are injected to the
system according to some distribution, and the routing algorithm is evaluated according to
its long term behavior. In particular, quantities of interest are the maximum arrival rate
for which the system is stable (that is, arrival rate that ensures that the expected number
of packets waiting in queues does not grow with time), and the expected time a packet
spends in the system in the steady state.

In this talk we survey several recent results on dynamic analysis of communication algo-
rithms for packet routing, deflection routing, and virtual circuit switching routing.

From Algorithm Parallelism to Instruction-Level Parallelism: An Encode-Decode

Chain Using Prefix-Sum

by Uzi Vishkin

A novel comprehensive and coherent approach for the purpose of increasing instruction-
level parallelism (ILP) is devised. The key new tool in our envisioned system update is
the addition of a parallel prefix-sum (PS) instruction, which will have efficient implemen-
tation in hardware, to the instruction-set architecture. This addition gives for the first
time a concrete way for recruiting the whole knowledge base of parallel algorithms for that
purpose. The potential increase in ILP is demonstrated by experimental results for a test
application.
The main technical contribution is in the form of a “completeness theorem”. Perhaps sur-
prisingly, the current abstract proves that in an envisioned system which employs parallel
PS functional units, a proper use of a serial programming language suffices for the follow-
ing. With a moderate effort, one can program a parallel algorithm (in a serial language),
so that a parallelizing compiler (even without run-time methods!) will be able to extract
the same (i.e., “complete”) ILP from such serial code as from code written in a parallel
language. Alternatively, rather than have the programmer produce the serial code, a pre-
compiler could derive it from a parallel language. The most interesting idea in the proof is
the reliance on the new parallel PS for circumventing collision-ambiguity in references to
memory. Other new ideas in the paper include hardware-design of a prefix-sum unit and
an on-line algorithm for high-bandwidth register-files.
An informal upshot of this paper is the following general insight: to accommodate paral-

19



lelism in uniprocessor systems (from algorithms to ILP), it is sufficient to only add (and, of
course, incorporate) parallel prefix-sum functional units to standard serial system designs.

Exploiting Locality for Data Management in Systems of Limited Bandwidth

by Berthold Vöcking (joint work with B. Maggs, F. Meyer auf der Heide, and M.
Westermann)

We introduce strategies for data management in computer systems in which the computing
nodes are connected by a relatively sparse network. In particular, we consider the problem
of placing and accessing a set of shared objects that are read and written from the nodes in
the network. These objects are, e.g., global variables in a parallel program, pages or cache
lines in a virtual shared memory system, shared files in a distributed file system, or pages
in the World Wide Web. A data management strategy consists of a placement strategy
that maps the objects (possibly dynamically and with redundancy) to the nodes, and an
access strategy that describes how reads and writes are handled by the system (including
the routing). We investigate static and dynamic data management strategies.

In the static model, we assume that we are given an application for which the rates of
read and write accesses for all node–object pairs are known. The goal is to calculate a
static placement of the objects to the nodes in the network and to specify the routing such
that the network congestion is minimized. We introduce efficient algorithms that calculate
optimal or close–to–optimal solutions for tree–connected networks, meshes of arbitrary
dimension, and internet–like clustered networks. These algorithms take time only linear in
the input size.

In the dynamic model, we assume no knowledge about the access pattern. An adversary
specifies accesses at runtime. Here we develop dynamic caching strategies that also aim
to minimize the congestion on trees, meshes, and clustered networks. These strategies
are investigated in a competitive model. For example, we achieve competitive ratio 3 for
tree–connected networks and competitive ratio O(d · log n) for d–dimensional meshes of
size n. Further, we present an Ω(log n/d) lower bound for the competitive ratio for on–line
routing in meshes, which implies that the achieved upper bound on the competitive ratio
for meshes of constant dimension is optimal.

Sorting on a Massively Parallel System Using a Library of Basic Primitives:

Modeling and Experimental Results

by Rolf Wanka (joint work with Alf Wachsmann)

A comparative study of implementations of the following sorting algorithms on the Parsytec
SC320 reconfigurable, asynchronous, massively parallel MIMD machine was presented:
Bitonic Sort, Odd-Even Merge Sort, Odd-Even Merge Sort with guarded split&merge, and
two variants of Samplesort. The experiments are performed on 2- up to 5-dimensional
wrapped butterfly networks with 8 up to 160 processors. We make use of library func-
tions that provide primitives for global variables and synchronization, and we show that

20



it is possible to implement efficient and portable programs easily. In order to predict the
performance, we model the runtime of an access to a global variable by a certain trilinear
function and the runtime of a synchronization by a certain bilinear function. Our experi-
ments show that, in the context of parallel sorting, this model that can be applied easily
is sufficiently detailed to give good runtime predictions. The experiments confirming the
predictions point out that Odd-Even Merge Sort with guarded split&merge is the fastest
method if the processors hold few keys. If there are many keys per processor, a combination
of Samplesort and Odd-Even Merge Sort is the fastest method.

