
1

Dagstuhl Workshop on Scenar io Management

February 9-13, 1998

Organizers:

Matthias Jarke, RWTH Aachen, Germany
X. Tung Bui, University of Hawaii , USA
John M. Carr oll , Virginia Tech, USA

2

Contents

Introduction and Overview
Agenda
Subgroup M ission Statements
Par ticipant Abstracts
Scenar io Management: An Interdisciplinary Approach
Editor ial, Special Issue of IEEE Transactions on Software Engineering
Editor ial, Special Issue of Requirements Engineering Journal

3

Introduction and Overview

A scenario can be defined as a description of a possible set of events that might reasonably take
place. The purpose of scenarios is to stimulate thinking about possible occurrences, assumptions
relating these occurrences, possible opportunities and risks, and courses of action. Recent surveys of
scenario research and practice undertaken by the European CREWS project show the enormous
variety, but also the fragmentation of the field. For example, HCI researchers use scenarios to
enhance user-designer communications and managers use scenarios to explore alternative futures
and the impact of systems. Software engineers see scenarios as a promising means to discover user
needs that are not obvious in analysis situations, to better describe the use of system in work
processes, and to systematically explore normal-case and exceptional behavior of a system and its
environment.

Researchers from other disciplines have used scenario analysis for a long time. Economists have
successfully used scenarios for long-range planning. Management scientists use scenarios for
strategic decision-making. Policy makers use scenarios to weigh the possible consequences of their
actions. In an interdisciplinary perspective, scenarios are used to examine the interplay among
economic, social, and technological issues.

This Dagstuhl Seminar convened twenty-four leading researchers and practitioners from various
disciplines to cross-examine the effectiveness and efficiency of using scenarios as a modeling, design,
development, and implementation tool. A second issue of interest is the management of scenarios as
complex artifacts throughout the planning and systems lifecycle.

The seminar was organized by the CREWS ESPRIT project in cooperation with the IFIP Working
Group 2.9 (Requirements Engineering) and the RENOIR European Network of Excellence. It
comprised plenary sessions as well as subgroup discussions, as shown on the Agenda on the next
pages. This is followed by short abstracts of presentations written by participants. Afterwards, the
results of the workshop discussions are summarized in an overview article by the organizers, titled
“Scenario Management: An Interdisciplinary Approach” . 13 individual research contributions by the
participants and others, elicited through an open Call for Papers, are published in Special Issues of
the IEEE Transactions on Software Engineering (vol. 24, no. 12, December 1998) and of the
Requirements Engineering Journal (vol. 3, no. 3-4, December 1998). The editorials and tables of
contents of both issues conclude this report.

Thanks are due to the Dagstuhl Directorate for accepting this interdisciplinary event, and to the
European Commission for supporting the travel of many participants via CREWS and RENOIR.
Without the enthusiastic cooperation of all participants, reacting well to frequent agenda changes
and spontaneous discussions, this workshop would not have been the success we feel it has been.
Special thanks go to the conveners of the subgroups, and to our students Camille Ben Achour,
Sebastian Brandt, George Chin, Peter Haumer, Patrick Heymans, Sheiley Minocha, for their
support in organization and session recording. As always, the final thanks go to the cheerful people
at Dagstuhl without whose support these events would be much more work and much less fun.

Aachen, Honolulu, and Blacksburg, November 1998

Matthias Jarke
X. Tung Bui
John M. Carroll

4

Dagstuhl Workshop on Scenar io Management

Agenda

Monday, February 9

 9.00 - 9.30 Workshop Introduction (Jarke)
 9.30 - 10.15 Scenarios: HCI Perspective (Carroll)
10.30 -11.15 Management Perspective (Bui/Sprague)
11.15 -12.00 Requirements Engineering Perspective (Rolland/Pohl/Sutcliffe)

14.00 -17.45 Subgroup Meetings
 S1: Fitting Scenarios to existing methods

Convenors: Rolland, Dzida
 S2: Representing scenarios: informal formal)

Convenors: Greenspan, Potts
 S3: Scenario management in the large

Convenors: Francksson, Lyytinen
 S4: Systematic capture and generation of scenarios

Convenors: Sutcliffe, v. Lamsweerde

Tuesday, February 10

 9.00 -10.20 Subgroup interim reports
10.40 -12.00 Panel: Where is the theoretical basis for scenario research?

Moderator: Jarke
Panelists: Carroll, Dubois, Lyytinen, Maiden, Pomerol

14.00 -16.30 Subgroups S1-S4 continue
16.45 -17.45 Moderated Brainstorming Session: Overlooked Research Topics

Moderator: Bui

Wednesday, February 11

 9.00-10.40 Final Reports from Subgroups S1-S4
11.00-12.00 Lessons Learned, Plans for Thursday and Friday

Moderator: Carroll

Thursday, February 12 and Friday, February 13

Subgroup discussions on empirical evaluation methodologies,
Work on joint publications

5

Subgroup M ission Statements

Results of the subgroup discussions are summarized in the article “Scenario Management: An
Interdisciplinary Approach” at the end of this report.

General questions to be answered:
- what is known/not known about the topic in the three fields represented at the workshop?
- What is the evidence for this knowledge?
- What are important research/practice questions, and why?

S1: Fitt ing scenarios to existing methods
Convenors: Rolland, Dzida

Do scenario-based techniques replace or complement existing methods in planning, requirements
engineering, design? Where do these techniques fit into the established processes, and what
adaptations of these processes, or of the scenario techniques, are needed to improve the fit? How do
we make the knowledge about these improved methods available in work settings, how in
education? What are the limitations of scenario-based techniques?

S2: Representing scenarios: informal
¥¥

 formal)
Convenors: Greenspan, Potts

This group looks at the presentational issues of individual scenarios: When should scenarios be
represented formally, when informally? How should the two-way transition between formal and
informal representations be managed? What is the appropriate level of abstraction in a scenario,
given a certain purpose?

S3: Scenario management in the large
Convenors: Francksson, Lyytinen

This group looks at the management and evolution of large sets of, possibly composite scenarios as
artifacts throughout the software lifecycle. How do we manage families of scenarios, their version
and configuration management, their traceabili ty down to test cases for design and implementation,
and how do we handle scenario change in such integrated settings?

S4: Systematic capture and generation of scenarios
Convenors: Sutcliffe, v. Lamsweerde

What should a scenario contain information about, under different contingencies? Are there
systematic ways to create normal-case and exception-case scenarios? What does it mean for a set of
scenarios to be complete with respect to a particular task context?

6

Participant Abstracts

An Example of the Use of Scenarios in Electronic Publishing Applications

Daniel M. Berry, Technion, Haifa, Israel

In looking back over previously performed software system developments, it is clear that we have
been using scenarios all along, without calli ng them such, as or embedded in requirements,
engineering, design and code.

Validation, design and code optimization, inspection check list generation and validation, test case
generation and validation, user documentation, creation etc.. By recognizing that all of these
activities are or can be scenario-driven, we now obtain a vocabulary to talk about their activities in
a way that might be clearer to the learning or practicing software engineer.

My contribution to the workshop shows how scenarios were used in all phases of the lifecycle of a
particular class of application for which there is an additional bonus, i.e., that the requirements
specifications, the users manual, and the test case are all the same scenario-based documents.

Scenarios: A Strategic Management Perspective

T.X. Bui, University of Hawaii, USA

For all practical reasons, one could safely claim that using scenarios has always been part of the
„homo economicus“ toolbox. In a strategic decision making context, a scenario can be defined as a
narrative description of a consistent set of factors that define, in a visionary sense, future business
decisions (as outcome of the process). These decisions are purposeful, novel, made under conditions
of ambiguity and uncertainty. Yet, these decisions are expected to result in high impact outcomes.
Granted that the decision environment is constantly changing, scenario generation and analysis are
important and seem to be the only sensible way to do strategic management. The use of scenarios
has proved to be useful to (1) capture complex, future uncertainties, (2) to avoid extrapolation, (3)
support mentality shift and (4) define reasonable alternatives futures.

Given the increasingly fast pace of change in the way business operates in a digital economy, the
renewed interest in scenarios and management of scenarios (e.g., their creation, maintenance, and
the relationships among the scenarios) is, to say the least, encouraging, inevitable, and challenging.

Scenarios are Privileged Cognitive Structures

John M. Carroll, Virginia Tech, USA

A striking fact about humans is that they encode significant meanings in narrative form – they dream
stories that express their deepest concerns (Freud), convey their culture and religion in stories (Levi
Strauss). Indeed, photocopier technicians share and develop their expertise by telli ng one another
stories (Orr). „Case-based“ learning and reasoning are widely regarded as the most effective means
of organizing and using memory.

7

Why are stories privileged? Here are four partial answers: First, concrete/real material is processed
more by the mind (depth of processing theory). Second, incomplete material is ineluctably
elaborated and better remembered (elaborative memory, generation effect). Third, speaker and
listener tacitly agree to background what can be presumed and to emphasize what is novel (given-
new contract). Fourth -- and this is a risk of relying on stories -- people overestimate the relevance
of things that are familiar (representational bias).

These are powerful tendencies in human thought that suggest specific benefits, and a risk, of using
scenarios as cognitive artifacts – versus closed, formal systems of expression. Scenarios do not
resolve the tension between the formal and the informal, rather they make informality a serious
option for activities that can be better served by informal expressions and approaches.

Progressive Design: An Integration of Ethnography, Scenario-Based Design, and
Participatory Design

George Chin, Virginia Tech, USA

We introduce a design methodology called „Progressive Design“ which integrates the fields of
ethnography, scenario-based design, and participatory design. We seek a general design model that
will structure our design work with users in a consistent fashion and that will ensure an orderly
progression to a successful final design. The objectives of progressive design are to allow users
directly participate in requirements analysis, to entrench requirements analysis in user activities, to
empower users as analysts and designers by giving them the same tools and methods that designers
and developers apply, to employ consistent design representations throughout analysis and design,
to consider the design of both the target system and the workplace. activity that will exercise it, and
to evolve the underlying usage context in an organized and principled fashion.

A Systems View of Scenarios for Requirements Elicitation and Testing

David E. Corrall, GEC-Marconi Research Center, UK

There are two major areas of Requirements Engineering which currently lack both methods and tool
support, namely elicitation and analysis. Analysis of the Requirements Definition is needed in order
to bootstrap the generation of scenarios for elicitation and testing of requirements, and the results of
elicitation drive the next iteration of analysis. In this way, the Requirements Definition can evolve to
a measurable level of design answer, for example in terms of cost effectiveness.

Analysis entails the achievement of system level goals and constraints from the harmonisation of
stakeholder goals and constraints. The structures for goals and constraints, Requirement Definition
and scenarios are commensurate and informed by prior domain knowledge of policy, doctrine and
standards. The use of scenarios for elicitation and testing has therefore to be considered in a whole
system context.

8

Making Use of Scenarios for Validating Analysis and Design

Wolfgang Dzida, GMD, St. Augustin, Germany

Scenarios can help remedy the most serious obstacle in the design process, that is, a chronic lack of
knowledge of the application domain. Moreover, scenarios can be employed in analysis and design
to serve both ill ustrating the context of an envisaged usage (user perspective) and demonstrating the
design proposal in terms of the intended usage (designer perspective). In contrasting both
perspectives by means of a dialectic process, a synthesis can be achieved that incorporates a shared
understanding.

Validation is a process to achieve such an understanding. The semantic structure of types of
scenarios is investigated, thus ill ustrating how a context of usage analysis according to ISO 9241-11
can be explicated for validation purposes. The role of scenarios in usabili ty engineering is contrasted
with traditional concepts of software engineering to narrow the gap between neighboring disciplines.
Within the introduction of scenarios in analysis and design the traditional systems analysis approach
can broaden its scope, since it is no longer the system alone which is analysed. Now the effort shifts
from analyzing the artifact to understanding the problem domain. In traditional systems analysis,
formal or semi-formal specification languages have been used as problem statement languages, thus
jumbling up divergent purposes implied in specification and problem analysis. It may be necessary,
however, to enter the analysis process in terms of the user‘s language.

Service Scenarios in Requirements Engineering

Mark Feblowitz, GTE Laboratories, Waltham, MA, USA

The Requirements Engineering project at GTE Laboratories supports GTE‘ s development and/or
purchase of large software systems, providing tools and techniques that help to record and explore
system requirements. The project‘s main orientation is toward the capture and analysis of conceptual
models of the structure, behavior, and motivations of the various agents within the enterprise – the
environment of the new system(s) – thereby enabling the Requirements Engineer to exercise his/her
understanding of the environment and of the desired system(s). The RE project has engaged in two
scenario-oriented activities: a rule-based business process simulator and a scenario-based technique
for studying the impact of the potential acquisition of „commercial, off-the-shelf“ (COTS) software.

In the early to mid-nineties the project was involved in GTE‘s extensive Business Process
Reengineering efforts, providing a method and toolset (ACME/PRIME) to transform a set of elicited
textual scenarios and corresponding informal Business Process Models (process maps) into a more
formal „executable“ form. The resultant recorded conceptual model serves as as means of validating
the requirements analyst‘s understanding of the enterprise, and ultimately as a means of
communicating that understanding to software developers/procurers. With the support of ACME/
PRIME (IWSSD96), models are constructed and simulations are performed using these models.
Each simulation „thread“ constitutes a trace that either corresponds to one of the initially elicited
scenarios or constitutes a newly generated scenario that can be played back to the relevant
stakeholder(s) for subsequent validation. ACME/PRIME was used in the field for 1.5 years until i ts
functionality was re-deployed in a production tool set.

The project also developed a scenario-based technique for determining the impact of acquiring a
large COTS software system. This technique builds on the work of Potts and also Leite, using rich

9

text scenarios of current enterprise operation and comparing these scenarios, in a meaningful way, to
the operation of the enterprise were a particular COTS product to be acquired and deployed. This
technique addresses the currently unmet need to identify salient impacts of a COTS procurement,
e.g. the operation, costs, policies, and resources of the customer‘s enterprise. The method
recommends a means of performing a meaningful comparison of the current and hypothetical
scenarios of enterprise operation, based on a theory-driven comparison and analysis of the narrative
texts of the current and hypothetical scenarios.

Structure and Abstractions for Scenarios

Martin Glinz , Universität Zürich, Switzerland

Working with scenarios requires structure and abstraction. Structure within a single scenario is
required for understanding complex scenarios for assessing interesting properties; for generating
animations, etc. Structure between scenarios is required (a) to describe interrelationships such as
usage or component relations and (b) to manage scenarios, such as version management or tracing.

Abstraction helps us to manage complexity when we deal with large sets of scenarios. Type
abstraction leads from the extensional to the intensional level. Content abstraction allows us to use
boxes with names instead of full descriptions. Composition abstraction consolidates a set of
scenarios into a common higher-level scenario. Generalization abstraction factors out common
properties. Usage abstraction lets one scenario make use of other scenarios that provide lower-level
services. Aspect abstraction focuses scenarios on one particular aspect of the problem. To what
extent we need these kinds of abstraction in which situations is still a research topic.

