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1 Overview

The idea of organizing this seminar came during the Federated Logic Con-
ference, New Brunswick, 1996, which brought together the Symposium on
Logic in Computer Science, the Conference on Rewriting Techniques and
Applications, the Conference on Automated Deduction and the Conference
on Computer Aided Verification. We realized there that, though logic was
the straightforward intersection between these four communities, there were
also common underlying themes and techniques of more specific nature. An
important example was, applications of tree automata”. This computational
model is indeed used in various domains of applications which, to some ex-
tent, have ignored each other.

In automated deduction, it seems that general purpose fully automated
theorem provers are reaching a limit; they still improve, but the factor of im-
provement is decreasing. The idea which was raised to combine specialized
theorem provers which provide efficient techniques for some specific prob-
lems, together with a general purpose prover. An idea would be to use tree
automata techniques each time this is possible. For example, equality modulo
ground term equations can handled in this way.

Most of the properties of term rewriting systems (like reachability, word
problem, sequentiality,...) are undecidable. Hence we are led either to con-
sider only subclasses or to design sufficient conditions guaranteeing these
properties. Tree automata play an important role in the design of such
classes (or sufficient conditions), which has only been realized recently. For
instance, by forgetting (some of) the relations between the variables, we ob-
tain a binary relation which can be recognized by a Ground Tree Transducer.
Then all properties of rewrite systems become decidable.

Computer Aided Verification, and especially model checking, became very
popular in the recent years because of its security applications; some critical
applications might have disastrous consequences if the software managing
them is not correct. Several logics and several models have been proposed
in the last years. For instance, p-calculus and CTL on the logical side, and
Kripke structures and their unfoldings in tree form on the model side. Al-
ready in the sixties, it was shown that monadic second-order formulas (and
hence p-calculus expressions and CTL-formulas) can be converted into au-
tomata. The model checking problem was thus reduced to an inclusion test
for languages defined by (sequential or tree) automata, possibly consisting



also of infinite strings or trees. Although efficient model checking procedures
are by now a standard tool, refinements of the theory are needed to over-
come several practical problems, notably the, state explosion problem and
deficiencies in expressiveness.

Also compiler construction turns out to be a surprisingly wide area of
applications for tree automata. These range from backend generation over
generation of attribute evaluators to program analysis. In the case of program
analysis, the basic idea is to approximate the program by some formal device
for which there are tractable algorithms. Tree automata or, equivalently,
regular tree grammars and various subclasses of set constraints have attracted
attention for such an approximation. While simple forms of set constraints
are directly equivalent to finite tree automata, it turns out that more general
forms also require advanced tree automata techniques.

In order to stimulate cross-fertilization, this seminar brought together
researchers who are involved in such applications. A special session discussed
the impact of our results on education. In our opinion, the workshop was a
success. Exciting discussions took place until late in the evenings — which
has been especially supported by this form of meeting as well as by facilities
offered at Dagstuhl, like open access to seminar rooms or the library. By a
group of French researchers, a first draft of a basic textbook on tree automata
was presented. The community is invited to comment on details or contribute
sections.

Acknowledgement: This seminar has been sponsored by the European
Community through the TMR program as well as by the National Science
Foundation.

We also like to thank Reinhard Wilhelm and the people at Dagstuhl
who really made it a pleasure to organize the workshop. We all felt that
Dagstuhl did a very good job in providing us with a friendly and stimulating
surroundings for our work.



2 Schedule

Monday, Oct. 20, 1997

Morning Session — Program Analysis:

Chair:

9:00 - 10:00
10:00 - 10:30
10:30 - 11:05
11:05 - 11:40
11:40 - 12:15
12:15

D. Kozen
N.D. Jones:

M.H. Sgrensen:
H. Vogler:
J. Palsberg:

Early Applications of Tree Grammars and
Tree Automata [overview]

Coffee break

Regular Tree Grammars of Deforestation
Deforestation Versus Composition

From Polyvariant Flow Information to Inter-
section and Union Types (joint work with C.
Pavlopoulou)

Lunch

Afternoon Session — Set Constraints

Chair:
2:00 - 3:00
3:00 - 3:30
3:30 - 4:05
4:05 - 4:40
4:40 - 4:50
4:50 - 5:25
5:25 - 6:00
6:00

N.D. Jones
D. Kozen:

M. Tommasi:

N. Heintze:

A. Podelski:
D. McAllester:

Set Constraints: An Overview

Coffee break

Set Constraints and Tree Automata (joint
work with S. Tison)

Using bottom-up Deterministic
Tree Automata for Efficient Solving of Set
Constraints

Coffee break

Set-based Analysis of Concurrent Programs
The Greatest Fixed Point of the 7p Abstrac-
tion is Regular (joint work with A. Podelski
and W. Charatonik)

Dinner



Tuesday, Oct. 21, 1997
Morning Session — Model-Checking/Program Analysis

Chair:

9:00 - 10:00
10:00 - 10:30
10:30 - 11:05
11:05 - 11:40
11:40 - 12:15
12:15 - 2:30

E.A. Emerson
M.Y. Vardi:

N. Klarlund:
H. Seidl:

F. Nielson:

Unifying Truth and Validity for Temporal
Logic [overview]

Coffee break

Algorithms for Guided Tree Automata
Fixpoint Methods for Program Analysis and
Model-Checking

Contraint-Based Flow Logics (joint work
with H.R. Nielson)

Lunch

Afternoon Session — Model Checking

Chair:
2:30 - 3:30
3:30 - 4:15
4:15 - 4:50
4:50 - 5:25
5:25 - 6:00
6:00

M.Y. Vardi
W. Thomas:

I. Walukiewicz:
D. Niwinski:

B. Courcelle:

The Rabin Tree Theorem

Coffee break

Automata on Tree-like Structures

Relating Trees and Flowers (joint work with
[.Walukiewicz)

Logical Characterization of Recognizability
for Finite Graphs

Dinner



Wednesday, Oct. 22, 1997

Morning Session — Term Rewriting

Chair: H. Ganzinger

9:00-10:00 F. Jacquemard:

10:00-10:30
10:30-11:05 A. Middeldorp:

11:05-11:40 A. Bouhoula:
11:40-12:15 D. Lugiez:
12:15

Afternoon — Ezcursion

Tree Automata and Term Rewriting: An
Overview.

Coffee break

Decidable Call-by-Need Computations in
Term Rewriting

Automata-Driven Automated Induction
(joint work with Jean-Pierre Jouannaud)
Constrained Automata and Some
Applications

Lunch



Thursday, Oct. 23, 1997

Morning Session — Education/Term Rewriting

Chair:
9:00-9:20

9:20-9:40

9:40-10:00

10:00-10:30
10:30-11:00
11:00-11:35

11:35-12:10
12:10:

H. Seidl

N. Karlund:
J. Palsberg:

R. Wilhelm:

G. Kucherov:

D. Hofbauer:

Teaching Logic, Automata Theory and De-
cidability to Shophomores

Automata in Graduate Programming Lan-
guage Course

More Trees than Strings in Compilation
Discussion

Coffee break

Some Results on Context-free Tree Lan-
guages (joint work with D. Hofbauer, M.
Huber)

Test Sets for Tree Languages

Lunch

Afternoon Session — Model-Checking/Rump Session

Chair:

14:00-14:35:

14:35-15:10:

15:10-15:50:
15:50-16:25:

16:25-17:00:

17:00-17:10
17:10-17:30

17:30-17:45:

17:45-18:00
18:00

I. Walukiewicz

A. Arnold:

S. Rohde:

A. Mader :

M.Y. Vardi:

D. Muller:
M. Veanes:

S. Limet:

A Selection Property of the Boolean p
Calculus

Alternating Automata and the Temporal
Logic of Ordinals

Coffee break

Modal p-Calculus, Model Checking and
equivalent problems

Synthesis with Incomplete Information (joint
work with Orna Kupferman)

Short break

On Infinite Trees

On Simultaneous Rigid E-unification with
Restricted Number of Variables.

Tree Tupled Synchronized Grammars.
Dinner



Friday, Oct. 24, 1997

Morning Session — Term Rewriting

Chair: S. Tison
9:00-9:35 H. Comon:
9:35-10:10 R. Matzinger:

10:10-10:30
10:30-11:05 M. Steinby:

11:05-11:40 C. Weidenbach:

Higher-Order Matching and Tree Automata
Using Tree Automata for Computa-
tional Representations in Automated Model
Building

Coffee break

On One-Pass Term Rewriting (joint work
with 7. Filop, E. Jurvanen, and S.
Vagvolgyi)

Monadic Horn Problems, Tree Automata
and Sorted Unification



3 Abstracts

For convenience, the abstracts of the talks have been grouped according to
the four main research areas the workshop has been concerned with, namely,
Logic and Model-Checking, Term-Rewriting, Program Analysis and Set Con-
straints. The fifth and last (but clearly equally important) subsection collects
the abstracts on statements concerning the impact of tree automata research
onto education.

3.1 Logic and Model Checking
Unifying Truth and Validity Checking for Temporal Logics

Moshe Y. Vard:

We describe an automata-theoretic approach to the automated checking
of truth and validity for temporal logics. The basic idea underlying this
approach is that for any formula we can construct an alternating automaton
that accepts precisely the models of the formula. For linear temporal logics
the automaton runs on infinite words while for branching temporal logics
the automaton runs on infinite trees. The simple combinatorial structures
that emerge from the automata-theoretic approach decouple the logical and
algorithmic components of truth and validity checking and yield clean and
essentially optimal algorithms for both problems.