21



Open Problems

(posed during an open problems session on wednesday evening).

Ernst Mayr

We consider the problem of embedding 1-1 binary trees into hypercubes. The minimal
hypercube whose size is at least that of the tree is called the optimal hypercube for the
tree. The dilation of an embedding is the maximal length of a path to which a tree edge
gets mapped.

1. (Havel’s conjecture) Can all binary trees be embedded into their optimal hypercube
with dilation 2?

2. Try to find an efficient embedding algorithm for embedding binary trees into their
optimal hypercube with dilation ≤ 4.

3. Is it true that all balanced binary trees are subgraphs of their optimal hypercube?

Friedhelm Meyer auf der Heide

A pyramid graph Pm consists of nodes Vm = {〈l, i〉, l = 1, . . . , m, i = 1, . . . , l} and directed
edges {(〈l + 1, i〉, 〈l, j〉), l = 1, . . . , m − 1, j ∈ {i − 1, i}}.
Consider the following game, for a fixed number p of tokens:
The game starts on an empty graph on nodes Vm. In each round:

• Player A marks p not yet marked nodes of Vm.

• Player B inserts one of the two edges of Pm going into node x, for each of the p nodes
x marked by player A.

Goal of player A is to construct a path from a node on level m to the root (1, 1) of Pm

using as few rounds as possible. Player B acts as an adversary.

Question: How many rounds are necessary, how many are sufficient in an optimal strategy
of player A?

It is easily seen that, for p = q(q+1)
2

, ⌈ l
q
⌉ rounds are sufficient. Is this best possible?

The game can be used to prove a lower bound for the speedup attainable when simulating
a 2-dimensional Turing machine on a p-processor parallel machine. Optimality of the
strategy mentioned above would show that the speedup is O(

√
p) only.

Andrea Pietracaprina

In the last decade considerable effort has been spent in defining ”good” models for parallel

22



computation. As a result, several proposals have been made, although there is not yet
a general agreement that clearly identifies one of the proposed models as ”The Model”.
While models are often evaluated based on qualitative considerations, rigorous criteria for
their quantitative evaluation are needed. In fact, some effort has been spent in showing
experimentally that the cost functions associated with certain models provide exact per-
formance predictions. This is typically accomplished by comparing predicted and actual
running times on sets of benchmark applications.

However, in order to comply with simplicity and portability requirements, a model of
computation is likely to provide only asymptotic estimates of performance, giving up the
ability of predicting exact running times. In this case, it becomes hard to carry out an
experimental validation of the model. What is needed is some reasonable, widely accepted,
general mechanism of ”proving” that a model accurately predicts asymptotic behaviour.
So the question is whether there exist benchmark applications or test suites, and general
evaluation criteria, that can be employed to assess the validity of a computational model,
or to compare different models, with respect to asymptotic analysis.

The above problem stems from an undergoing joint research with N. Amato and G. Pucci.

Christine Rüb

Suppose you are given a permutation on a hypercube with the following property: If an
element has to be sent from processor Pi to processor Pj , then the hamming distance
between i and j is bounded by r. Is it possible to realize such a permutation in time O(r)?

Ted Szymanski

The Impact of Optics in the Next Millenium

The following problem is somewhat philosophical and discusses the potential impact of
optics in future computing machines.

Prior to the days of the transistor, computing machines were constructed with vacuum
tubes and discrete wires and were based on a serial stored-program paradigm. Formal
models for such machines evolved. Several decades after the introduction of the transistor,
we observe that the same models of computing machines are highly relevant. It seems that
the introduction of the transistor, followed by the integrated circuit, has had a tremendous
influence on the packaging and commercial viability of computing machines, and has facil-
itated the introduction of large parallel machines and their associated formal models, but
has had relatively little influence on the formal models of individual computing machines.

An interesting question deals with the potential impact of optics in future computing
machines. With reasonable likelyhood, optics will over time evolve to span optical links
between electronic boards, followed by optical links between integrated circuits, perhaps
followed by optical links between logic gates within an integrated circuit. All of these
topics have been addressed in the literature. It is thus interesting to contemplate how
optics will impact formal models of computing systems in the future. Optics is expected
to have a tremendous impact in the area of interconnections. For example, it is technolog-

23



ically feasible to replace the conventional bandwidth-limited electronic mesh by an optical
mesh-like network with hundreds or thousands of high-bandwidth optical channels in each
row or column. Optics may also have a tremendous impact in the area of bit-parallel
memory systems. For example, massively bit-parallel optical memory systems based on
holographic techniques are expected to evolve over time. Optics may thus facilite new
classes of parallel interconnects or parallel machines and their formal models. The inter-
esting question is whether optics and integrated optics will result in new formal models for
individual computing machines, or will optics follow the path of the transistor, and have a
tremendous impact on packaging of computing machines, and facilite new classes of large
parallel systems of computing machines and their formal models, but have relatively little
impact on formal models of individual computing machines. Perhaps time will tell.