Scenarios Support the Acquisition and Impact Analysis of Business Rules

Sol J. Greenspan, GTE Labs, Waltham, USA

Business Rules (BRs) are decisions made to achieve the goals of an enterprise, and comprise an
important set of requirements on the (human and automated) systems that support the running of the
enterprise. For example, a bank with the goal of „reducing fraud“ might impose the rule that checks
over $ 5000 require a second signature, besides the bank tellers before being cashed. There may be a
large set of BRs involving many goals, activities and agents. When a statement is made such as „in
context C use rule R to achieve goal G,“ there is typically uncertainty about the degree of
effectiveness if the rule is followed, the consequences of not following it, and the accuracy of the
context in which it is considered applicable.

Scenarios of enterprise operation help in several ways; to explore and decide on BRs; to discover
conflicts; and, if specified sufficiently formally, to support rapid deployment/evolution of the BRs.
Because BRs are usually heuristic and speculative, their effectiveness, risks and correctness of
context can often only be confirmed or measured by observing the actual running of the enterprise.
Scenarios are, again, the proposed tools for providing feedback to check the BRs.

In our work at GTE Labs, we base BRs on a conceptual enterprise model and a decision support
system, and we simulate business scenarios to develop and validate the rules.
Requirements Elicitation and Validation with Real World Scenes

10

Peter Haumer and Klaus Pohl, RWTH Aachen, Germany

Scenarios are an excellent means for eliciting and validating requirements. In contrast to a
requirements specification, which defines the requirements for the future system at a conceptual
level (i.e. class or type level), a scenario represents a concrete example of current or future system
usage, i.e. requirements are expressed at the instance level. We call a persistently recorded usage of
the current system a real world scene (RWS).

We develop Conceptualization Guides which support the requirements-engineer in eliciting
requirements from RWS and in validating requirements against RWS. During the elicitation and
validation, the Conceptualization Guides relate the conceptual definition of the requirements to the
parts of the RWS, which have caused their definition or which have been used to validate the
requirements. Thereby a fine-grained interaction between the conceptual models and the RWS is
established. These interactions significantly improve the traceabili ty and understandabili ty of
conceptual models. The interrelation provides the basis for

- explaining and ill ustrating conceptual models to, e.g., untrained stakeholders or new team
members;

- comparing conceptual models defined by different stakeholders based on the same observation;
- comparing different observations using computed links for the conceptual models;
- refining or detaili ng the conceptual model during later process stages.

Scenario-based Techniques for Supporting the Elaboration of Formal Requirements

Patrick Heymans and Eric Dubois, University of Namur, Belgium

We study two scenario-based contributions for techniques and tools supporting the use of the Albert
II language, a formal language designed for the purpose of expressing requirements inherent to
distributed real-time-systems.

The first contribution aims at improving the elaboration process by providing a method for
constructing an Albert II description from scenarios expressing the stakeholders requirements. These
are represented with Message Sequence Charts appropriately extended in order to deal with
composite systems.

The second contribution takes the form of a requirements validation tool (a so-called animator), that
the stakeholders use interactively and cooperatively in order to explore different possible behavior
(or instance-level scenarios) of the future system allowed by the formal requirements specification.

11

Scenarios as a Tool to Clarify Requirements

Pei Hsia, University of Texas at Arlington, USA

Many systems developers typically use EXAMPLES to clarify the abstract concepts represented by
requirements. These examples are really what we call scenarios today. For most of the single-user
systems, we can construct a 1-1 mapping between scenarios and prototypes. We have developed a
process to construct a scenario-based prototype which is checkable. This approach can be extended
to generate an acceptance testing suite for a system. The above described approach was applied to a
safety-critical system, Therac-25, and the set of test cases were generated which include the culprit
that caused six overdoses.

The CREWS Project

Matthias Jarke, RWTH Aachen, Germany

The CREWS Project does long-term research on foundations of scenario usage and management in
requirements engineering. First results include

- the CREWS framework which categorizes scenario-based techniques according to four views
(form, content, lifecycle, purpose) and thus offers a classification of the research literature

- a field study of more than 20 requirements engineering projects which pointed out which aspects
of the framework seem most relevant to business practice.

In addition, the main goal of the project is to develop and validate novel components of software
support for scenario-based requirements engineering, including tools for requirements elicitation
from real-world scenes and structured natural language statements , as well as for the generation of
scenario permutations for exeption analysis and for the animation of requirements specification.

Scenario-based Reliability Testing

Stefan Jungmayr, Fraunhofer IESE, Kaiserslautern, Germany

Software reliabili ty is strongly related to system usage, i.e., it is not only the number of faults within
a product but also the probabili ty of invoking particular functions that determine reliabili ty. A usage
model that describe all possible system usage scenarios can be used to generate any number of text
scenarios. The test results can than be used to draw scientific valid conclusions about reliabili ty. The
notation used to describe usage models within the cleanroom context are finite state machines, in
particular Markov chains, that additionally provide the test team with test exit criteria and a measure
of the trustworthiness of the reliabili ty predictions.

12

Decomposing Functional Requirements Using Scenarios

Hermann Kaindl, Siemens Österreich

Potential users of a proposed system sometimes tend not to formulate functional requirements on
that system. Rather, they define requirements in the compound that includes the proposed
software/hardware as well as other objects and even people such as the users themselves. Since such
requirements do not make explicit what exactly the proposed system is supposed to do, they are
insufficient for developing it. We show that functional requirements can be successfully decomposed
using scenarios. According to our approach, for each of the functional requirements of the
compound system, a corresponding scenario is developed. The scenario descriptions include steps to
be performed by the proposed system. For each of the steps, one or more functions will be
developed that will enable the system to perform these steps. These functions correspond to
functional requirements on the proposed system. As a consequence of our case study, we propose to
use this approach for decomposing functional requirements whenever they are requirements on the
compound system rather than the system that is to be built.

Scenario Issues from an HCI Perspective

Jürgen Koenemann, GMD-FIT, Germany

Prototypical Scenarios are narrative, informal, mostly textural structures („prototypical“ in the
psychological sense of Prototype Theory) and these scenarios are reflecting natural ways of people
to communicate their knowledge. Since System Engineering requires user participation we must deal
with these structures. Tools that support scenario management should impose the minimal structure
required to index and retrieve use scenarios, e.g. by making use of meta data while preserving the
narrative free-form content. Given a well understood domain, it may be possible to relate scenarios
to concepts in a conceptual model as a means of organizing them and providing access to them.

 Components in a Theory for Scnarios Regresculation

Reino Kurki-Suonio, Tampere University of Technology, Finland

A variety of interrelated issues are involved in developing a practical theory for interactive
behaviors: fundamental philosophy, logic for reasoning, design methods, language concepts, and
execution model.

Classical theories of computing are intended for algorithms and sequential computing. Scenarios and
interactions require a paradigm shift to „reactive“ theories, which can be used for modeling of closed
systems (= system + environment). One suitable logic for reasoning on scenarios (used in the
authors’s work), is Lamport’s TLA (=Temporal Logic of Actions). Canonical TLA expressions are
suited for operational specification/regresculation of scenarios:

P A1 v... v An F

initial condition possible actions liveness requirements

13

As for the execution model, nondeterminism and atomicity of actions is essential, since environment
and the system can operate concurrently. This deviates strongly from customary executive models
of programming languages.

At the language level, the actions of the execution model can be given as multi-party actions, in
which inter-party communication is implicit. This makes it possible to model scenarios at higher
levels of abstraction than is allowed in conventional object-oriented models, for instance. Together
with the logic, language structures also have to give effective support for refinement and
composition (synthesis) of scenarios.

As a conclusion, the different parts of a theory have to support each other effectively. Therefore,
one cannot just take components that have been useful for different purposes and put them together.

Inferr ing Declarative Requirements Specifications from Operational Scenarios

Axel van Lamsweerde, Université Catholique de Louvain, Belgium (on sabbatical leave, SRI
International, USA)

Scenarios are increasingly recognized as an effective means for eliciting, validating, and
documenting software requirements. Our interest is in the process of infering requirements
specifications from scenario descriptions. While the former need to state properties about the
intended system in an explicit and declarative form for consistency/ completeness analysis, the latter
are inherently partial, procedural, and leave such properties implicit. A technique is proposed for
supporting the inference of specifications of systems goals and requirements from usage scenarios
provided by stakeholders. The technique is based on an inductive learning algorithm that takes
scenarios as examples/counterexamples and generates temporal logic assertions that cover all
positive scenarios and exclude all negative ones.

The input scenarios are expressed as software-environment interaction diagrams; the output
language in which requirements are obtained is the KAOS goal-based specification language.

Scenario Evolution

Julio Cesar Sampaio do Prado Leite - Departamento de Informatica. PUC-Rio, Brazil

Software as a chameleon artifact will have, more and more, a huge impact on the society as whole.
Change in global terms will be a central issue, as we move to a world where the rules and processes
are more and more dependent on software. As such, not only the society will demand that software
be changeable, like it demands today, but the world itself will be changeable as software becomes
pervasive in several day-to-day activities.

From the point of view of requirements engineering, I understand that a requirement baseline is
fundamental to provide a basis for managing change in the software evolution process. The
requirements baseline is an anchor in the universe of discourse and as such the communication
channel with the world in which the software works.

14

A baseline evolves both from a maintenance time perspective as well as from a development time
perspective. Thus, a requirement baseline has to be capable of evolving in two dimensions, in the
interactions akin to the requirements definition and the interactions due to the reification of the
client’s needs. Feedback is always present as a reaction to the availabili ty of the software in the
universe of discourse, which also changes due to the presence of software.

At PUC-Rio, we propose to integrate scenarios, an evolving description of situations in the
environment, into a requirements baseline, making possible their evolution as well as the traceabili ty
of the different views of the requirements baseline. There are three important aspects of our
proposal: use of scenarios as means for describing evolution, the vision that scenarios start from
situations in the macrosystem, and the integration of their representation into a environment oriented
towards hypertext navigation and configuration in management.

Scenarios in Strategic IT Management

Kalle Lyytinen, University of Jyväskylä, Finland

The environment of future organizations is volatile, involves high risk, and requires the capabili ty for
rapid shifts in strategy. The research reported in the workshop deals with the use of scenarios to
reduce the likelihood of choosing a wrong and/or rigid strategy. Three environmental scenarios were
developed to assess the variabili ty of strategy options of a large Finnish bank. Each environmental
scenario/strategy option pass was narrativized with a concrete scenario of customer service
processes which were used to validate and exemplify the variabili ty of the strategy. The use of
scenarios was in particular justified to overcome barriers to organizational learning.

Scenarios, Requirements, and Patterns: A Practical and Theoretical Approach for the Future

Neil Maiden, City University London, UK

Scenarios model a software system in its usage context. This context, and the way in which the
system interacts with the environment, are complex and structured. Furthermore, contexts often re-
occur, thus enabling us as people to transfer experiences across instances. Patterns provide huge
potential for identifying, naming, classifying and reusing context information. The combination of
scenarios, requirements, and context lends itself to patterns. This is the way forward. Note as you
heard it here first from me, on Friday 15th February 1998!

Scenarios and Business Process Management

Andreas Oberweis, J.W. Goethe-Universität Frankfurt

In the area of business process management, scenarios are used as a starting point for process
modeling. In my opinion, scenarios are informal (natural language) or semi-formal (diagram)
descriptions of situations, where a business process may be extended. In this sense a scenario may
include a description of the process enviroment (context) as well as a description of other relevant
issues, such as e.g., organizational aspects, data structures, rules, process goals, costs, and time. A
part of this process knowledge is system use.

15

Levels of Interaction Description in Task-Driven Software Development

Barbara Paech, TU München, Germany

Jacobson’s use cases have made popular the description of tasks in terms of interaction between
users and the software system as a preliminary to the analysis object model. However, interaction is
much too rich to be covered by one kind of description. For separation of concerns we distinguish

- work processes (describing the data flow between user and system activities, i.e., the basic
system functionality)

- performance narratives (describing the detailed interaction, i.e., the usabili ty functionality like
undo-functions)

- dialogs (describing the information conveyed to the user at the user interface and the possible
user actions, abstracting from layout, navigation, ...)

- object interaction diagrams (describing how system functions are achieved through method calls
between objects)

Each level uses its own modeling technique, but the different models are related by a common
underlying system model. Depending on the overall method, each model can be either exemplary and
partial (like scenarios) or aiming at completeness at the respective level of abstraction.

Scenario Development and Practical Decision Making under Uncertainty:
Robustness, Case-based Reasoning and „ Risk Control“

Jean Charles Pomerol, Université Pierre et Marie Curie, Paris VI, France

We try to figure out how decision theory would be used to formalize what could be in a scenario
framework. It is shown that decision theory has strong connections to scenario description in an
HCI setting, provided that the purpose of scenario using is well-defined and that the side of the
scenario rather is defined, either the system or the user side.

Discovering Robust Designs with Scenarios

Colin Potts, Georgia Institute of Technology, Atlanta, USA

Many design practitioners and method authors now agree that scenarios are valuable for discovering
and analyzing design choices in the face of uncertainty. Further advances in design method are
unlikely, however, until the production and use of scenarios in design are done more systematically.
Our approach is to use scenarios to develop and refine the semantic description of a software system
(goals, rules, allocations) by emphasizing what can violate the assumptions on which such
descriptions are based. Our view of robustness includes but does not step with engineering relativity
and safety concerns. A system is also not robust if it sis convenient to use and requires work-around
methods from its cases in real work situations. Obstacles are the key concept in this synthetic/
analytic dialog, and we are currently developing and evaluating in practice a classification scheme for
obstacles and strategies for resolving them.

16

Towards Integration of Scenario-based Requirements and Statistical Usage Testing

Björn Regnell, Dept. of Communication Systems, Lund University, Sweden

When scenario-based approaches are introduced in the software development process, the question
rises how to integrate, manage and utili ze scenarios throughout the software lifecycle. An obvious
opportunity is to use the information captured by scenario-based requirements in the system
verification activity at the back-end of development.

The field of reliabili ty testing assumes a model of usage including an operational profile that
quantifies the frequency of different system uses. In particular, statistical usage testing utili zes a
State- Hierarchy Model that captures both the structural behavior of different user types and their
dynamic usage profiles. The focus on usage is thus apparent in both scenario-based requirements
engineering and reliabili ty testing. By connecting these two views on usage, we may find synergy
effects promoting traceabili ty from requirements to system verification. Such an integration may also
decrease the modeling effort if information is captured in a way that may be utili zed for both
requirements and test.

The presented work proposes two alternative ways of integrating scenario-based requirements
models with statistical usage testing. The first alternative (Model Transformation) uses the
information in a scenario model to build a state-hierarchy , e.g. by setting the transition paths in the
state-based model to reflect the scenarios. The second alternative (Model Extension) incorporates
the information necessary for statistical testing into an extended scenario model by adding
probabili ties to the different alternatives (choices) in the scenario model. The Model extension
alternative may be based on event-based notations, such as Hierarchical Message Sequence Charts.
In order to avoid that scenarios are outdated when system verification occurs, we need to ensure
that the scenarios evolve throughout the development life-cycle.