Further material can be found at http://www.cs.rice.edu/ vardi/papers

A Selection Property of the Boolean Mu Calculus

André Arnold

We prove that every closed Boolean mu-term has the same value as a mu-term
obtained by replacing each sum by one of its summands.

Logical Characterization of Recognizability for Finite Graphs

Bruno Courcelle

The notion of recognizability for words and trees is usually given in terms of
finite automata, and basic results by Biichi and Doner state that a set of words (or



of binary trees) is recognizable if and only if it is MS-definable (i.e. definable in
Monadic Second-order logic). The concrete meaning is that a property is checkable
by a finite automaton iff it is MS-definable. We consider possible the extensions
of these notions and results for graphs.

The notion of a recognizable set of graphs is based on graph congruences with
finitely many classes and is relative to operations on graphs that, typically, glue
two graphs together or extend in some way a given graph.

Already for trees of unbounded degree, MS logic is insufficient to capture rec-
ognizability: one needs an extension of MS logic called Counting Monadic Second-
order logic (CMS in short). Its formulas are written with special “counting modulo
q”-quantifiers meaning that the number of elements x that satisfy a property is a
multiple of q.

Result 1: CMS definability (restricting quantifications on sets of vertices in
case graphs are simple) is equivalent to recognizability for the class of graphs of
tree-width at most 3, and a few related classes (Courcelle, Kaller, Kabanets).

The method for proving these results is as follows. Let C be a class of graphs,
let F' be the set of graph operations on C involved in the intended notion of
recognizability, let us also assume that every graph in C' is the value of an F-
expression, i.e., of a finite term over F'. (The set F' is in some sense a parameter:
different sets F' may yield different notions of recognizability). Assume we have
a language L (say an extension of MS like CMS), for which we know that, if a
subset of C' is L-definable, then it is recognizable. Assume finally that for every
graph G in C' we can construct “in G” an F-expression that defines this graph.
Then, if L is a (F-)recognizable subset of C, there exists a finite tree-automaton
recognizing the set of F-expressions the value of which is in L. Given a graph G
we can express that G belongs to L by means of a formula in L that works at
follows :

(1) it defines in G an F-expression, the value of which is G,

(2) it checks whether the automaton accepts this expression: the graph G is
in L if and only if the automaton accepts the expression, if and only if the
MS-formula holds.

So the logical language L must not be too powerful (we want that every L-definable
class of graphs be recognizable) but it must be powerful enough to do two things

(1) to “parse” the graph (i.e., to define an F-expression for it),

(2) to simulate the behaviour of a finite automaton on the obtained F-expression
(which is often a tree of unbounded degree because it handles associative and
commutative operations).
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For cographs, a built-in (auxiliary and arbitrary) linear ordering of the given graph
helps to parse it by MS-formulas.

Result 2: Every graph property that is expressible in MS logic with built-in
linear order on the vertices is recognizable. (All properties expressible in CMS
logic are of this form: a linear ordering is helpful to express that a set X has an
even number of elements; the answer, namely the parity of the cardinality of X
does not depend on the chosen ordering of the vertices although it is expressed
logically in terms of this order).

Result 3: A set of cographs is recognizable iff it is definable in MS logic with
built-in linear order.

Algorithms for Guided Tree Automata

Morten Biehl, Nils Klarlund, and Theis Rauhe

When reading an input tree, a bottom-up tree automaton is “unaware” of
where it is relative to the root. This problem is important to the efficient imple-
mentation of decision procedures for the Monadic Second-order Logic (M2L) on
finite trees. In [Reg=Alg+RDT], it is shown how exponential state space blow-ups
may occur in common situations. The analysis of the problem leads to the notion
of guided tree automaton for combatting such explosions. The guided automaton
is equipped with separate state spaces that are assigned by a top-down automaton,
called the guide.

In this paper, we explore the algorithmic and practical problems arising from
this relatively complicated automaton concept.

Our solutions are based on a BDD representation of automata [Reg=Alg+RDT],
which allows the practical handling of automata on very large alphabets. In addi-
tion, we propose data structures for avoiding the quadratic size of transition tables
associated with tree automata.

We formulate and analyze product, projection (subset construction), and min-
imization algorithms for guided tree automata. We show that our product algo-
rithm for certain languages are asymptotically faster than the usual algorithm that
relies on transition tables.

Also, we provide some preliminary experimental results on the use of guided
automata vs. standard tree automata.

See also: http://www.brics.dk/“klarlund/MonaFido/papers/
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Modal p-Calculus Model Checking and Equivalent Problems

Angelika Mader

In this talk the equivalence of problems in four frameworks is worked out: in
modal p-calculus the model-checking problem, for Boolean equation systems the
solution of an equation system, for w-automata with parity acceptance emptiness,
and for parity games the existance of a winning strategy for one of the players.
The problems can be shown to be contained in NP N co-NP, but it is still open,
whether they are contained in P. The different means that the four frameworks
provide may help to answer this open question.