24



E-Mail Addresses

Jean-Loup Baer baer@cs.washington.edu
Yosi Ben-Asher yosi@mathcs2.haifa.ac.il
Artur Czumaj artur@uni-paderborn.de
Ralf Diekmann diek@uni-paderborn.de
Martin Dietzfelbinger dietzf@ls2.informatik.uni-dortmund.de
Pierre Fraigniaud pierre@lri.fr
Hubertus Franke frankeh@watson.ibm.com
Thomas Gross Thomas.Gross@cs.cmu.edu
Torben Hagerup torben@mpi-sb.mpg.de
Ben Juurlink benj@uni-paderborn.de
Clyde P. Kruskal kruskal@cs.umd.edu
Ludek Kucera ludek@kam.ms.mff.cuni.cz
Miroslaw Kutylowski mirekk@uni-paderborn.de
Klaus-Jörn Lange lange@informatik.uni-tuebingen.de
Krzysztof Lorys lorys@ii.uni.wroc.pl
Ernst W. Mayr mayr@informatik.tu-muenchen.de
Friedhelm Meyer auf der Heide fmadh@uni-paderborn.de
Andrea Pietracaprina andrea@artemide.dei.unipd.it
Christine Rüb rueb@mpi-sb.mpg.de
Vijaya Ramachandran vlr@cs.utexas.edu
Larry Rudolph rudolph@lcs.mit.edu
Wojciech Rytter rytter@mimuw.edu.pl
Uwe Schwiegelshohn uwe@ds.e-technik.uni-dortmund.de
Jop Sibeyn jopsi@mpi-sb.mpg.de
Peter Steenkiste prs@cs.cmu.edu
H. Raymond Strong strong@almaden.ibm.com
Ted Szymanski teds@macs.ee.mcgill.ca
Pilar de la Torre dltrr@cs.unh.edu
Eli Upfal ely@almaden.ibm.com
Berthold Vöcking voecking@uni-paderborn.de
Uzi Vishkin viskin@umiacs.umd.edu
Rolf Wanka wanka@uni-paderborn.de

25



Addresses

Prof. Jean-Loup Baer
University of Washington
Department of Computer Science and
Engineering
P.O. Box 352350
Seattle WA 98195-2350
USA
� +1-206-685-1376
Fax: +1-206-543-2969

Dr. Yosi Ben-Asher
University of Haifa
Dept.of Mathematics and Computer Science
31905 Haifa
Israel
Fax: +972-4-240-024

Dr. Artur Czumaj
Universität-GH Paderborn
Heinz Nixdorf Institut
FB 17 - Mathematik/Informatik
Fürstenallee 11
33102 Paderborn
Germany
� +49-5251-60-6491
Fax: +49-5251-60-6482

Ralf Diekmann
Universität-GH Paderborn
FB 17 - Mathematik/Informatik
Fürstenallee 11
33102 Paderborn
Germany
� +49-5251/60-67 30
Fax: +49-5251/60-66 97

Prof. Dr. Martin Dietzfelbinger
Universität Dortmund
FB Informatik
Lehrstuhl II
D-44221 Dortmund
Germany
� +49-231-755-47 37
Fax: +49-231-755-20 47

Pierre Fraigniaud
Laboratoire de Recherche en Informatique
Universitè Paris XI
F-91405 Orsay Cedex
France
� +33-1-6915-6906

Thomas Gross
Carnegie Mellon University
School of Computer Science
Schenley Park
Pittsburgh PA 15213-3980
USA
� +1-412-268-7661
Fax: +1-412-268-5576

Dr. Torben Hagerup
Max-Planck-Institut für Informatik
Im Stadtwald
66123 Saarbrücken
Germany
� +49-681-9325-108
Fax: +49-681-9325-199

26



Dr. Ben Juurlink
Universität-GH Paderborn
Heinz Nixdorf Institut
FB 17 - Mathematik/Informatik
Fürstenallee 11
33102 Paderborn
Germany
� +49 5251 60 64 57
Fax: +49 5251 60 64 82

Prof. Clyde P. Kruskal
Univ. of Maryland at College Park
Department of Computer Science
A.W. Williams Building
College Park MD 20742
USA
� +1-301-405-2683
Fax: +1-301-405-6707