Guiding the Construction of Textual Use Case Specifications

Colette Rolland, Camille Ben Achour, Université de Paris 1 – Pantheon Sorbonne, France

An approach for guiding the construction of use case specifications is presented. A use case
specification comprises contextual information of the use case, its change history, the complete
graph of possible pathways, attached requirements and open issues. The proposed approach delivers
a use case specification as an unambiguous natural language text. This is done by a stepwise and
guided process which progressively transforms initial and partial natural language descriptions of
scenarios into well structured, integrated use case specifications.

The basis of the approach is a set of linguistic patterns and linguistic structures. The former
constitutes the deep structure of the use case specification whereas the latter corresponds to the
surface structures. The paper presents the use case model, the linguistic basis and the guided
process along with the associated guidelines an support unless. The process is ill ustrated with the
automated teller machine (ATM) case study.

17

Integrating Usage and Software Concerns in Scenario-Based Development

Mary B. Rosson, Virginia Tech, USA

The gap between specification and implementation in system development is well-estabili shed:
requirements analysis and designers prepare specifications which are then „developed“ in sometimes
unexpected (and undesirable) ways. Scenarios are one approach to this problem, in that they can be
used to carry through a usage context and rationale as a project develops. However, generally the
focus is on using task scenarios for ill ustrating „upstream“ user concerns and requirements to the
„downstream“ processes of software design and construction. We are now investigating mechanisms
for also capturing software concerns and opportunities in the upstream processes of task design
(these are the sorts of impacts normally felt through socio-technical systems evolution.)

The Scenario Browser environment provides tools for exploring at once the task space and software
space associated with system design. The analyst begins with a set of task scenarios (typically
developed through participatory design and/or analysis of existing artifacts in use). These task
scenarios are then elaborated in several ways: the analyst adds details to the envisioned task, along
with „claims“ documenting possible consequences of proposed features. However, the analyst also
begins to develop a rudimentary software model – a network of interacting objects, where objects
are given attributes, collaborators, and responsibili ties. As these objects are modeled, the analyst
also considers opportunities and constraints. They suggest (e.g. the pros and cons of an „intelli gent“
room), transferring this reasoning back to the task scenario and revising it accordingly. Again, the
claims implied by the design changes are documented. In this fashion, task and software are explored
together, and their mutual influences are analyzed, resourced and documented.

Scenarios for Strategic Management and Decision Support Systems

Ralph H. Sprague, Jr., University of Hawaii, USA

There are two applications for which scenarios are particularly important. The first is strategic
planning for an organization. Such planning must avoid the typical extrapolation approaches,
because the strategic future is not an extension of the past. In fact, scenarios provide support for the
mentality shift required to make decisions for a future that will i nevitably be structurally different
from the past. Scenarios may be the only methodology which provides this support, and disrupts the
traditional „mindsets“ which limit the creativity of planning.

The other application for which scenarios are important, is the develpopment of Decision Support
Systems. Scenarios are often used to determine, refine, validate system requirements, but for DSS,
the system requirements are constantly changing. So the scenario becomes the system, compressing
the typical steps of the system development cycle into just two - use and change! Thus, the scenario
becomes a permanent part of the system use.

18

A Theory of Scenarios?

Alistair Sutcliffe, City University, London, UK

If there were such a theory, it would have to address the problem of knowledge representation.
Scenarios differ radically in their usage in requirements engineering, HCI and management science.
Each do mark and usage tasks within a domain imply a schema of the necessary knowledge that an
ideal scenario for such context should contain. Many of the components are actions and events;
unfortunately that gives little guidance for what we should capture (or generate) within a scenario
for a particular domain. Accordingly a theory with have to address domain orientation, contents and
salience of information in the perspective of a usage task for the scenario.

The cognitive dimension of a scenario theory may be easier to formulate. Scenarios can be explained
in terms of their effectiveness in example based learning, recognition and recall in episodic memory,
and grounded examples for hypothesis generation and validation. The cognitive perspective,
however, raises another challenge. How are scenarios as grounded instances related to abstractions
in models and specifications? I expect the answers to such questions will be founded in a more wide
ranging theory of design.

Scenarios and Business Processes: Parallels and Differences

Veronika Thurner, Dept. of Computer Science, TU München, Germany

Scenarios are a valuable means for understanding interaction aspects of system behavior. They
capture sets of temporally ordered interactions between agents, roles or system components. Thus,
scenarios already reflect some issues of design, namely the temporal ordering of actions and the
assignment of task execution to agents/roles/system components.

However, at an early stage of system analysis and modeling, it can be helpful not to be forced to also
capture these design issues, but rather focus on actions, activities and their interdependencies that
are due to the exchange of information and material.

A question common to both approaches is the value and handling of a set of exemplary behavior
documentation to the modeling and system development process. Furthermore, the degree of
formalism that is appropriate at which stage of development and for which purpose of behavior
modeling is a crucial question to both approaches.

19

Scenar io Management: An Interdisciplinary Approach

Matthias Jarke
RWTH Aachen, Lehrstuhl Informatik V, 52056 Aachen, Germany

jarke@informatik.rwth-aachen.de

X. Tung Bui
University of Hawaii, College of Business, 2404 Maile Way, Honolulu, HI 96822, USA

tbui@busadm.cba.hawaii.edu

John M. Carroll
Virginia Tech, Center for Human-Computer Interaction, Blacksburg, Va 24061-0106, USA

carroll@cs.vt.edu

Scenario management (SM) means different things to different people, even though
everyone seems to admit its current importance and its further potential. In this paper, we
seek to provide an interdisciplinary framework for SM from three major disciplines that use
scenarios – strategic management, human-computer interaction, and software and systems
engineering – to deal with description of current and future realities. In particular, we
attempt to answer to the following questions: How are scenarios developed and used in
each of the three disciplines? Why are they becoming important? What are current research
contributions in scenario management? What are the research and practical issues related to
the creation and use of scenarios, in particular in the area of requirements engineering?
Based on brainstorming techniques, this paper proposes an interdisciplinary definition of
scenarios, frameworks for scenario development, use and evaluation, and directions for
future research.

1 Introduction
A scenario can be defined as a description of a possible set of events that might reasonably take
place. The main purpose of developing scenarios is to stimulate thinking about possible occurrences,
assumptions relating these occurrences, possible opportunities and risks, and courses of action.
Given the renewed interest in scenarios, recent surveys of scenario research and practice suggest
that scenarios management means different things to different people, even within disciplines [5, 9,
22, 58, 73]. Clearly, however, scenarios are not just abstract artifacts but a critical representation of
the realities as seen by those who create them.

Historically, researchers and practitioners from other disciplines have long used scenarios. The
scenario concept came into research via military and strategic gaming but found its origin in
theatrical studies [4; 7]. Economists have successfully used scenarios for long range planning.
Management scientists use them for strategic decision making. Policy makers use them to weigh the
consequences of their actions. Scenarios are also used as a means to examine the interplay among
economic, social, and technological issues.

20

Since the late 1980’s, researchers in HCI (Human-Computer Interaction) use scenarios as
representation of system requirements to improve communication between developers and users.
Software engineers look at scenarios as an effective means to discover user needs, to better embed
the use of systems in work processes, and to systematically explore system behavior – under both
normal and exceptional situations. In the past few years, scenarios have gained enormous popularity
through Ivar Jacobsen’s Use Case approach which is now feeding into the efforts to establish a
Unified Modeling Language (UML) for systems engineering based on the object-oriented approach
[30].

The great variety of scenario usage in many different disciplines is probably the reason for the lack
of a unified research framework of the field of scenario management. Indeed, despite some efforts to
bring together various SM approaches in the last few years [9], there is not yet a coherent scenario
management research community. The purpose of this paper is to provide a synoptic view of
scenario management. The proposed interdisciplinary framework should shed some insights for
researchers and practitioners for their own work. This paper draws on background research of the
authors in their respective fields, as well as on findings of a workshop the authors organized at
Dagstuhl Castle, Germany, in February 1998, in an attempt to promote mutual understanding and
research focus across disciplines1.

The paper is organized as follows. We first propose an interdisciplinary framework characterizing
the role of scenarios in the context of change management. Then, for each of the three disciplines of
HCI, requirements engineering, and strategic management, we discuss their theoretical perspective
and practical results on what scenarios are good for, what properties they should have, and how they
should be managed. We next summarize questions and results concerning four research issues the
workshop participants considered crucial across disciplines. Finally, we synthesize the main research
issues claimed by participating experts, and the research methods adopted for evaluating these
claims. The goal is to provide a comprehensive research method that could be used as a guide to
foster interdisciplinary research in scenario management.

2 Scenarios as Enablers of Change
Why have scenarios become so popular in the 1990’s? Many proponents claim that scenarios are
taking center stage in a problem area that appears prominent in all the disciplines represented at the
workshop (and in many others): management of change.

In strategic management, turbulence of the organizational environment is driven by the interacting
forces of globalization and technological progress [29]. In systems engineering, the need for more
customer orientation, as well as continuous adaptation to organizational, environment, legal, and
technological change places new demands on requirements engineering, system architectures, and

1 The initiative for this effort stemmed from a European Long Term Research Project within the ESPRIT program of

the European Union, called CREWS (Cooperative Requirements Engineering With Scenarios), which is
coordinated by the first author. Workshop participants li sted in the acknowledgments at the end of this paper have
contributed to these results in the stimulating atmosphere of Dagstuhl Castle. The workshop was also organized in
cooperation with the IFIP Working Group 2.9 (Requirements Engineering), the RENOIR Network of Excellence,
and with the RE groups in the Briti sh Computer Society and the German Informatics Society. The workshop
convened leading researchers and practitioners from various disciplines, in order to cross-examine the effectiveness
and efficiency of using scenarios as a tool for modeling, design, development and (technical and organizational)
implementation. A corollary theme was the question how the three different disciplines manage scenarios as
complex artifacts throughout the planning and systems li fecycle. Selected individual research results by the
workshop participants and other researchers have been collected in special issues of the IEEE Transactions on
Software Engineering [31] and the Requirements Engineering Journal

21

traceability of development processes [17]. With the usability goal in mind, HCI researchers for a
long time have paid attention into improving user-designer communication in change situations. For
example, they focus on problems such as design fluidity, the mutual influence between user tasks and
system object models, and rapid progress in interface technologies [9].

In this section, we view scenarios as tools to enable change in both the HCI and Information
Systems communities, with a varying degree of interpretation and use.

In particular, we refer to a framework used for a long time in system evolution [45, 12] and made
explicit in [33] as in figure 1a. According to this framework, change management involves four basic
tasks:

(a) re-constructing the concepts and rationale behind the current system,
(b) defining the desired change at the conceptual level,
(c) implementing the changed concepts to reach the new system while
(d) taking the legacy context into account.

In practice, the cycle in Figure 1a is but one step in a continuous change process. Traceability across
multiple changes in reality and concepts is essential. This is also reflected in decision theory, which
often considers multiple related decisions or sequences of decisions.

Figure 1a: Model-based change management [33]

However, this focus on modeling has faced two major critiques:

(a) How can we make sure that the models enable a sufficiently deep and shared understanding of
the contextual issues, and preserve it over a long period of time?

(b) How can we capture and preserve the “vision” that drives and focuses the change cycle [33]?

This kind of critique of purely model-based approaches is not new. In Operations Research, it goes
back to the 1970’s [1, 14]. Scenario-based approaches provide one promising response to these
critiques. By offering a down-to-earth middle-level abstraction between models and reality, they
promote shared understanding of the current system, and joint creativity towards the future. But the
number of possible scenarios is even greater than the number of models for a given system.
Therefore, many researchers have begun to recognize the need to make the goal hierarchies driving
scenario-based processes explicit (e.g., [2, 16, 49]).

initial
model
initial
model

new
model
new

model

existing
system
existing
system

new
system

new
system

change
specification

 reverse
analysis/

engineering

legacy
integration

change
implementation

···-□- ► □-···

-➔ :;. •••

22

By combining these two extensions, we obtain a basic framework for scenario-supported change
processes, as shown in Figure 1b. In this figure, current-state and future-state scenarios are placed
as intermediate abstractions between immediate reality and abstract models. Goals (usually refined
into more detailed requirements) focus the definition of change and the selection of scenarios, but
also conversely, scenarios may help in goal discovery.

This framework covers a broad variety of different techniques found in research and practice. For
example, market-oriented development organizations tend to follow a development cycle that
contains just general constraints (e.g., “must have a market of at least one million copies”) and
change envisioning via future scenarios, but no models. The operational goal is to achieve the
agreed collection of future-system scenario. Re-interpreted as test cases, these scenarios are
complemented by concrete (initially mock-up) system usage demos at design and implementation
stage.

Figure 1b: Goal-driven change process with scenarios

At the other extreme, decision theory abstracts reality to the values of a few variables in some
equation system which is then optimized according to multiple objective functions under uncertainty.
Scenarios in this setting are still highly abstract, namely the decisions and outcomes resulting from a
particular set of assumptions about future (system-external) events.

To illustrate the full process shown in Figure 1b, consider the scenario-based requirements
management tool suite under development in the CREWS project. In CREWS, current state
scenarios are technically supported by real-world scenes captured in multimedia. The capture of
these scenes, and their abstraction to conceptual models, is driven by hierarchically organized
goals. Traceability is maintained to all the artifacts captured this way, in order to ground a
persistent, shared understanding [25], that will enable stakeholders later on to recognize modeling
errors, impacts of changing assumptions, etc. For the special case of textual scenario descriptions,
additional support is provided through structuring/authoring guidelines and partially automated
natural language understanding and indexing [57].

animate

capture

initial
model
initial
model

new
model
new

model

existing
system
existing
system

new
system

new
system

change
specification

reverse
analysis

legacy
integration

change
implementation

future
scenario

future
scenariocurrent

scenario
current

scenario
change envisioning

goal/requirementgoal/requirement

refinement/negotiation

scenario generation
for validation/

refinement
observation focus/

goal discovery

_____, r -
l

□- □ ➔ ••• • ••

l __ _t ___ l I - - _L - - -.
I __..

I

I I - - - - - -• ..--
I ___ T ___ •

'

~1 I
➔ -••• , •••

23

To define change and future system elaboration, the CREWS tools support user-developer teams
firstly by checklists to create broad-brush future state scenarios of normal-case and exceptional case
behavior of system interaction and system environment based on reusable, partially domain-
dependent classes of functional and non-functional requirements [67]. This is complemented by
more automated animation support for critical portions of system interaction and system
organization that allows users and developers to investigate consistency and impact of the system
requirements definition in a simulated usage setting [27].