Relating Trees and Flowers

Damian Niwinski and Igor Walukiewicz

For a language of infinite words L, a derived tree language Path(L) is the
language of trees having all their paths in L. We consider the hierarchies of
deterministic automata on words and nondeterministic automata on trees with
Rabin conditions in chain form. We show that L is on some level of the hierarchy
of deterministic word automata iff Path(L) is on the same level of the hierarchy of
nondeterministic tree automata.

We also note that this level can be computed by a polynomial time algorithm
from a deterministic automaton recognizing L, by detecting substructures of the
automaton’s graph that we call flowers.

Full paper available from
http://zls.mimuw.edu.pl/ "niwinski/Prace/kwiatek.ps.gz

Alternating Automata and the Temporal Logic of Ordinals

Scott Rohde

In their 1995 paper, Muller and Schupp define the concept of an alternating
automaton, a sort of completion of the notion of a non-deterministic automaton,
and show how the notion may be used to prove a number of major results in the
theory of automata on infinite inputs in a unified way. We extend the notion of an
alternating automaton to accommodate linear inputs of arbitrary ordinal length
and then use these automata to prove a number of results about linear proposi-
tional temporal logic, a form of modal logic. First, we show that there is a natural
interpretation of automaton inputs as structures for the logic and that under this
interpretation, alternating automata and temporal logic are equally powerful. We
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then use this fact to investigate the satisfiability problem for temporal logic. In
particular, not only do we look at the question of whether a given formula has a
model, but we look at this question when the lengths of models is restricted to
a specific ordinal. We show that the temporal logic of an arbitrary (but fixed)
ordinal is decidable in exponential time, generalizing the known result that the
temporal logic of w is decidable in exponential time.

The Rabin Tree Theorem

Wolfgang Thomas

Rabin’s Tree Theorem (1969) states that the monadic theory S2S of the infinite
binary tree is decidable. The theorem is fascinating both for its wide applicability
(it yields a large number of interesting decidability results) and for the difficulty
of its proof. There are many more “users” of the result than people who have gone
through one of the available proofs.

In this talk we consider the two main steps in Rabin’s Tree Theorem, the com-
plementation lemma for Rabin tree automata and the decidability of the emptiness
problem. We outline a “modular” proof which seems simple enough to be pre-
sentable in a university course. It is based on a new mixture of well-known notions
and constructions concerning infinite games, due to Biichi, Gurevich-Harrington,
Mostowski, and others.

Synthesis with Incomplete Information

Orna Kupferman and Moshe Y. Vardi

In program synthesis, we transform a specification into a system that is guar-
anteed to satisfy the specification. When the system is open, then at each moment
it reads input signals and writes output signals, which depend on the input signals
and the history of the computation so far. The specification considers all possible
input sequences. Thus, if the specification is linear, it should hold in every compu-
tation generated by the interaction, and if the specification is branching, it should
hold in the tree that embodies all possible input sequences.

Often, the system cannot read all the input signals generated by its environ-
ment. For example, in a distributed setting, it might be that each process can read
input signals of only part of the underlying processes. Then, we should transform
a specification into a system whose output depends only on the readable parts
of the input signals and the history of the computation. This is called synthesis
with incomplete information. In this work we solve the problem of synthesis with
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incomplete information in its full generality. We consider linear and branching
settings with complete and incomplete information. We claim that alternation is
a suitable and helpful mechanism for coping with incomplete information. Using
alternating tree automata, we show that incomplete information does not make the
synthesis problem more complex, in both the linear and the branching paradigm.
In particular, we prove that independently of the presence of incomplete informa-
tion, the synthesis problems for CTL and CTL* are complete for EXPTIME and
2EXPTIME, respectively.

Automata on Tree-like Structures

Igor Walukiewicz

We present some tools for showing decidability and examining expressibility of
(monadic second order) theories.

Rabin’s definability is a very easy and sometimes sufficiently strong tool. As an
example of its application we will show how to define pushdown graphs in the full
binary tree (result of D. Caucal). The technique has unfortunately its limitations
as already an unwinding of a pushdown graph cannot be coded into the binary
tree by means of monadic second order (MSO) formulas.

To overcome this problem we set off to find more structures having decid-
able MSOL theory. We consider a family of tree-like structures. These are the
structures obtained by making a copy of the structure for every finite sequence
of elements of the structure, and arranging these copies in a tree. We will recall
Muchnik’s theorem saying that if MSO-theory of a structure M is decidable then
the MSO-theory of the tree-like structure obtained from M is decidable. This in
particular will allow us to handle unwindings of pushdown graphs (result of B.
Courcelle). We will finish with one more example of Rabin’s definability. We will
show how one can define the structures (IN, {r* : n € IN}) and (IN, {n! : n € IN})
in tree-like structures with decidable MSO theory.