Dr. Ludek Kucera
Charles University
Department of Applied Mathematics
Malostranske nam. 25
118 00 Praha 1
Czech Republic
� +420-2-2191-4233
Fax: +420-2-451-0995

Dr. habil Miroslaw Kutylowski
Universität-GH Paderborn
Heinz Nixdorf Institut
FB 17 - Mathematik/Informatik
Fürstenallee 11
33102 Paderborn
Germany
� +49-5251-60-6461
Fax: +49-5251-60-64 82

Prof. Dr. Klaus-Jörn Lange
Universität Tübingen
Wilhelm-Schickard-Institut für Informatik
Sand 13
D-72076 Tübingen
Germany
� +49-7071-297-75 67
Fax: +49-7071-6 81 42

Krzysztof Lorys
Universytet Wroclawski
Instytut Informatyki
Przesmyckiego 20
PL-51-151 Wroclaw
Poland

Prof. Dr. Ernst W. Mayr
TU München
Institut für Informatik
80290 München
Germany
� +49-89-289-2 26 80 /-2 26 81 (Secr.)
Fax: +49-89-289-2 52 97

Prof. Dr. Friedhelm Meyer auf der Heide
Universität-GH Paderborn
Heinz Nixdorf Institut
FB 17 - Mathematik/Informatik
Fürstenallee 11
33102 Paderborn
Germany
� +49-5251-60-6480
Fax: +49-5251-60-6482

27



Dr. Andrea Pietracaprina
Università di Padova
Dipartimento di Matematica Pura
e Applicata
Via Belzoni 7
35131 Padova
Italy
� +39-49-827-5987
Fax: +39-49-875-8596

Dr. Christine Rüb
Max-Planck-Institut für Informatik
Im Stadtwald
66123 Saarbrücken
Germany
� +49-681-9325-125
Fax: +49-681-9325-999

Prof. Dr. Vijaya Ramachandran
University of Texas at Austin
Department of Computer Sciences
Taylor Hall 2-124
Austin TX 78712-1188
USA
� +1-512-471-95 54
Fax: +1-512-471-88 85

Prof. Dr. Larry Rudolph
Massachusetts Institute of Technology
Lab for CS
545 Technology Square
Cambridge MA 02139 USA
� +1-617-253-6562
Fax: http://www.csg.lcs.mit.edu/ rudolph

Prof. Dr. Wojciech Rytter
University of Warsaw
Dept. of Mathematics & Informatics
Institute of Informatics
Ul. Banacha 2
02-097 Warsaw 59
Poland
� +48-22-6583165
Fax: +48-22-6583164

Prof. Dr.-Ing. Uwe Schwiegelshohn
Universität Dortmund
Lehrstuhl für Datenverarbeitungssysteme
44221 Dortmund
Germany
� +49-231-755-26 34
Fax: +49-231-755-32 51

Dr. Jop Sibeyn
Max-Planck-Institut für Informatik
Algorithms and Complexity Group (AG1)
Postfach 15 11 50
D-66041 Saarbrücken
Germany
� +49-681-9325 118
Fax: +49-681-9325 199

Peter Steenkiste
Carnegie Mellon University
School of Computer Science
5000 Forbes Avenue
Pittsburgh PA 15213-3891
USA
� +1-412-268-3261
Fax: +1-412-268-6787

28



H. Raymond Strong
IBM Almaden Research
Dept. K53/802
650 Harry Road
San Jose CA 95120-6099
USA
� +1-408-927-1758
Fax: +1-408-927-3030

Prof. Ted Szymanski
McGill University
Department of Electrical Engineering
3480 University Street
Montreal PQ H3A 2A7
Canada
� +1-514-398-5934
Fax: +1-514-398-4470

Prof. Pilar de la Torre
University of New Hampshire
Department of Computer Science
M206 Kingsbury Hall
Durham NH 03824
USA
� +1-603-862-2682
Fax: +1-603-862-3493

Dr. Eli Upfal
IBM Almaden Research
Dept. K53/802
650 Harry Road
San Jose CA 95120-6099
USA
� +1-408-927-1788
Fax: +1-408-927-3030

Berthold Vöcking
Universität-GH Paderborn
Heinz Nixdorf Institut
FB 17 - Mathematik/Informatik
Fürstenallee 11
33102 Paderborn
Germany
� +49-5251-60-6433
Fax: +49-5251-60-6482

Prof. Dr. Uzi Vishkin
Univ. of Maryland at College Park
Inst. for Advanced Computer Studies
A.V. Williams Bldg.
College Park MD 20742-3251
USA
� +1-301-405-6763
Fax: +1-301-314-9658

Dr. Rolf Wanka
Universität-GH Paderborn
FB 17 - Mathematik/Informatik
Fürstenallee 11
33102 Paderborn
Germany
� +49-5251-60-6434
Fax: +49-5251-60-6482

29