Scenarios can also be categorized according to the content scope they address. In the most frequent
case (e.g., in the Use Case approach [30]), scenarios focus on the interaction between the system
and its environment (case B in Figure 2). However, scenarios can also address an organizational
work context [39] without considering the system to be designed (C). Equally, they can represent
the internal interplay of system components within system (A). Interaction scenarios, in turn, can be
studied in an in-bound direction (what constraints does the environment place on the system?) or in
an outbound direction (what impact will t he system have on its environment?). Inbound interaction
scenarios are called blackbox scenarios if they do not consider any system internals, whereas
combinations of interaction with internal scenarios are called whitebox scenarios.

$ 6\VWHP�LQWHUQDO�VFHQDULRV
QR�FRQVLGHUDWLRQ�RI�H[WHUQDO
FRQWH[W�RI�V\VWHP

% ,QWHUDFWLRQ�VFHQDULRV
������GLUHFW�V\VWHP�LQWHUDFWLRQV�RI

DFWRUV�DQG�RWKHU�V\VWHPV

& (QYLURQPHQWDO�VFHQDULRV
�����%�� V\VWHP�HQYLURQPHQW

V\VWHP

JRDOV�
UHVRXUFHV�
EXVLQHVV �

SURFHVVHV��HWF�

�RWKHU
VWDNHKROGHU VWDNHKROGHUV

A

B

C

RWKHU
V\VWHPV

Figure 2: Scenario types and system boundaries

Scenario research and practice in each discipline have explored specific kinds of scenarios, and
theories underlying their usage, in a complementary but partially overlapping manner. In the next
section, we shall review their frameworks and results, before focusing on shared interdisciplinary
research issues and agendas.

3 Three Disciplinary Perspectives on Scenario Management
An enormous and difficult-to-classify number of approaches and techniques for scenario-based
analysis and scenario management exist in several fields. Many of these emerge in a haphazard
fashion, formed by some methodological prejudices or theories from one specific domain but often
without a broad grounding. While general frameworks such as the one proposed in the previous
section may be useful for achieving the necessary conceptual overview, we believe that theories that
allow us to evaluate scenario-based approaches in a systematically robust manner are still missing.
The main question remains unanswered:

 (under what circumstances) is my scenario-based approach reasonable?

24

An overall theoretical basis does not, and may not for a while, exist. However, many disciplines can
bring about certain facets. The Dagstuhl workshop brought together experts with considerable
experience in using and managing scenarios from three broad fields: human-computer interaction
(HCI) where scenarios have been used for interface specification; requirements engineering where
scenarios are used to ill ustrate current problems as well as future reality of software-intensive
systems; and strategic management where scenarios have been used to explore a purposeful set of
alternative futures. The workshop included brief tutorials intended to clarify the perspectives and
main research results within each of these research areas. We also asked selected participants which
theories from their area of expertise they would consider most relevant for designing and evaluating
scenario-based techniques. The scope of theories mentioned in this section is ill ustrated in Figure 3.

,V�P\
VFHQDULR�EDVHG

DSSURDFK
UHDVRQDEOH"

2UJDQL]DWLRQDO
WKHRU\

'HFLVLRQ
WKHRU\

3V\FKRORJ\

&RJQLWLYH
VFLHQFH

.QRZOHGJH
UHSUHVHQWDWLRQ

WKHRU\

&RQFXUUHQW
VSHFLILFDWLRQ

WKHRU\

Figure 3: Theories related to scenario management

3.1 The Role of Scenar ios in Human-Computer Interaction

In human-computer interaction (HCI), scenario-based design has emerged as a paradigm reconcili ng
a longlasting methodological conflict : formal modeling approaches proved too narrow to provide
effective guidance to designers, whereas purely experiential approaches could not be verified,
replicated, or explained. Scenarios were also proposed as working design representation of user
experiences with, and reactions to system functionality in the context of pursuing a task [11].

In HCI, scenarios therefore describe key situations of use in the form of narrative, with the goal of
making design objects concrete. Designers and users develop, and reason about, these descriptions
throughout the lifecycle in a variety of media, purposes, and views, either to discuss existing options
or to stimulate imagination. Five key properties of scenarios motivate their widespread use in HCI
[10]:

1. First and foremost, scenarios focus design efforts on use. What people can do with the old/new
system, and the consequences for themselves and for their organizations, is described and
analyzed prior to detaili ng the system functions and features that enable this use. Scenario
descriptions of use provoke designers to reflect upon the concrete circumstances and
experiences of users throughout the design process.

25

2. Scenarios suspend commitment but support concrete progress: They vividly document an
analysis of task essentials, explaining why a system is needed by showing what it is used for.
They also specify an analysis of design alternatives, by detaili ng how the system is used. But
scenarios are also rough: they are incomplete; they suggest alternative approaches and “what if?”
lines of reasoning. Iteration between requirements definition and scenario-based envisioning is
rapid, easy, and cheap.

3. Scenarios provide a task-oriented design decomposition that can be used from many
perspectives, including usabili ty consequences and trade-offs, usabili ty specifications and
iterative development, and manageable software design object models. They provide a
framework of concrete user tasks for developing design rationale and documentation, describing
causal relationships implicit in a design and providing a analysis to which evaluation data can be
subsequently adduced.

4. Scenarios codify design knowledge as a “middle-level” abstraction, in the term of [47]. This
makes them somewhat less grand as science, but it allows the integration of design knowledge in
a form more suitable for reuse.

5. Finally, scenarios are an ideal medium for participatory design: They allow design discussions to
be carried out in a common language. Users may have difficulty describing their goals and
visions in the language of features and functions, as traditional problem description languages
and functional specifications are a language barrier to users. But all stakeholders in a design
project can “speak” the language of scenarios.

These five points are summarized in Figure 4 (starting from the top-left).

 Scenario-Based
 Design

Use firs
t and foremost

vivid
descriptions of

end-user experiences
focus reflection about

design issues

Suspend commitment, concrete progress

scenarios
concretely fix an
interpretation and a
solution, but are open-ended
and easily revised

P
articipatory design

scenarios can be
written at multiple
levels, from many
perspectives, and for
many purposes

Codify design knowledge for reuse

scenarios can be
categorized and

abstracted to help
design knowledge
cumulate across

problem instances

M
an

y
pe

rs
pe

ct
iv

es

scenarios provide
a common design

language, allowing
full participation

by users

Figure 4: Five key properties of HCI scenario-based design

These properties of scenarios suggest an “ ideal” scenario-centric process in which the design of a
system is influenced by scenarios from two directions (Figure 5). On the requirements side,
observation scenarios, selected according to the orienting goals of the design project, help identify

26

issues and criteria, which can then be validated against further observation scenarios and against
scenario abstractions reused from prior work. This subprocess drives the design through the
definition of needs and opportunities. Once a prototype (including a user interface) is available,
scenario-based evaluation can complement and validate the requirements work. Observation
scenarios allow the analysis of the transformed situation and thereby the evaluation of the prototype.
From such evaluations, further design abstractions can be induced, which collectively form a theory
that informs future requirements processes and thus simplifies subsequent design.

orienting
goals

implement
& deploy

DESIGN

specify needs
& opportunities

recontextualize
& reinterpret

discover needs
& opportunities

design
result

design abstractions

refine
& use

build
& refine

observations of
transformed situations

analysis of
transformed situations

identify
issues &
 criteria

verify &
refine
analysis

observations of
extant situations

analysis of
extant situations

identify
issues &
 criteria

verify &
refine
analysis

REQUIREMENTS EVALUATION

THEORY-BUILDING

Figure 5: A desirable scenario-based design process

At the Dagstuhl workshop, this proposal evoked an interesting discussion of the relationship
between requirements engineering and HCI: Several people argued that this process is a description
of scenario-based requirements engineering. A subsequent panel discussion focused on the relevant
cognitive science theory that underwrites scenario-based design. Fairly diverse sources of theory —
ranging from Sigmund Freud and Levi Strauss to Julian Orr and Roger Schank — agree that
narratives are privileged cognitive structures. Carroll suggested that this convergence could be
explained by principles from cognitive psychology:

• Concrete material is cognitively accessed and interpreted more easily and more thoroughly. For
example, people can remember a prototypical instance far better than they can remember the
definition of the category to which that instance belongs [46; 59].

• Incomplete material is elaborated with respect to one’s own knowledge when it is encountered.
This process of elaboration creates more robust and accessible memories, relative to memories
for more complete material [74].

• Narrative structures appear to be universally understood and employed by people from all
cultures; within cultures, narrative form became extremely articulated and semantically
overloaded [23; 42; 55].

27

• When people communicate, they follow a convention that has been called the given-new contract
[26]. They first summarize or allude to relevant background information, and then present what
is novel. This structure cues the listener or reader as to what the speaker or writer considered to
be novel information, easing comprehension and analysis. Narratives, including scenarios, tend
to follow this structure.

• Scenarios can address the representational bias in human cognition: People tend to overestimate
the relevance of things that are familiar to them [35; 69]. This tendency is extremely difficult to
mitigate, but can be managed by making exceptional patterns vivid. Narratives represent an
excellent vehicle for managing this phenomenon.

Domain-specific theories of how scenarios are used by designers in the lifecycle of systems could
lead to significant progress beyond the current ad-hoc development of scenarios with very modest
guidance of scenario authoring in the small. Using theories which determine the content, scope and
granularity of domain-specific patterns of system usage, specific scenarios could be rapidly and
systematically developed [67]. Such theories would have to be developed bottom-up from particular
scenario analyses, though they might have more general roots in script theory, natural categories,
schema theory, theories of reasoning by analogy, and the like.

3.2 The Role of Scenar ios in Software and Systems Engineering

Through the emergence of object-oriented software engineering [Jacobsen 1995], scenarios have
gained enormous popularity in the practice of software engineering. As often in the SE field,
research follows with some delay. The CREWS project has conducted surveys of scenario research
and practice, with an emphasis on the requirements engineering task within software and systems
engineering. Conceptually, an information system can be defined as being composed of four
interacting basic perspectives or “worlds” [32]. As a product (Figure 6), an information system can
be modeled as a human-machine system which provides users information or control over a subject
domain (often called Universe of Discourse) which is denoted by the information objects. Users can
be studied in two complementary roles: as individuals with cognitive problems of understanding, and
as social units exploiting the information system as a communication and coordination medium to
support their tasks, interests, formal roles, etc.

6\VWHP
:RUOG

6XEMHFW�:RUOG

8VDJH�:RUOG

5HIHUHQWLDO
DVSHFWV

6XEMHFW
FUHDWLRQ

6RFLDO
LQWHU�
DFWLRQ

0DQ�
PDFKLQH
LQWHUDFWLRQ

,QGLYLGXDO
VHDUFK�IRU
QHZ�LGHDV

Figure 6: A conceptualization of an information system as a process of creating subjects

28

The product triplet <system world, usage world, subject world> is subject to an evolutionary
change process in the development world. At a meta level, the development world can be seen as a
change information system (Figure 7). It controls the product information system as its subject
domain, has the development team as its users and the development environment with its
intermediate artifacts as the system itself. Scenarios are a particular kind of design artifact, intended
to facili tate shared understanding (in the development world) of the target system, its interaction
with users and subject domain, and its larger context, as already ill ustrated in Figure 2.

" 6\VWHP
:RUOG

6XEMHFW�:RUOG
8VDJH�:RUOG

6RFLDO
DVSHFWV

,QGLYLGXDO��
LGHDWLRQDO�DVSHFWV

"

�� ����

��

�� ��

8VDJH�:RUOG&KDQJH�$FWLYLW\

:RUN�$FWLYLW\

"

6XEMHFW�:RUOG"

6RFLDO
DVSHFWV

,QGLYLGXDO��
LGHDWLRQDO�DVSHFWV

6\VWHP
:RUOG

Figure 7: Change management as a meta information system

A review of the scenario literature [58] shows that this framework also provides a reasonable
starting point for classifying scenario-based approaches. Looking at the work activity as the subject
domain and scenarios as one kind of development system artifact in the change activity, we obtain
four views:

• What part of the work activity is captured in a scenario (content view) ?
• How is it represented in the development system (form view) ?
• For what usage in the design process is it captured (purpose view) ?
• How is it developed and evolved (li fe-cycle view) ?

The resulting scenario classification framework is shown in Figure 8. This framework is also
intended to serve as a basic structure in which one could manage knowledge about scenario-based
approaches, and actual scenarios, in a method repository (cf. the section on method integration of
scenarios, below). In [Rolland et al. 1998], each of these four basic views is further elaborated into
detailed facets, and applied to classify more than a dozen well-known proposals in the literature,
including, for example, Jacobsen’s initial Use Case approach and various proposed extensions.

29

3XUSRVH3XUSRVH

&RQWHQWV&RQWHQWV

6FHQDULR6FHQDULR

/LIHF\FOH/LIHF\FOH

)RUP)RUP
:K\�XVH�D
VFHQDULR�"

:KDW�LV�WKH�NQRZOHGJH
H[SUHVVHG�LQ�D�VFHQDULR�"

,Q�ZKLFK�IRUP�LV�D�
VFHQDULR�H[SUHVVHG�"

+RZ�WR�PDQLSXODWH
D�VFHQDULR�"

HYROYHV

DLPV�DW

KDV

H[SUHVVHG
XQGHU

Figure 8: The CREWS framework for describing scenario-based approaches [58]

Concerning the form view in Figure 8, the question arises how scenarios are related to formal
specification models, as they are proposed for requirements and high-level design of safety-critical
systems. Consistent with Figure 1b, researchers in knowledge representation and requirements
engineering see scenarios as an intermediate artifact between specifications of system behavior (class
level) and fully instantiated lives of example objects which obey these specifications (traces).

VFHQDULR�Q

VFHQDULR�P

WUDFH�Q

WUDFH�P

)RUPDO�5HTXLUHPHQWV
�,VROLRDWLYH���2SWDWLYH�

%HKDYLRXU

*RDO��

*RDO�[*RDO�\
&RQVWUXFWLYH

2SHUDWLRQDOLVDWLRQ
�D�SULRUL�

3URRI
WKHR��SURY�
PRGHO�FKHFN
�D�SRVWHULRUL�

(ODERUDWLRQ��SRVW�

,QGXFWLRQ��SULR�

$QLPDWLRQ��SRVW�

*HQHUDWLRQ��SULR�

Figure 9: Scenarios as groupings of traces linked to formal specifications

Figure 9 elaborates the formal relationships between scenarios and models in Figure 1b. Scenarios
represent abstracted groupings of traces which highlight specifications from a particular viewpoint
considered important by designers or users. They thus speed up the interaction between designer and
customer in requirements elicitation and validation. They also provide a middle ground between
declarative and operational styles of specification. Considering the purpose view of scenarios, this
approach allows a formally supported treatment of scenarios and their relationships to specifications,
such as elaboration, property induction, generation and animation [28, 27, 41].

30

Perhaps surprisingly, scenarios and formal methods are not as far apart as one might think. In fact,
theories of reactive systems (typically based on process algebra or temporal logics) start from sets of
scenarios/traces as boundary conditions on system behavior. However, without a theoretical
framework ensuring coherence, scenario-based specifications can deal with individual scenarios only.
Without a notion of atomicity of actions, they run, for instance, into the danger of overlooking
critical interference between concurrent execution of multiple scenarios. A theoretical framework
studied in [38] comprises four major elements:

(a) An execution model for specification simulation offering atomicity and non-determinism
(b) A language for multi-partner actions which allows the modeling of collective behaviors at

arbitrary levels of abstraction
(c) A design approach based on refining and composing such specifications
(d) A temporal logic of action for reasoning about their meaning.