14



3.2 Term Rewriting and Automated Deduction

Tree Automata and Applications to Rewriting

Florent Jacquemard

We present a collection of recognizability results for various class of tree au-
tomata with/without constraints and show how they can help to solve some prob-
lems concerned with term rewriting. The recognition of binary relations on ground
terms, especially rewriting relations and the conservation of recognizability under
rewriting are also treated.

A postscript version of the slides is available at:
http://www.mpi-sb.mpg.de/ florent/art/slide-note/dagstuhl.ps.gz

Automata-Driven Automated Induction

Adel Bouhoula and Jean-Pierre Jouannaud

This work investigates inductive theorem proving techniques for first-order
functions whose meaning and domains can be specified by Horn Clauses built up
from the equality and finitely many unary membership predicates. In contrast
with other works in the area, constructors are not assumed to be free. Techniques
originating from tree automata are used to describe ground constructor terms in
normal form, on which the induction proofs are built up. Validity of (free) con-
structor clauses is checked by an original technique relying on the recent discovery
of a complete axiomatisation of finite trees and their rational subsets. Validity of
clauses with defined symbols or non-free constructor terms is reduced to the latter
case by appropriate inference rules using a notion of ground reducibility for these
symbols. We show how to check this property by generating proof obligations
which can be passed over to the inductive prover.

See also: http://www.loria.fr/ bouhoula/publications.html

Tree Automata and Lambda Calculus

Hubert Comon

We consider the “higher-order matching problem” for the simply typed lambda
calculus: given two terms w and %, is there a replacement o of the free variables of
u such that u and ¢ become (-equivalent ?

We show actually that, when the order of the free variables of w is smaller or
equal to 4, then the set of solutions of the above matching problem is accepted by
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a finite tree automaton. This allows to derive a new proof of decidability for fourth
order matching. We can also derive that third-order matching is NP-complete and
give some hint on why 5th order is so hard.

Finally, we will try to relate general higher-order matching and tree automata.

Tree Languages and Test Sets

Dieter Hofbauer and Maria Huber

Test sets are a useful tool when handling the membership problem for the
universal closure of tree languages. For a tree language L the universal closure IY
is the set of those terms whose ground instances are all in L. A test set for the
universal closure of L must serve the following purpose: In order to decide whether
a term is in LY it is sufficient to check whether all its test set instances belong to
L.

A possible application — and our main motivation — is ground reducibility: If
Red(R) denotes the set of ground terms reducible by a rewrite system R, then its
universal closure Red(R)" is the set of ground reducible terms. Test sets for ground
reducibility always exist and there are several approaches to construct them. The
resulting sets, however, often are unnecessarily large.

In this talk we consider regular languages L and linear terms in their closure.
Here, membership for LY (being regular as well) is decidable, and test sets always
exist. By relating test sets to tree automata, we solve the following problems:

e How to characterize test sets?
e How to compute minimal test sets?

e How to minimize given test sets?

Some Results on Context-free Tree Languages

Gregory Kucherov, Dieter Hofbauer and Maria Huber

First, we study the class of top-context-free tree languages (called corégulier by
Arnold and Dauchet (1976)) — a natural subclass of context-free tree languages. In
particular, we concentrate on the yet more narrow class of regular top-context-free
languages and give various characterizations of this class. We also study closure
properties of top-context-free tree languages and give a criterion for a language to
be not top-context-free.

In the second part, we talk about projection (erasing) rules in general context-
free tree grammars. It is known that in contrast to the word case, in a context-free
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tree grammar these rules cannot always be eliminated. We show, however, that
an equivalent grammar can be constructed such that application of these rules can
be avoided for any given set of positions. As an immediate consequence we get a
new direct proof for the decidability of the membership problem for context-free
tree languages.

Constrained Automata and Some Applications

Denis Lugiez

We define a new class of constrained tree automata to deal with terms con-
taining syntactical functions and interpreted ones. First we define an abstract
class of automata with constrained rules which enjoys boolean closure properties,
then we specialize the class for the case of multisets and the case of non-negative
integers. In each case we give a decision procedure for the emptiness of the lan-
guage accepted by an automaton. We conclude by showing how these automata
can be applied to inductive theorem proving for testing sufficient completeness and
inductive reducibility.

Full paper available from: http://www.loria.fr/ lugiez

Using Tree Automata for Computational Representations in
Automated Model Building

Robert Matzinger

Automated Model Building - the attempt to automatically construct models
for formulas that are found to be satisfiable - raises increasing interest in the auto-
mated deduction community. Clearly, representing particular models of first-order
formulas in a computational feasible way is an important prerequisite for Auto-
mated Model Building, but plays a role in many other fields too, e.g. semantic
resolution, model checking, etc. As the specification of a Herbrand model is noth-
ing else than the specification of a (potentially infinite) set of atoms, we are lead to
investigating model properties in terms of syntactical properties of the true ground
atom set. Tree automata and their relatives turn out to be a major tool for such
an investigation. Therefore I will try to advertise automated model building and
model representations as an interesting field for applying tree automata theory.