Using these ingredients, operational specifications can be formally understood as canonical formulas
in a Temporal Logic of Action [40] that can be derived incrementally. At each stage, the resulting
scenarios can be both simulated and formally reasoned about, and the achieved properties are
preserved when more detail is added or the level of abstraction is lowered.

In addition to serving as a classification scheme for the scenario research literature, the framework
of Figure 8 was also elaborated into a set of questionnaires and semi-structured interviews in order
to determine the state-of-practice in scenario-based software engineering [73]. More than 30
projects, covering a variety of sizes and application domains, were studied. Comparing the research
literature with the situation found in practice, we observe that there is insufficient overlap and thus a
need for improved two-way communication:

• Scenario content, while focused on scenarios of interaction between users and systems, also
extend to environment scenarios describing the context independent of the system and, on the
other extreme, to interaction scenarios between distributed systems components, e.g. in technical
systems such as telecom applications. These different scenario content types, elaborating the
interplay between usage world and system world, have already been displayed in Figure 2.

• While much research has focused on aspects associated with the form view, this view has so far
received relatively little attention in practice, as most projects use (at best structured) textual
representations. Users expect researchers to take this seriously and to provide authoring
guidance for the structured text scenarios.

• The number of scenario purposes, and the impact on scenario usage on the whole project, was
much bigger than expected from the research literature. While research did discuss the
application of scenarios for making abstract models concrete, to reach partial agreement and
consistency of understanding, practitioners also use scenarios as a decomposition mechanism for
managing complex projects, as a linkage mechanism between development phases, and as design
aids and boundary conditions for object models.

• Probably as a consequence of this wide-ranging usage, the li fe-cycle view of scenarios found in
practice is also much more complicated than covered by current research. The structuring and
evolution of scenarios are seen as major problems, especially if multiple views on scenarios (e.g.,
developer, user and manager view on the same scenario) and the traceabili ty of scenarios across
project phases (e.g., interplay between scenarios and prototypes, elaboration of scenarios into
test cases) are considered. In these latter areas, practice has no solutions but poses this as an
important challenge to research and vendors which is currently not addressed adequately.

31

In summary, problems and solutions found in RE partially try to bootstrap from experiences in fields
that have started a bit earlier, such as HCI, but are faced with significant additional challenges due to
the large size and long duration of many complex software engineering projects. Linkages to
strategic scenarios have hardly been considered yet (cf. section 4.1).

3.3 The Role of Scenar ios in Strategic Management

Strategic management defines the basic directions an organization wants to go. To identify these
directions, and to move towards them, strategic managers make decisions that are purposeful but
novel, under conditions of ambiguity and uncertainty, and result in high impact outcomes. This
informal, organization-theory interpretation of strategic management sees scenarios as narrative
descriptions which define, in a visionary sense, the outcome of strategic decisions. In a narrow
sense, a scenario is a description of future situations of an organization [5]. In the broad sense, it
consists of (1) assumptions and hypotheses about processes and actions, (2) models and procedures
used to determine the elements of the scenario, (3) quantitative and qualitative factors, and (4)
decisions, situations and interpretations.

In decision theory [54], scenarios are the answer to the combinatorial explosion of strategic options
in decision trees. As Figure 10 shows, a decision tree typically ill ustrates a “game against nature”,
i.e., actions react to expected events while events impact the outcome of actions [Raiffa 1968]. A
scenario is then simply a (not necessarily complete) set of conditional actions consistent with the
decision tree, e.g., <ao, a1 if e11, a2 if e12> in Figure 10.

H�

H�

H�

H�

H�

D�

H��

H��

D�

D�

D�

D�

H��

H��
H��

H��
H��

H��
H��
H��

2�

2�
2�

2�
2�

2�
2�

2�

Figure 10: Example of a decision tree

Case-based reasoning from artificial intelli gence is considered a promising strategy for linking
decision trees to scenarios based on similar situations analyzed in the past [37,68]. However, even
more strongly than in HCI or software engineering, the risk of bias in scenario selection is ever
present in strategic decision making; numerous active measures are being researched to counter it.
Decision-makers have a strong tendency towards optimistic assumptions, ignorance or overemphasis
of small-probabili ty scenarios, over-emphasis of recently occurred problems, continuation of present
trends, etc. [43, 70].

Assuming a reasonable set of scenarios has been found, there are at least two different ways how
they are actually used beyond simple envisioning. Of particular interest in strategic decision analysis

32

is the question of decision robustness: is there a common prefix of action sequences that results in
“good” outcomes with respect to the set of all plausible future events [60] ? A related meta-strategy
for strategic risk control is re-ordering of decisions, such that risky decisions are postponed until
more is known about the events.

In terms of the general framework shown in Figure 1b, the usage of scenarios in strategic
management clearly focuses on future state scenarios as an aid in defining and implementing change.
Generating a future-state scenario of an organization and its environment helps bring to light the
direction where one would like to go, and the necessary actions that need to be taken to get closer
to that future state. Typically, a large number of scenarios is constructed reflecting different
assumptions and hypotheses about the environment and the applied models and procedures. Once
the scenarios have been obtained, a sorting process must be conducted to weed out those which are
impractical, leaving those which are feasible. From this smaller grouping, one or a few scenarios are
picked and become the basis for strategy development.

Scenarios that are considered plausible, but are not selected as most-likely-to-happen, are not
discarded. Instead, they provide an element of flexibili ty to the chosen plan as a means of escape or
fallback should it be necessary. Taken together, these fallback scenarios provide a list of indicators
that management needs to monitor with respect to a possible strategy modification. The passage of
time will show how closely some views depict the future, while others will prove to be quite
inaccurate. The scenario chosen as the most likely view of the future is used to plan a step-wise
approach to achieve the desired ends. Projects or actions required to implement the scenario are
broken into manageable phases, and management makes the decision to proceed from one phase to
the next over time. Of primary importance is the recognition of unexpected changes that require
assessment in the context of the scenario. A by-product that scenario creation can have is the
protection against errors of judgement, by flushing out mindsets or basic assumptions which, over
time, are no longer valid. During the implementation of the plan, some old beliefs based on common
happenings in the plan may no longer apply [8].

From a practical point of view, there are a number of methods that can be used for scenario
generation in the decision-theoretic framework: trend impact analysis, cross impact analysis,
intuitive economic forecasts, implicit assumptions affecting business, and the intuitive logic method.
These methods are in essence very much alike, differing only in the viewpoints researchers choose
for analysis [7; 71, 72]. Among them, the intuitive logic method seems to offer the most clearly
structured procedure to define the scenarios. It involves five steps [8]:

1. Analyze the organization decisions: For scenarios to be useful in decision making, they must be
decision-focused. That is, their analysis of alternative futures must zoom in on the specific issues
that are important to the organization's strategy, concerning both present and future decisions.
This ensures that the resulting scenarios are focused on those trends, events and uncertainties
that are strategically relevant to the decision-making process. It defines the scope of the analysis
by concentrating on key organizational decisions with long range consequences such as capital
allocation, diversification, infrastructure investment and market strategies.

2. Identify key decision factors: Once the key decision set is defined, factors which most directly
influence decision outcomes must be identified. The more is known about these factors, the
better the quality of decision making. Standard management analysis tools usually suffice for
identifying these factors. The factors must form the basis for the scenarios.

3. Analyze environmental forces: This step will shape the future business strategy. Environmental
forces may be analyzed in two categories: micro level forces which most directly impact the key
decision factors, and macro level forces that set the overall (global) context for the business

33

environment. The analysis may utili ze environmental monitoring and scanning systems, business
models, special information services, general li terature about the future, and outside consultants.
Another relevant categorization of the environmental forces distinguishes forces on which the
organization has some influence (e.g., market, main competitors, new product development),
from those which cannot be controlled and are exogenous to the organization (e.g., government
regulations, political situation, resource availabili ty). Often, the organization’s decisions but not
the macro-level forces can influence the micro-level forces.

4. Define scenario logic: This step establishes the basic structure of the scenarios. Scenario logic
involves organizing themes, principles, hypotheses and assumptions that provide each scenario
with a coherent, consistent and plausible logical underpinning. Scenario logic should encompass
most of the conditions and uncertainties identified in the preceding steps. Trial and error is
usually necessary in arriving at useful scenario logic. The logic does not simply consist of
optimistic or pessimistic scenarios. Instead, it describes future alternatives. This step involves
also the selection of models and procedures used to determine the environmental factors and
their implications on the organization's status.

5. Analyze implications for decisions and strategies: Determining the implications of each scenario
has on the decisions and strategies are a critical step for management, planning and control.
Typical questions that might arise include, but are not limited to:
• What do the scenarios imply for the design and timing of particular strategies?
• What threats and opportunities do the scenarios suggest to the future environment?
• What critical issues emerge from the scenarios? and
• What kind of flexibili ty do the scenarios suggest are necessary from the organization's

planning perspective?

Despite a long tradition in the military sector, scenario development in strategic management is still
an art rather than a science. Partly, these problems in scenario development are due to the very
nature of strategic management:

• Lack of well -defined objectives: Scenarios are often used to deal with non-routine situations that
are not documented in organizational standard procedures. The unforeseen context reflects the
missing of a well formulated, unified set of objectives that stakeholders need to rely on to
develop scenario assumptions and possible courses of action.

• Lack of sound assumptions: Even if organizational objectives are clearly articulated, assumptions
can be vaguely formulated, based on unreliable data, and biased. Assumptions should then be
regarded as a critical component of a robust scenario. Quality tests can obviously only increase
confidence in the scenario but cannot prove anything about the future. Well-known tests include
coherence of model structure and parameters, reproducibili ty and other aspects of model
behavior, including robustness with respect to various kinds of changes.

• Lack of structure: Management scenarios are often considered rich in content and flexible in
format. However, a free-format scenario can also be seen as a weakness in that the inherent lack
of structure may be source of misrepresentation and miscommunications.

• Granularity: Granularity expresses the level of detail described in a scenario. A scenario with
low granularity, that is, with a high level of abstraction and generality, is easier to construct but
may loose its practical appeal. Conversely, a scenario with high granularity may contain detailed
but likely inaccurate assumptions and information.

• Discrete scenarios versus continuous reality: Scenarios often describe discrete events, or at best
a series of major predicted events that unfold one after another. The reality is often more
continuous -- facts and actions gradually evolve over time. The inabili ty of scenarios to capture
continuity might lead the organization to embark on a wrong course of action.

34

• Exhaustivity of scenarios: Managers often have incomplete recall of the past, selective
recollection of their experience, and subjective view of the future. When assigned to create
scenarios, the managers often end up with a set if scenarios that runs the risk of not being
complete to describe all possible future events. As discussed earlier, an incomplete set of
scenarios could also be the result of a non-exhaustive set of assumptions.

• Scenarios as processes and not outcomes: Decision-makers in organizations often look at
defined scenarios as targeted outcomes. And their natural action is to direct the organization's
policies and resources to accomplish the scenario. In fact, a scenario should be seen, as an
instantiation of the organization’s decision making, should the situation develop as described in
the scenario. Uncontrollable environmental factors and controllable courses of action are only
metaphors of a future reality that one seeks to capture. As such, scenario management should be
used as a means to learn how to deal with uncertainty, rather than to adopt a line of action based
on a set of yet-to-happen events.

Other problems in scenario construction and modification encountered in strategic management
include lack of continuity and the maintenance of the organizational memory; inabili ty to quickly
alter decision factors and accurately assesses their impacts. Further, the management and evolution
of scenarios pose significant problems in terms of questions such as contribution structures (from
whom do the scenarios come?), and quality criteria (how do we decide if a scenario is useful?). The
scope of strategic management scenarios is much larger than in HCI, so rapid feedback from
prototyping is usually impossible to achieve.

Emphasizing one or more of these issues, skeptics levy little credence in the scenario-based
approach since no one is able to consistently forecast the future. The view has some validity since
the environment is constantly changing, and the technology base is always in flux. There are,
however, ways to alleviate this problem. The analysis we are discussing expects changes.
Continuous reviews and corrections are an integral part of the scenario process. As the future
unfolds into the present, scenarios are reviewed and assessed to determine whether the current plan
must be modified or if a new approach is needed. The key issue here is that the analysis, revision and
modification of scenario can be conducted in an efficient and responsive manner.

The above concerns should therefore not discourage organizations from using scenarios for strategic
planning. Examples are ample to demonstrate their importance, and success, in capturing complex
future uncertainties while avoiding unfounded extrapolation. Perhaps, the most important
contribution of scenarios in strategic management is their abili ty, as a change agent to support
mentality shift required to discover alternative futures. As a link to the role of scenarios in HCI and
in software systems engineering, scenario development – when used according to the management
approach – should be viewed as a process that developers use to help:

• recognized unexpected changes
• protect against judgment errors by flushing out mindsets or basic assumptions that seem to be no

longer valid
• use the most plausible ones as a basis for development
• monitor fallback scenarios for possible modification of development strategy.

4 Interdisciplinary Research Topics
In email discussions preceding the workshop, participants had selected four issues that plague
research and practice across the disciplines, and are of sufficient importance to warrant in-depth
interdisciplinary discussion. These topics were selected from a larger set of questions emerging from

35

the practice surveys in [73], as well as from suggestions by the participants themselves. The selected
topics were:

• Systematic capture and generation of scenarios: What should a scenario contain information
about, under different contingencies? Are there systematic ways to create normal-case and
exception-case scenarios? What does it mean for a set of scenarios to be complete with respect
to a particular task context?

• Representational issues of individual scenarios: When should scenarios be represented formally,
when informally? How should the two-way transition between formal and informal
representations be managed? What is the appropriate level of abstraction in a scenario, given a
certain purpose?

• Fitting scenarios to existing methods: Do scenario-based techniques replace or complement
existing methods in planning, requirements engineering, and design? What are the limits of
scenario-based techniques, i.e. where should they not be used? Where do these techniques fit
into the established organizational processes for these tasks? What adaptations of these
processes, and of proposed scenario techniques, are needed to improve the fit? How do we make
knowledge about these improved methods known in work settings, how in education?

• Scenario management in the large: How do we manage families of scenarios, their version and
configuration structures, their traceabili ty through to test cases down to design, implementation,
and use? How do we handle scenario change in such integrated settings?

Each of these topics was discussed in an interdisciplinary working group coordinated by two senior
researchers from different backgrounds. The main results are summarized in the next subsections.
Based on these discussions, an additional plenary brainstorming session took place in order to
determine a shared view on two important pre-requisites for making scenario management an
interdisciplinary but coherent research area:

• What is an appropriate definition of the term “scenario”?
• What are the most critical research problems that have not yet been addressed adequately?

4.1 Systematic Capture and Generation of Scenar ios

Scenario capture and generation must be grounded in empirical fact – usage practices and attitudes
towards use. However, such a statement offers only limited guidance in designing the basic work
processes and interrelationships involved with capturing and generating scenarios,. Such guidance
should ideally synthesize observations of informal practice (at different levels of granularity) with
proposals made by proponents of more formal approaches. At the Dagstuhl workshop, this question
was first attacked following traditional top-down software engineering, then expanded towards a
business policy perspective. First, a strawman process of scenario-based requirements analysis was
defined. In this process, the obstacles faced in each step basically determine the need for the next
step. In large projects, selected “ rich-picture” scenarios are initially created. These are typically
informal, close-to-reality examples, and driven by the immediate problem causing the change
process. They need to be contrasted with semi-formal context models, describing the most relevant
components and relationships in the system environment from a rather global, architectural
perspective. The context models are then elaborated into more and more detailed models, following
a Structured or Object-oriented approach.

However, this refinement quickly leads to a combinatorial explosion in the number of possible
system behaviors. The formal interpretation of scenarios as traces or threads of detailed behavior is
typically employed at this level. The challenge is how to bridge the big gap between the initial goal

36

scenarios expressed in terms of work context, and the very detailed ones typically used in formal
approaches. One step towards these goals is the enhancement of conceptual modeling techniques by
agent, task and goal concepts which add aspects such as responsibili ty [75], authority, competence,
strategic dependencies, goals and obstacles to the traditional three perspectives of structure,
function, and behavior.

6WUDWHJLF
6FHQDULRV

5HTXLUHPHQWV
6SHFLILFDWLRQ

7DFWLFDO
6FHQDULRV

7DFWLFDO
6FHQDULRV

2SHUDWLRQDO
6FHQDULRV

2SHUDWLRQDO
6FHQDULRV

3ROLF\

*RDOV

*RDOV*RDOV

9LHZV��*RDOV�DQG�6FHQDULRV
0DQDJHPHQW�9LHZ
6XIILFLHQF\�&ULWHULD

1)5V

6WDNHKROGHU�9LHZV

8VHU�9LHZV

FRQIOLFW�UHVROXWLRQ

Figure 11: The problem of linking strategic, tactical, and operational scenarios to requirements

Elaborating on this theme from a business perspective, the second part of the discussion focused on
the question how to make the relationships between organizational goal hierarchies and scenarios
more explicit (cf. also Figure 1b). Figure 11 links policies, goals, and requirements to Anthony’s [3]
hierarchy of strategic, tactical, and operational levels, each expressed by their own kind of scenarios.
This picture can also be understood as a potential bridge between the hitherto separate work on
scenarios in strategic management and scenarios in requirements engineering.

Figure 10 also conveys another important observation. There is serious inherent conflict of interest
within and between the levels. Within each level, there are multiple viewpoints, for instance, between
multiple departments at the tactical levels, or between different user groups at the operational
levels). In addition, there are basic conflicts between organizational goals (such as profit, rule
following, policy implementation, etc.) and the work practice goals of users (flexibili ty and
convenience, social needs, etc.) [17].

Any scenario management framework must, at the metalevel, make the different viewpoints and their
relationship to scenarios explicit to set the context [51]. This teamwork-oriented traceabili ty is
orthogonal to the method-related descriptions of scenarios discussed in Figure 8, and in the section
on method integration, below.

37

Once such basic process maps have been established, the next important research question is how to
systematize their application. For the construction of the initial steps mentioned above, checklists,
heuristics, and dialog-based interaction tools appear appropriate. At the more detailed levels,
automatic scenario generation for coverage and, conversely inductive inference mechanisms for
synthesizing details to more abstract requirements is needed, focusing on those scenarios considered
most relevant in the application domain. Typical analysis techniques include case-based reuse,
detection of redundant actions or events, and pathway coverage as in test case generation.

As mentioned earlier, a key problem is the combinatorial explosion as soon as scenario developers
get into even a modest degree of detail. On the other extreme, situational bias, tacit knowledge and
implicit assumptions may narrow the search space to less than the really important scenarios.
Participants did see potential for addressing at least some aspects of this problem by formal
abstractions, e.g., moving from the instance-level to the type level, decomposing the search space by
specifying concurrency rather than listing all conceivable interference scenarios explicitly, and
directing search by captured problem-oriented checklist to reduce bias.

4.2 Representing Scenar ios: Informal vs. Formal

Most representations of scenarios in practice have been found to be “informal” in a Computer
Science sense. Nevertheless, the group identified a wide variety of meanings to this term. The
spectrum of scenario representations found in research and practice includes at least the following:

• Raw information: e.g., video recordings, literal transcripts
• Free format data, e.g., pictorial descriptions, free form text
• Structured representation, e.g., structured texts, templates/forms – probably the most important

form
• Semi-formal syntax with some semantics, e.g., process maps in system analysis, message

sequence diagrams, state charts with embedded text, pseudo code
• Formal languages with well-defined semantics, e.g., state charts, Petri nets, logic of action, etc.

The discussion proceeded from the assumption that the degree of formality required depends on the
purpose of scenarios and on the intended audience; a list of drivers and inhibitors of formality is
provided in Table 1. Some of the main arguments can be summarized as follows:

• Great uncertainty about requirements encourages rapid and informal scenarios. However, if
these scenarios become too many, too broad or too deep, it is time for more general conceptual
models validated against individual scenarios in a more formal manner. However, formalization
is by no means synonym to greater coverage or more detail. Often, semi-formal representations
will be sufficient to represent structural constraints within and between scenarios adequately.

• There is no clear distinction between scenarios, conceptual models, and process representations.
Scenarios are almost never single-instance, but rather partially grounded fragments; in our
framework scenarios are characterized as middle-level abstractions grounded in reality.
However, not every partially grounded model fragment should be called a scenario. Scenarios in
practice tend to have a step-to-step connotation, with no separate external frame of reference.
They should be largely self-explanatory, at least in the context in which they are set.

38

Formality without tool support was generally considered impractical. However, it seems largely
unclear what scenario tools are necessary or viable, even which ones are presently available2.

Another important open question is whether there are different formality requirements for current-
state and future-state scenarios. Considering the framework shown in Figure 1b, what is the effect of
existing legacy documentation (code, design, specifications, text scenarios) on the representation of
new current-state and future-state scenarios?

Drivers Inhibitors
Representing the result of an agreement process Eliciting a specific view
Consolidated view needed Set of particular views sufficient
Focus on type/class level Understanding without special training
Separation and linkage among components Rapid feedback cycles between scenario author

and domain experts/users
Strong need for traceabili ty
Strong need for unambiguity
Assessment of given measurable properties

Table 1: Factors promoting and inhibiting the formality of scenario representations

4.3 Fitt ing Scenar ios to Existing Methods

Many practitioners and researchers complain that it is diff icult to reconcile the systematic usage and
management of scenarios with the standard methods applied in planning, analysis and design.
Starting from the purpose view in Figure 8, the group looked at different phases or rough work
tasks in the lifecycle, and collected arguments why scenarios should or should not be used in these
tasks. The results are summarized in Table 2. They indicate that participants saw the role of
scenarios predominantly in the analysis phase very early in the development process. Scenarios
should also take a strong role in quality management. The potential of scenarios in subsequent
design tasks was also recognized, but here, their added value is balanced to some degree by the
significant additional management effort incurred.

After defining thus the rough positioning of scenarios in the systems lifecycle, another challenge
resulting from the practice surveys was discussed. How can we provide more detailed method
guidance in developing and using scenarios? The group adopted the view of methods as tools for the
developer, which should not overly constrain the actual work process3. As a consequence, methods
in general should be defined as collections of situated chunks that the development team could
invoke and possibly adapt when desired. This, in turn, makes it relatively easy to integrate chunks of
scenario method knowledge into the process. Examples of high-level “good practice” chunks from
industry include:

• to structure functional and non-functional requirements along large use cases
• to assess the impact of a new commercial-off-the-shelf (COTS) software product using business

scenarios

2 A number of prototypical tools are described in this Special Issue, and in [31]. Examples include traceabilit y

support, advice for the choice or structuring of scenarios, semi-automatic synthesis of formal specifications from
collections of formally represented scenarios, and animation of formal specifications by future-state scenarios.

3 As Jim Odell put it, “ there is never just one way of doing something. Never has been, never will be, and never
should be.”

39

• to test system compliance with requirements, and to develop user documentation, based on
usage scenarios

• to optimize system performance through technical impact analysis of the most frequently
occurring scenarios.

Development Task Pro-Scenario Arguments Contra-Scenario Arguments
Analysis Uncover hidden requirements Coverage problem: how many

scenarios?
Envision future system usage Content problem: how much to

capture?
Provide rationale for design proposal May result in overlooking

concurrency
Make requirements behavioral
content more concrete

Requires much domain
knowledge

Enriched context information helps
uncover risk, org. problems, etc.
Help envisage the potential of a
problem

Design Illustrate trade-off between design
solutions

Management of scenarios
becomes complex

Validate design using scenarios
Quality Management Communication aid between

stakeholders
May oversimplify problems and
project risks

Facili tate documentation Cost, time, and manpower
intensive

Verify/validate fitness for use
Justify needs
Understand and resolve conflicting
quality requirements

Table 2: Advantages and problems of using scenarios in specific development tasks

The group proposed to set up a web server infrastructure for the collection and dissemination of
such “chunks of best scenario practice”, characterizing each chunk by the domain and other
situational factors, the target output product, the type of scenario content, and a typical intention of
reuse. Based on such a server, after a task analysis characterizing the situation, the intended reuse
process could work in four steps:
1. write a current scenario in the users’ language (as a story)
2. run it against a (possibly domain-dependent) checklist to evaluate its completeness
3. validate the initial understanding gained from the thus enhanced scenario
4. identify the scope for improvement over the current scenario.

4.4 Scenar io Management in the Large

As discussed earlier, individual scenarios are well accepted and easy to use. Small “chunks of best
scenario practice” seem relatively obvious and well structured. In contrast, practitioners complain
that maintaining large sets of possibly complex scenarios with different viewpoints over long periods
of a system life cycle as a serious management nuisance. This problem is hardly addressed by
research. The workgroup therefore delved into an initial exploration how one could even approach
investigating the problem of proper scenario administration.

40

When setting up a scenario management framework, the key issue is cost-effectiveness of scenarios
in different tasks of the system li fecycle, or even in the broader organizational change management
cycle. Tackling this problem requires expanding on the purpose view of scenarios first.

Scenarios are tools for understanding (cognitive aspect) and communication (social aspect). Similar
to rapid prototypes in the design stage, they reduce uncertainty about organizational, usage, or
technical requirements. Cost-effectiveness should thus relate to system quality as well as quality of
the change process supported by the scenario-based approach.

Major benefits include the following. Similar to good business process models, scenarios do not
need to be complete but still help to give an overall intuitive picture. They do this by focusing on
critical issues and on differences between current-state and future-state, without requiring a
complete description of either the old or the new system. On the cost side, scenarios are so fluid that
it is hard to provide structure within a large set of scenarios. It is even harder to maintain the
relationships (consistency, conflict, evolution, etc.) without substantial version and configuration
control effort (for which no good methodology is known to date).

To further elaborate on this point, the many roles of scenarios were summarized using the metaphors
of “oil” and “glue” to point out the opportunities, but also the challenges of scenario management in
the large. As a fluid and easy-to-manipulate concept (oil), scenarios support design decisions and
help derive requirements. They assist the evaluation of requirements for incompleteness and
inconsistency. They ill ustrate the requirements themselves as well as the potential costs of satisfying
them, including unintended side effects of proposed solutions. They help define roles and
responsibili ties in the process. Last but not least, they serve as regression tests for old requirements
in the evaluation of proposed adaptations.

Scenarios also fix required linkages (glue) between design artifacts and design decisions. This has an
often underestimated impact on projects and thus require formal management. Scenarios determine
the connection between parts of systems in a dynamic sense. As [73] show, they allow to structure
and plan projects: division of labor, estimation of effort, focusing of inspections, and the validation
of end-to-end functioning from the user perspective are all determined by scenarios. Project
managers are known to have been fired for not satisfying important scenarios!

Summarizing, the systematic usage of scenarios has a profound but poorly understood impact on the
whole change management process, ranging from requirements analysis through development and
integration all the way to project planning, training and motivation of both project personnel and
users. Novel approaches to version and configuration management must take into account the weak
formal semantics but strong pragmatic role of scenarios, such that the relationships between
scenarios and other artifacts can be maintained at all the necessary abstraction layers of the different
stakeholders, and throughout the system lifecycle. Metrics of both cost and benefit are needed to
determine and improve the quality of such a scenario-centered lifecycle process in a systematic
manner, considering, e.g., average cost of scenario development, retrieval and usage, trade-offs
between completeness and cost-effectiveness, and system quality.

4.5 Interdisciplinary Definitions and Research Questions

Following the working group summaries, participants from different disciplines were asked to
summarize what they had learned across the discussions. In addition, a brainstorming session was
conducted to see if participants could agree on a common definition of scenarios, and where they
saw the most pressing research issues for further work.

41

In the brainstorming session, the group first attempted to converge towards a shared definition of
scenarios. From a collection of individual properties, which were then voted concerning their
importance, we finally synthesized the following definition:

A scenario is a description of the world, in a context and for a purpose, focusing on task
interaction. It is intended as a means of communication among stakeholders, and to
constrain requirements engineering from one or more viewpoints (usually not complete, not
consistent, and not formal).

In addition, critical issues in need for more research were identified. After collecting about twenty
topics, and discussing them at length, it became clear that the biggest gap in our knowledge of
scenarios can be summarized by the question:

“ how to get the best value for the money invested in scenario-based techniques.”

Cost-effectiveness of scenario usage is poorly understood, thus there is no economic basis for
problem-driven use of scenarios yet. Regardless of the detailed cost-benefit analysis, it is a shared
perception among the working groups that scenario management in the large is least developed so
far. Thus, questions of how scenarios evolve, how they are related to each other, and how they are
linked to specifications are high-priority research issues.

In the final discussion from the management side, the hierarchy of scenarios exhibited in figure 11
was emphasized as a challenge, i.e., linking the use of scenarios for deciding strategy through to
their usage in designing system interaction, and possibly back to stimulating novel uses of existing
systems. From research in organizational sociology, it is not even clear whether such a linkage exist
or whether unexplained emergent phenomena prevent such a bridging.

From the software engineering side, participating doctoral students pointed out that the workshop
had indeed helped them to better position their work, in particular concerning the relationships of
scenarios to more formal conceptual models. Such relationships include, among others, quality
management of scenarios via conceptual models, scenarios as boundary objects and viewpoints
constraining design, suitabili ty of scenarios vs. models as externalized memories of development
processes, and different kinds of analysis/animation/simulation relationships which allow the
exploration of dynamic concepts.