In particular I start with giving an introduction to automated model building
and to computational requirements in this field, and I show that with relatively
simple means we can already obtain interesting results about representable models,
e.g. I show how Herbrand models can be represented with regular tree automata.
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Computational aspects of this approach are considered and the class of models
representable by this approach is characterized. I survey some key approaches for
automated model building. In particular I introduce the key ideas of the “clauses
with constraints”-approach of Caferra, Zabel, Peltier, et al. and the “choose and
resolve”-approach of Fermueller, Leitsch et al., both valuable work of people not
present at the workshop. I compare the models generated with these methods
and relate them to tree automata representations, concluding with hints to open
problems and future ideas.
See also: http://www.kr.tuwien.ac.at/ matzi

Decidable Call-by-Need Computations in Term Rewriting

Aart Middeldorp and Irene Durand

The following theorem of Huet and Levy forms the basis of all results on
optimal normalizing reduction strategies for orthogonal term rewriting systems
(TRSs): every reducible term contains a needed redex and repeated contraction
of needed redexes results in a normal form, if the term under consideration has
a normal form. Unfortunately, needed redexes are not computable in general.
Hence, in order to obtain a computable optimal reduction strategy, we are left to
find

(1) decidable approximations of neededness and

(2) decidable properties of TRSs which ensure that every reducible term has a
needed redex identified by (1).

Starting with the seminal work of Huet and Levy on strong sequentiality, these
issues have been extensively investigated in the literature. In all these works Huet
and Levy’s notions of index, omega-reduction, and sequentiality figure prominently.
We present an approach to decidable call by need computations to normal
form in which issues (1) and (2) above are addressed directly. Besides facilitating
understanding this enables us to cover much larger classes of TRSs. For instance,
an easy consequence of our work is that every orthogonal right-ground TRS ad-
mits a computable call by need strategy whereas none of the sequentiality-based
approaches cover all such TRSs.
Full paper available from
http://www.score.is.tsukuba.ac.jp/ "ami/papers/dcbn.dvi
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On One-Pass Rewriting

Magnus Steinby

Two restricted ways to apply a term rewriting system (TRS) to a tree are consid-
ered. When the one-pass root-started strategy is followed, rewriting starts from
the root and continues stepwise towards the leaves without ever rewriting a part
of the current tree produced in a previous step. One-pass leaf-started rewriting
is defined similarly, but rewriting begins from the leaves. In the sentential form
inclusion problem one asks whether all trees obtained with a given TRS from the
trees of some regular tree language T’ belong to another given regular tree language
U, and in the normal form inclusion problem the same question is asked about
the normal forms of T'. We show that for a left-linear TRS these problems can be
decided for both of our one-pass strategies. In all four cases the decision algorithm
involves the construction of a suitable tree recognizer.

Monadic Horn Problems, Tree Automata and Sorted Unification

Christoph Weidenbach

We study the complexity of sorted unifiability, the complexity of emptiness and
the cardinality of complete sets of well-sorted unifiers with respect to order-sorted,
shallow and ordered sort theories. These sort theories are closely related to reg-
ular bottom-up tree automata, automata with (dis)equality constraints between
brother terms and generalized encompassment automata. We investigate similar-
ities and differences between these approaches by a relativization of both frame-
works to monadic Horn problems. Finally, we show that the extension of shallow
sort theories by shallow equations still yields a decidable unification (emptiness)
problem.
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3.3 Program Analysis

Early Applications of Tree Grammars and Tree Automata for
Program Analysis and Compiling

Neil D. Jones

An approach using tree grammars to analyze programs manipulating tree-
structured data was developed by Jones and Muchnick in 1978. Correctness (more
properly safety) was expressed by reachability: the set of all possible values as-
signed to variables at each program point is a subset of the set of values generated
by a nonterminal in the tree grammar. A key to constructing the grammar was a
technique from regular canonical systems (Biichi, 1964). Just as the work was com-
pleted, it was discovered that Reynolds had similar results for functional programs
in a much overlooked article from 1968.

Extensions of this idea were used for flow analysis of: lambda expressions
(ICALP 81); flexible interprocedural analysis (POPL 82); higher-order lazy pro-
grams (Abramsky and Hankin collection, 1987); and by several researchers since
then.