From the viewpoint of HCI, dealing with scenarios (narrative, rich, non-formal descriptions) is not
considered a choice but forced on research by practice. The workshop findings can, according to this
viewpoint, be grouped according to four frequently asked key research questions:

• How do we deal with collections of scenarios, i.e. collections of only weakly structured text?
• How do we deal with coverage (writing an exhaustive set of scenarios)?
• What (instance/detail) in a scenario is essential, what is inconsequential?
• What are boundary conditions for applicabili ty of scenario-based design?

Possible answers are listed in Table 3, together with some caveats when and to what degree these
answers might be right or wrong.

42

Key research question Typical/possible answers Caveats
How do we deal with
collections of scenarios?

For indexing/retrieval, learn
from Information Retrieval

Where do classification
 schema, keywords come from?

Conceptual models as indexes
which offer reasoning as a side
benefit
Minimal metadata for each
scenario

Beware creeping modeling urge
 (over-formalization)

How do we deal with
coverage?

Scenarios will only cover focal
paths plus implicit set of error
scenarios

But what about safety-critical
 systems?

Formal descriptions (FSM
family) help generate scenarios

Problem similar to test case
 coverage

Scenarios abstraction, reuse
facili tated by multimedia
database

Beware formalism for tool’s
sake!

What detail is necessary? Shared background tells us if
we keep users around

But might get lost when users/
domain experts are no longer
participants

Conceptual modeling may help
 to ask the right questions

What are boundary
conditions for scenario
applicability?

Scenarios focus on action/event
stories

(some) non-functional
 requirements

Scenarios support linearization Highly parallel, non-
transactional applications

Scenarios broaden thinking in
action

Parameter-fitting/optimization
(standard engineering design)

Table 3: FAQ’s for scenario-based design

5 Networking Research Hypotheses and Evaluation Methods
The preceding sections demonstrate a certain convergence concerning frameworks and theories for
understanding scenarios, and shared concerns of interdisciplinary research and practice. However,
the variety of underlying assumptions, specific research claims and methods remains substantial. In
order to develop a coherent research community, it would be valuable to understand in the
interdisciplinary setting what are the relationships between these claims and hypotheses, and what
are the relationships between the evaluation methods used in the various disciplines to evaluate these
claims and hypotheses.

In order to explore these questions, we first distributed a short questionnaire to all workshop
participants with the following text:

“ Each of us has proposed some theory, model, structure, language, ontology, formalism ...
with some purpose in mind. We want to know (with a maximum of 25 words):
1. In your work, what is your most important claim/hypothesis/conjecture about scenarios?
2. How do you propose to justify/test/prove it? (Please mention if you are using some kind

of tool/environment as a demonstration or test bed.).”

43

The 24 responses to these questions were then synthesized into strawman “causal networks” , one
intended to show the hypothesized relationships between scenario factors across respondents (figure
12), the other intended to show possible paths of research projects/evaluation methodologies tend to
follow (figure 13).

³&DXVDO´�1HWZRUN�RI�6FHQDULR�)DFWRUV
VFHQDULR�VSHF�

FRPSOHPHQWDULW\

VFHQDULR
IRUPDOLW\

IHZHU�HUURUV
LQ�VSHF�

HDVH�RI
UHOLDELOLW\
WHVWLQJ

V\VWHP
UHOLDELOLW\

TXDOLW\�RI
V\VWHP

V\VWHP
XVHIXOQHVV

FRQFUHWHQHVV GLVFXVVLRQ
SURFHVV�TXDOLW\

DFFXUDF\�RI
XQGHUVWDQGLQJ

GHYHO���XVHU
FRPPXQLFDWLRQ

TXDOLW\�	�ZLOOLQJQHVV

V\VWHP
IOH[LELOLW\

GHVLJQ
FUHDWLYLW\

FRQILGHQFH
LQ�TXDOLW\

TXDOLW\�RI
VWUDWHJLF�SODQLQJ

	�DQDO\VLV

GHFLVLRQ
TXDOLW\

TXDOLW\�RI GHYHO�
SODQQLQJ�SURFHVV

Figure 12: A causal network of scenario research constructs

Briefly, the research claim network in Figure 12 concentrates on two key factors which many
researchers address in different ways: scenario formality and communication quality. The left part
suggests that the degree of scenario formality depends on the complementarity between scenarios
and specifications in a particular context. Scenario formality will facili tate reliabili ty testing, and may
reduce the errors in specifications, both positively influencing system reliabilit y. But only together
with knowledge about system usefulness and flexibili ty (which is not necessarily improved by
formality of scenarios), the overall quality of systems can be assessed.

These two latter factors are influenced by process-oriented scenario factors rather than
representation, most prominently the willi ngness and quality of developer/user communication. In
turn this is conjectured to promote factors such as design creativity, subjective confidence in quality,
and (strategic) decision quality. Communication quality is influenced by accuracy of understanding
promoted by scenario concreteness, and by process factors of how the discussion process proceeds.
Hidden in this network, we recognize the three well-known dimensions of requirements engineering
[Pohl 1994], namely representational aspects (left part of the figure), depth of understanding (middle
part), and quality of teamwork and agreement (right part).

44

In terms of evaluation methods, two major approaches are shown in Figure 13. The first one
involves tool building as a starting point for demonstrating and testing claims. These are then
exposed to expert critiques or lab experiments, prior to their use in industrial case studies which
either construct industrial prototypes for further development into the commercial arena,
facili tate/monitor ongoing specific projects, or try a rational reconstruction of a past process.

(YDOXDWLRQ�0HWKRGRORJ\

EXLOG�D
WRRO

ODE�EDVHG
FDVH�VWXG\ WU\�RXW�RQ

LQGXVWULDO
FDVH�VWXGLHV

FRQVWUXFW
SURWRW\SHV

UHYLHZV�ZLWK
HQG�XVHU

IDFLOLWDWH
RQJRLQJ
SURFHVV

H[SHUW�FULWLTXH

GHYHORS
FKHFNOLVWV�HWF�

H[SHULPHQWDO
FRPSDULVRQ

FRPSDUDWLYH
HYDOXDWLRQ

LQIHUHQWLDO
VWDWLVWLFV

PRQLWRU
RQJRLQJ
SURFHVV

UDWLRQDO
UHFRQVWUXFWLRQ
RI�SDVW�SURFHVV

Figure 13: Possible evaluation paths in scenario research

The second evaluation approach investigates scenario-based methods independently of support
tools. Often, the research claim, or a deeper theory underlying it, is elaborated into checklists which
can directly be applied to laboratory experiments or industrial case studies, without necessarily going
through a mediating tool.

In both approaches, valuable insights can be drawn from comparative evaluation with competing
claims, tools, or checklists. The design of comparative studies in the scenario field is, however,
particularly diff icult due to the complexity of problems addressed by scenario-based approaches, and
there have been few such studies to date. More often than they should, evaluation has therefore been
restricted to the conceptual level.

Taken together, these two networks provide prolegomena towards an interdisciplinary research
program in scenario management. We hope that they will help researchers to better relate their
findings, and to build on each others’ methodologies within and across disciplines.

45

7 Summary

In this paper, we reviewed scenario management from three major disciplines: strategic
management, human-computer interaction, and software and systems engineering, and propose an
interdisciplinary framework for scenario management. In addition to synthesizing our own previous
research, we drew on findings of an interdisciplinary workshop including various brainstorming
techniques.

Across all disciplines, scenarios are recognized as indispensable tools to comprehend future states of
the world. We have outlined conditions under which scenarios can be best used for each of the three
disciplines. As scenarios take different forms to fit in a particular application context, they invariably
provide a coherent framework for analysis of how various elements of a problem at hand (e.g.,
defining systems specifications) impinge on one another and interact. Furthermore, they also serve as
a vehicle to foster creativity, stimulate discussion, and help focus attention on specific points of
interest.

With some diversity in terminology and use, two particular qualities of scenarios emerge from this
study. First, a scenario is a context-dependent and purposeful description of the world with a focus
on task interaction. Second, scenarios are a means of communication among stakeholders.

We look at scenarios as enablers of change. From that perspective, four research issues were
discussed: systematic capture and generation of scenarios, representational issues of individual
scenarios, fitting scenarios to existing methods, and scenario management in the large. Our study has
helped identify (1) factors promoting and inhibiting the creation of scenarios, (2) advantages and
problems of using scenarios in specific development tasks, (3) practical issues in developing
scenarios, and (4) research constructs for designing and evaluating scenario and scenario
management.

In all of the issues addressed in this paper, it should be remembered that scenario development,
analysis and management are mainly practical processes that depend on creative participation and
inputs from individuals, and no attempt is made here to propose a rigid methodology. The value of
scenarios is that they serve as catalysts for such processes. We hope that the interdisciplinary
discussion presented in this paper can facili tate the use of scenario approaches and make scenario
studies and scenario use as interesting and effective as possible.

Acknowledgments. The Dagstuhl Workshop on Scenario Management, February 9-13, 1998, was supported in part
by the Dagstuhl Foundation, and by the European Commission via ESPRIT Long Term Research project 21.903
(CREWS) and via the RENOIR Network of Excellence in Requirements Engineering. Participants included C. Ben
Achour, D. Berry, S. Brandt, X.T. Bui, J.M. Carroll , G. Chin, D.R. Corrall , E. Dubois, W. Dzida, M. Feblowitz, M.
Francksson, M. Glinz, S. Greenspan, P. Haumer, P. Heymans, P. Hsia, M. Jarke, S. Jungmayr, H. Kaindl, J.
Koenemann, R. Kurki-Suonio, A. van Lamsweerde, J. Leite, K. Lyytinen, N. Maiden, S. Minocha, A. Oberweis, B.
Paech, K. Pohl, J.-C. Pomerol, C. Potts, B. Regnell , C. Rolland, M.B. Rosson, K. Ryan, R. Sprague, A.S. Sutcli ffe,
and V. Thurner. The help of the group leaders and discussion recorders in the various subgroups is greatly
appreciated.

46

References

1. Ackoff, R.L. 1979. Resurrecting the future of operations research. Journal of the Operations Research Society 30(3), 189-
199.

2. Anton, A.I., McCracken, W.M., Potts, C. 1994. Goal decomposition and scenario analysis in business process re-engineering.
Proc. 6th Intl. Conf. Advanced Information Systems Engineering (CaiSE 94), Utrecht, NL, Springer-LNCS, 94-104.

3. Anthony, R. 1985. Planning and Control Systems: A Framework for Analysis. Division of Research, Graduate School of
Business, Harvard University, Boston, Mass.

4. Becker, H.A. 1983. The role of gaming and simulation in scenario project, in Stahl, ed., Operational Gaming: An
International Approach, International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 187-202.

5. Blanning, R.W. 1995. A decision support framework for scenario management. Proc. Intl. Symp. Decision Support Systems,
Hong Kong, vol. 2, 657-660.

6. Brooks, F. 1995. The Mythical Man-Month: Essays on Software Engineering. Reading, MA: Addison-Wesley, Anniversary
Edition (originall y 1975).

7. Brown, S. 1968. Scenarios in system analysis, in E.S. Quade and W.E. Boucher, eds., Systems Analysis and Poli cy Planning:
Appli cations in Defense, Elsevier, New York, NY, 298-309.

8. Bui, X.T., Kersten, G., Ma, P.-C. 1996. Supporting negotiation with scenario management. Proc. 29th Hawaii
Intl. Conf. System Sciences, Wailea, HI., vol. III , 209-219.

9. Carroll , J.M., Ed. 1995. Scenario-based Design: Envisioning Work and Technology in System Development. New York:
John Wiley and Sons.

10. Carroll , J.M. 1999. Five reasons for scenario-based design. Proc. 32nd Hawaii International Conference on Systems Sciences,
Wailea, HI.

11. Carroll , J.M. & Rosson, M.B. 1990. Human-computer interaction scenarios as a design representation. Proc. 23rd Hawaii
Intl. Conf., on System Sciences, vol. II ,, Kona, HI, 555-561.

12. Carroll , J.M. & Rosson, M.B. 1992. Getting around the task-artifact cycle: How to make claims and design by scenario.
ACM Transactions on Information Systems, 10, 181-212.

13. Checkland, P.B. 1981. Systems Thinking, Systems Practice. New York: Wiley.

14. Churchman, W. 1970. Operations research as a profession. Management Science, 17(2), 37-53.

15. Chin, G., Rosson, M.B. & Carroll , J.M. 1997. Participatory analysis: Shared development of requirements from scenarios.
In S. Pemberton (Ed.), Proceedings of CHI'97: Human Factors in Computing Systems. (Atlanta, 22-27 March). New York:
ACM Press/Addison-Wesley, pp. 162-169.

16. Dardenne, A., van Lamsweerde, A., Fickas, S. 1993. Goal-directed requirements acquisiti on. Science of Computer
Programming 20, 1, 3-50.

17. deMicheli s, G., Dubois, E., Jarke, M., Matthes, F., Mylopoulos, J., Papazoglou, M., Schmidt, J.W., Woo, C., Yu, E. 1998.
Cooperative information systems: a manifesto. In Cooperative Information Systems: Trends and Directions (Papazoglou/
Schlageter, eds.), Academic Press, 315-363.

18. Duval, S. & Wicklund, R.A. 1972. A Theory of Objective Self-Awareness. New York: Academic Press.

19. Erikson, E.H. 1980. Identity and the Life Cycle. New York: Norton.

20. Festinger, L. 1957. A Theory of Cogniti ve Dissonance. New York: Harper & Row.

21. Festinger, L., Riecken, H.W. & Schachter, S. 1956. When Prophecy Fail s. Minneapoli s,: University of Minnesota Press.

22. Fili ppidou, D. 1998. Designing with scenarios: a criti cal review of current research and practice. Requirements Engineering 3,
1, 1-22.

23. Freud, S. 1900. The Interpretation of Dreams. Standard Edition, Vol. IV. London: Hogarth.

24. Gagne, R.M., & Briggs, L.J. 1979. Principles of Instructional Design. New York: Holt, Rinehart and Winston.

25. Haumer, P., Pohl, K., Weidenhaupt, K. 1998. Requirements eli citation and validation with real-world scenes. IEEE
Transactions on Software Engineering, Special Issue on Scenario Management, December 1998.

26. Haviland, S.E. & Clark, H.H. 1974. What’s new? Acquiring new information as a process in comprehension. Journal of
Verbal Learning and Verbal Behavior, 13, 512-521.

27. Heymans, P., Dubois, E., 1998. Scenario-based techniques for supporting the elaboration and the validation of formal
requirements. Special Issue on Interdisciplinary Uses of Scenarios, Requirements Engineering Journal 3(3), this volume.

28. Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y., Chen, C. Formal approach to scenario analysis. IEEE Software, March
1994, 33-41.

29. Huber, G.P. McDaniel, R.R. 1986. Exploiting information technologies to design more effective organizations. In Jarke, M.
(ed.): Managers, Micros, and Mainframes: Integrating Systems for End Users, Wiley Series on Information Systems, John
Wiley, 221-236.

47

30. Jacobsen, I. 1995. The use-case construct in object-oriented software engineering. In J.M. Carroll (Ed.), Scenario-based
design: Envisioning Work and Technology in System Development. New York: John Wiley & Sons, pp. 309-336.