Tree transducers (actually, derivors) were applied to compiler generation (and
not just compiler construction) in the CERES system, developed by Jones and
Tofte and the subject of Tofte’s EATCS Monograph. Key ideas included expressing
a derivor itself as a tree; and “self-composition” to transform a tree transducer
defining a language’s semantics into one defining a compiler for the same language,
also by means of a derivor. Annette Wagner (a student of Ganzinger) extended
the self-composition concept to apply to Ganzinger and Giegerich’s “attribute-
coupled grammars”. Self-composition was a precursor to the idea of “generating
extension”, as used in compiler generation by partial evaluation.
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Constraint Based Flow Logics

Flemming Nielson and Hanne Riis Nielson

This talk gives an overview of how constraints over finite sets, elements of
complete lattices, and languages may arise when performing program analysis.
We first cover syntax-directed approaches to constraint based Control Flow Anal-
ysis and illustrate the relationship to the equational formulation of Data Flow
Analysis; next we cover abstract approaches motivated by Abstract Interpretation
and observe the need for coinductive methods. Then we augment the Control
Flow Analysis with components from Data Flow Analysis: a value based analysis
using complete lattices, and an analysis tracking the calling history using formal
languages. We conclude with discussing the need to “overcome” the undecidability
of many questions related to formal languages.

From Polyvariant Flow Information to Intersection and Union Types

Jens Palsberg and Christina Pavlopoulou

Many polyvariant program analyses have been studied in the 1990s, including
k-CFA, poly-k-CFA, and the cartesian product algorithm. The idea of polyvariance
is to analyze functions more than once and thereby obtain better precision for each
call site. In this talk we present the first formal relationship between polyvariant
analysis and standard notions of type. In the spirit of Nielson and Nielson, we
study a parameterized flow analysis which can be instantiated to the analyses of
Agesen, Schmidt, and as a simple case also 0-CFA. Extended with safety checks,
the flow analysis accepts and rejects programs, much like a type checker. We prove
that if a program can be safety-checked by a finitary instantiation of the flow
analysis, then it can also be typed in a type system with intersection types, union
types, subtyping, and recursive types, but no universal or existential quantifiers.
This provides a framework for designing and understanding combinations of flow
analyses and type systems.

Full paper available from
http://www.cs.purdue.edu/homes/palsberg/draft/palsberg-pavlopoulou9d7

Fixpoint Methods for Program Analysis and Model-Checking

Helmut Seidl

We review current developments in the area of local fixpoint iterators. We
apply these methods to obtain efficient interprocedural analyzers for procedural
languages, fast control-flow analyzers as well as fast model-checkers for the full
p-calculus.
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Further reading can be found at
http://www.informatik.uni-trier.de/"seidl/publications.html

Program Transformers and Tree Automata

Morten Heine Sorensen

This talk presents a brief overview of how such notions as set constraints, tree
grammars, and tree automata arise naturally in several lines of work on transfor-
mation techniques for functional programs.

It is then argued that a deeper understanding of such program transformers
may be acquired by emphasizing the use of, e.g., tree automata. For example,
Wadler’s deforestation algorithm, which eliminates intermediate data structures
from functional programs, turns out to be very directly related to the product con-
struction for composing deterministic top-down tree transducers, and this equiva-
lence sheds some new light on deforestation and the class of treeless program, for
which deforestation is known to terminate.

Benefits of Hypergraphs for Program Transformations

Andrea Méflle and Heiko Vogler

We show an automatic program transformation strategy which allows to re-
move multiple calls of functions on the same argument. The transformation strat-
egy works on every constructor-based term rewriting system. In particular, we
indicate that using the framework of hypergraphs makes the presentation of the
transformation strategy very easy. The resulting term rewriting system M is at
least as efficient as the original one N. Moreover, it is decidable whether M is
more efficient on infinitely many arguments than V.
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3.4 Set Constraints

Set Constraints: An Overview

Dexter Kozen

Set constraints are equations between expressions denoting sets of elements of
an algebraic structure, usually ground terms. They have been used extensively in
program analysis and type inference for many years. Considerable recent effort
has focussed on the computational complexity of the satisfiability problem. Set
constraints have also recently been used to define a constraint logic programming
language over Herbrand domains.

Set constraints exhibit a rich mathematical structure. There are strong connec-
tions to automata theory, type theory, first-order monadic logic, Boolean algebra
with operators, and modal logic. There are algebraic and topological formulations,
corresponding roughly to “soft” and “hard” typing respectively, which are related
by Stone duality.

In this survey talk I will define the general set constraint satisfaction problem
and describe several applications; outline the connection to tree automata; discuss
how the automata-theoretic formulation is used to obtain complexity results; and
discuss algebraic and topological formulations and their relationship.

The Greatest Fixed Point of the 7, Abstraction is Regular

David McAllester

In a well known POPL paper in 1990 Heintze and Jaffar introduced the 7, ab-
straction of logic programs. This abstraction can be phrased as a simple source to
source transformation mapping logic program P to program P where the meaning
of P, i.e., the set of atoms provable from P, is a regular set, i.e., a set definable
by a regular tree automata, and contains the meaning of P. Here we show that the
T, abstraction can be used for analyzing greatest fixed points as well least fixed
points — the greatest fixed point of P is a regular set containing the greatest fixed
point of P. This fact can be used to verify certain liveness conditions by proving
that a “nontermination predicate” is empty in a greatest fixed point.
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Set-based Analysis of Reactive Programs

Andreas Podelski

We present several ideas which together yield a verification method for re-
active programs via set-based analysis. CTL-properties are described by least or
greatest models of logic programs (and logic programs describe transition systems,
possibly with an infinite number of states). The set-based approximation of the
least or greatest model of a logic program can be computed by the iteration of a
functional over sets of Horn clauses (in single exponential time). Various kinds of
automata over infinite trees (which are used to encode various kinds of temporal
logic properties) correspond to various classes of logic programs. For example,
weak alternating Biichi automata correspond to stratified logic programs (without
negation, but with calls to the greatest model which corresponds to double nega-
tion). Rabin tree automata correspond to logic programs with atoms marked by
priorities (the Horn pu-calculus).

More information to be found at http://www.mpi-sb.mpg.de/ podelski

Set Constraints and Tree Automata

Sophie Tison and Marc Tommasi

Generalized Tree Set Automata (GTSA) are recognizers of mappings from the
Herbrand Universe to a finite set of labels. When the set of labels is {0,1}",
GTSAs accept tuples of tree languages.

This new kind of automaton has been introduced to solve positive and nega-
tive set constraints. However, because of the high complexity of the satisfiability
problem of solving set constraints, it is interesting for some special classes to build
directly some special regular solutions.

In this talk, we will present GTSAs, some important properties that they fulfill,
and their application to set constraints. In a second part, we will expose an algo-
rithm for constructing the least (resp. the greatest) solution of (resp. co-)definite
set constraints. This algorithm is based on tree automata and the computed solu-
tion is regular.
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3.5 Education

Sophomores, Logics, and Automata

Nils Klarlund

During a second-year course on fundamental models in computer science, I tried
to link logic, automata, concurrency, and verification. The goal was to make clearer
to the students that logic and automata have computational meanings. To do this,
I showed how mutual exclusion protocols can be modeled in an automata-theoretic
framework. I also showed how first-order logic is useful in formalizing desired
properties protocols. The main theoretical idea gluing automata and properties
together is the connection between automata and monadic second-order logic on
finite strings—admittedly a big mouthful for sophomore students.

I have drawn two conclusions,

e The automaton-logic connection should be taught to sophomores, but only
as a decision procedure for Propositional Logic (and maybe also for Quan-
tified Propositional Logic). There are many interesting points to be made
about such a procedure relative to the naive algorithm by enumeration.
And there is a strong practical motivation: BDDs, which are very similar to
automata representations of the satisfying truth assignments, have become
very important in the development and testing of digital hardware.

e Logic and automata should be illustrated early on by easy-to-use, interactive
programs that hammer in the fact that these concepts are firmly rooted
in computation and programming. Too large a fraction of students feels
very estranged when these matters are taught. (WS1S, which is a fragment
of arithmetic, could be a useful logic, since its decision procedure allows
immediate answers to simple questions about natural numbers.)

Automata in a Graduate Programming Language Course

Jens Palsberg

Tree automata plays an important role in the required graduate course on
programming languages at Purdue University. Such automata are used to rep-
resent types. The students learn and implement subtyping, type inference, and
mappings between types and flow using that representation. The representation
is particularly useful for Java interfaces which can be recursive.
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Applications of Tree Automata in Compilation

Reinhard Wilhelm

Two applications of tree automata in compilers are described, one in the strat-
egy phase of attribute evaluation, the other in code selection.

The evaluation of semantic attributes usually happens in two phases; the strat-
egy phase determines an evaluation order for the attributes, and the evaluation
phase proper computes the attribute values according to the evaluation order.
Both phases are automatically generated from an attribute grammar. The follow-
ing preprocessing happens at compiler generation time. A set of lower and upper
global dependencies for each nonterminal are computed from the local attribute
dependencies of productions. Evaluation plans for the productions are computed
for all combinations of such global dependencies. At compile time, the global de-
pendencies for the given tree are determined by a deterministic bottom up tree
automaton and a deterministic top down tree automaton. Their results determine
the evaluation plans at the productions instances in the tree.

Code selection for a given target machine from an intermediate representation
(IR) of programs can be described by a regular tree grammar. Nonterminals in
the grammar are recources of the target machine, terminals operators of the IR. A
powerset construction generates a deterministic bottom up tree automaton. This
automaton annotates the tree with its states from which the applied productions
can be derived. Goal is the selection of a “cheapest” derivation corresponding to a
(locally) optimal code sequence. The selection of a cheapest derivation can be done
by running a dynamic programming method over the tree. Hwever, the selection
of the cheapest derivation can also be integrated into the automaton if the cost
measure satisfies the following criterium: the differences in cost of the cheapest
and all other derivations are bounded by a constant. The powerset construction
terminates under this condition.

Both applications are described in the text book:

R. Wilhelm, D. Maurer: Compiler Design, Addison Wesley, 1997
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