31. Jarke, M., Kurki-Suonio, R. (eds.) 1998. Special Issue on Scenario Management. IEEE Transactions on Software
Engineering, December 1998.

32. Jarke, M., Mylopoulos, J., Schmidt, J.W., Vassili ou, Y. 1992. DAIDA – an environment for evolving information systems.
ACM Trans. Information Systems 10, 1, 1-50.

33. Jarke, M., Pohl, K. 1994. Requirements engineering in 2001: (virtuall y) managing a changing world. IEE Software
Engineering Journal, 6, 5.

34. Karat, J. & Bennett, J.B. 1991. Using scenarios in design meetings – A case study example. In J. Karat (Ed.), Taking
Design Seriously: Practical Techniques for Human-Computer Interaction Design. Boston: Academic Press, pages 63-94.

35. Kahneman, D., Tversky, A. 1972. Subjective probabilit y: A judgement of representativeness. Cogniti ve Psychology, 3, 430-
454.

36. Kahneman, D, Lovallo, D. 1993. Timid choices and bold forecasts: a cogniti ve perspective on risk-taking. Management
Science 39, 17-31.

37. Klein, G.A., Orasanu, J., Calderwood, R., Zsambok, C.E. (eds.) 1993. Decision Making in Action : Models and Methods.
Ablex Publ.

38. Kurki-Suonio, R. 1996. Fundamentals of object-oriented specification and modeling of collective behaviors. In Object-
Oriented Behavioral Specifi cations (Eds. H. Kilov, W. Harvey), Kluwer Academic Publi shers 1996, 101-120.

39. Kyng, M. 1995. Creating contexts for design. In J.M. Carroll (Ed.), Scenario-based design: Envisioning work and
technology in system development. New York: John Wiley & Sons, pp. 85-107.

40. Lamport, L. (1994)The temporal logic of actions. ACM Trans. Programming Languages and Systems 16(3), 872-923.

41. v. Lamsweerde, A., Will emet, L. 1998. Inferring declarative requirements specifications from operational scenarios. IEEE
Transactions on Software Engineering, Special Issue on Scenario Management, to appear.

42. Lévi-Strauss, C. 1967. Structural Anthropology. Garden City, NY: Anchor Books.

43. March, J.G., Shapira, Z. 1987. Managerial perspectives on risk and risk taking. Management Science 33, 1404-1418.

44. McLuhan, M. 1994. Understanding Media: The Extensions of Man. Cambridge, MA: MIT Press (original edition, 1964).

45. McMenamin, S.M.,Palmer, J.F. 1984. Essential Systems Analysis. Prentice Hall .

46. Medin, D.L. & Schaffer, M.M. 1978. A context theory of classification learning. Psychological Review, 85, 207-238.

47. Mill s, C. W. 1959. The Sociological Imagination. New York: Oxford University Press.

48. Muller, M.J., Tudor, L.G., Wildman, D.M., White, E.A., Root, R.A., Dayton, T., Carr, R., Diekmann, B., & Dystra-Erickson,
E. 1995. Bifocal tools for scenarios and representations in participatory activiti es with users. In J.M. Carroll (Ed.),
Scenario-based Design: Envisioning Work and Technology in System Development. New York: John Wiley, pp. 135-163.

49. Mylopoulos, J., Chung, L., Nixon, B. 1992. Representing and using non-functional requirements: a process-oriented approach.
IEEE Trans. Software Eng.18, 6, 483-497.

50. Nisbett, R.E. & Wilson, T.D. 1977. Telli ng more than we can know: Verbal reports on mental processes. Psychological
Review, 84, 231-259.

51. Nissen, H.W., Jarke, M., 1999. Repository support for informal teamwork methods. In Lyytinen/Welke (eds.): Special Issue
on Meta Modeling and Method Engineering, Information Systems 24, 2.

52. Orr, J.E. 1986. Narratives at work. Proceedings of CSCW’86: Conference on Computer-Supported Cooperative Work.
(Austin, TX, December 3-5, 1986). pages 62-72.

53. Pohl, K. 1994. The three dimensions of requirements engineering: a framework and its appli cations. Information Systems 19,
3, 243-258.

54. Pomerol, J.-C. 1997. Artificial intelli gence and human decision making. European Journal of Operations Research 99, 3-25.

55. Propp, V. 1958. Morphology of the Folktale. The Hague: Mouton (originall y publi shed in 1928).

56. Raiffa, H. 1968. Decision Analysis. McGraw Hill .

57. Rolland, C., Ben Achour, C. 1997. Guiding the construction of textual use case specifications. Data & Knowledge
Engineering 25, 1/2, 125-160.

58. Rolland, C., Ben Achour, C., Cauvet, C., Ralyte, J., Sutcli ffe, A., Maiden, M., Jarke, M., Haumer, P., Pohl, K., Dubois, E.,
Heymans, P. 1998. A proposal for a scenario classification framework. Requirements Engineering Journal 3, 1, 23-47.

59. Rosch,E., Mervis, C.B., Gray, W., Johnson, D., Boyes-Braem, P. 1976. Basic objects in natural categories. Cogniti ve
Psychology, 7, 573-605.

60. Roy, B. 1997. Un chainon manquant en RO-AD, les conclusions robustes, Cahier LAMSADE 114, Universite Paris-
Dauphine.

61. Schank, R.C. 199?. Tell me a Story: Narrative in the Context of Intelli gence. Evanston, IL: Northwestern University Press.

62. Schön, D.A. 1967. Technology and change: The New Heraclitus. New York: Pergamon Press.

48

63. Schön, D.A. 1983. The Reflective Practiti oner: How Professionals Think in Action. New York: Basic Books.

64. Scriven, M. 1967. The methodology of evaluation. In R. Tyler, R. Gagne, & M. Scriven (Eds.), Perspectives of Curr iculum
Evaluation. Chicago: Rand McNall y, pp. 39-83.

65. Schriver, K. 1997. Dynamics in Document Design. New York: John Wiley and Sons.

66. Sutcli ffe, A. 1998. Scenario-based requirements analysis. Requirements Engineering Journal 3, 1, 48-65.

67. Sutcli ffe, A., Maiden, N.A.M., Minocha, S., Manuel, D., 1998. Supporting scenario-based requirements engineering. IEEE
Transactions on Software Engineering, Special Issue on Scenario Management, December 1998.

68. Tsatsouli s, C., Cheng, Q., Wie, H.-Y. 1997. Integrating case-based reasoning and decision theory. IEEE Expert 12, July, 46-
55.

69. Tversky, A., Kahneman, D. 1974. Judgements under uncertainty: Heuristics and biases. Science, 185, 1124-1131.

70. Tversky, A., Wakker, P. 1995. Risk attitudes and decision weights. Econometrica 63, 1255-1280.

71. Wack, P., 1985a Scenarios: unchartered waters ahead, Harvard Business Review, September/October.

72. Wack, P., 1985b Scenarios: shooting the rapids, Harvard Business Review, November/December.

73. Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P. 1998. Scenario usage in software development: current practice. IEEE
Software, March 1998, 34-45.

74. Wertheimer, M. 1938. Laws of organization in perceptual forms. In W.D. Elli s (Ed.), A Sourcebook of Gestalt Psychology.
London: Paul, Trench, Trubner.

75. Wirfs-Brock, R. 1995. Designing objects and their interactions: A brief look at responsibilit y-driven design. In J.M. Carroll
(Ed.), Scenario-Based Design: Envisioning Work and Technology in System Development. New York: John Wiley, 337-360.

49

IEEE Transactions on Software Engineering 24, 12 (1998):
Editor ial for the Special Issue on Scenar io Management

Guest Editors: Matthias Jarke and Reino Kurki-Suonio

In several disciplines, including management science, software engineering, and human-computer
interaction, scenarios are emerging as a key tool in the quest for more effective change management
with information technology. As a middle-ground abstraction between instance-level traces of
reality and formal, class-level specification models, scenarios promote participatory design and
knowledge reuse within and across projects. Recent surveys of research [2, 8] and practice [9]
demonstrate enormous interest in scenarios, but also a great variety of approaches.

In the context of software and systems engineering, work in scenario management has so far been
fragmented. Therefore, a call for papers for a Special Issue of the IEEE Transactions on Software
Engineering on Scenario Management was published in the fall of 1997. The goal of this call was to
produce a collection of some of the major research efforts on scenario management, taking a broad
view of what is or should be relevant to software and systems engineering, including e.g. approaches
originating from human-computer interaction, computer-supported cooperative work, or
management.

In response to this call, almost 50 submission abstracts were received, from which – after immediate
rejection of obviously inappropriate ones – 36 full papers resulted. After two to three rounds of
refereeing and revision, 9 papers were finally selected for publication in this Special Issue. It is likely
that a few more papers will , after further revisions, be published later.

In order to draw scenario research and practice from different reference disciplines closer together,
the CREWS ESPRIT Long Term Research Project of the European Communities organized an
interdisciplinary workshop on Scenario Management, held at Schloß Dagstuhl, Germany, February
9-13, 1998. This workshop was prepared in parallel to the Call for Papers, but the set of invited
participants had a large overlap with the authors of submitted papers. Through the subsequent paper
revision process, the workshop thus also helped to make the contributions within the special issue
more coherent.

The main workshop results [5] include a general framework defining the role of scenarios in change
processes, and definitions of scenario management perspectives by the disciplines of decision
science, human-computer interaction, and management science. The workshop also elaborated
interdisciplinary research questions and possible ways to link research across these disciplines.

The interdisciplinary analysis showed that the role of scenarios in change management can be
appropriately characterized by an extension to the traditional, model-based change process shown in
figure 1. Traditional wisdom follows a process that first abstracts a (semi-formal or formal) current-
state model or even its essence [6] from present reality, then specifies the required change (e.g.
computerization, revision of data models, ...) at the modeling level, and finally implements the thus
gained specification of the changed system, taking into account practicalities such as the legacy
context.

50

Figure 1: The role of scenarios and goals in change management [5]

There is ample evidence from psychology that the middle-ground abstraction offered by scenarios
compensates for a number of problems found for purely model-based approaches [2]. First and
foremost, scenarios focus on system use and on the differences between old and new system,
whereas full-scale conceptual models or formal specifications usually have to carry around a lot of
context information (the well-known frame problem). Second, due to their informal nature and their
relatively inexpensive creation and manipulation, scenarios tend to suspend commitment while
encouraging participation by all requirements stakeholders, thus stimulating rapid progress,
experimentation and innovation. Finally, their intuitive presentation and the increased stakeholder
participation lead also to better long-term memorization and reuse.

To achieve these goals, scenarios of user interaction with the system are most often considered; he
widely applied use cases in object-oriented software engineering [4] are groupings of interaction
scenarios related to one particular type of system usage. However, organizational systems often also
require assessing the broader requirements by, and impact on the system’s context, whereas
complex technical applications, such as embedded systems, also need internal scenarios of
component interaction, as considered in the formal methods community, both topics not addressed
very well by the use case approach. This positioning may explain the frequently heard confused
discussion whether use cases are more specialized or more general than use cases.

The practice survey in [9] also revealed that scenarios – rather than being spurious toys during early
system specification -- are emerging as important artifacts that need to be developed and managed
according to a traceable purpose, over the whole systems lifecycle. The explicit modeling of goal
hierarchies to which specific scenarios and requirements can be traced is therefore the second
important addition in the framework shown in figure 1. The role of goals in requirements
engineering has been discussed since the early 1990’s [3, 7]. The need for using goals together with
scenarios in has been highlighted by the case studies of Potts and colleagues [1]. However, precise
mechanisms of interaction between goal models and scenarios have only recently been studied. The
most comprehensive collection of results in this area is probably the special issue in front of you.

animate

capture

initial
model
initial
model

new
model
new

model

existing
system
existing
system

new
system

new
system

change
specification

reverse
analysis

legacy
integration

change
implementation

future
scenario

future
scenariocurrent

scenario
current

scenario

change
envisionment

goal/requirementgoal/requirement

refinement/negotiation

scenario generation
for validation/

refinement
observation focus

for elicitation/
goal discovery~l
... ----□ -

l __ _t ___ l

r -
-~ □-------- ...

I - - _I_ - - -.
__.: I

I_ - - ~ - - -1

,___ ___ :; ...

51

In the following, we briefly survey the papers in this Special Issue, linking their contributions to the
framework shown in figure 1.

The first three papers describe some of the components of a scenario-based approach developed in
the CREWS project which directly builds on the framework shown in figure 1.

The paper by Haumer, Pohl and Weidenhaupt stresses the need for tracing requirements back as
closely to reality as possible, focusing on real-world scenes captured in multimedia. The selection
and creation of current-state scenarios is directly linked to the change goals, whereas the subsequent
further abstraction to formal models is considered a later step. In contrast, the paper by Rolland,
Souveyet and Ben Achour is more interested in abstracting formally represented knowledge
(including the discovery of new goals) from textually represented scenarios. Specifically, it offers
formalisms and a toolkit supporting the interplay between goal modeling and scenarios written in
structured natural language.

While these two papers emphasize the analysis of the present system, Sutcli ffe, Maiden, Minocha
and Manuel discuss the systematic generation of future scenarios, emphasizing the systematic
coverage of all relevant exception cases. This work is inspired by test case generation theory, but
draws on semantic knowledge about the application domain and on research about specific types of
exception types which derive from possible non-functional requirements, such as reliabili ty, security,
performance, etc.

The following three papers investigate scenarios themselves as formal objects, from which more
abstract knowledge is derived by formal reasoning techniques, such as consistency and complete-
ness tests, inductive reasoning, constraint satisfaction, etc. All these techniques can be considered
extensions or support formalisms for the Use Case approach and the UML view of scenarios.

Van Lamsweerde and Will emet study the semi-automatic induction of declarative temporally
oriented object and operation specifications from operational current-state or future-state scenarios
expressed in the form of message-trace diagrams, using specially adapted machine learning
techniques. Lee, Cha, and Kwon are more interested in analyzing the interplay between different use
cases themselves, using an extended Petri net formalism for the formalization of scenarios and for
their analysis of incompleteness and inconsistency. Scenario slicing techniques are introduced to
make to make these analyses more efficient.

Finally, in a broader perspective, Buhr looks at the role of future-state scenarios as boundary
conditions for software architectures. He introduces a scenario-based visualization technique called
use case maps to help system architects with the analysis how organizational structure and emergent
behavior of very large systems are intertwined.

While some survey work on scenario practice has been conducted recently, we are still l acking a lot
of empirical evidence how scenario-based requirements engineering works in detail, and how it
interacts with other tasks in the software life cycle. Even though the desire of formally or technically
oriented computer scientists to obtain complete behavioral process theories from social scientists or
empirical software engineering research is understandable, this research itself is still i n an exploratory
phase. A few substantial case studies are needed from which tentative hypotheses can be formulated.
But these still require validation before growing into readily usable theories, so for the moment it
may be more honest to report the cases themselves. The final three papers all take such a behavioral
tack at the problem of scenario management, each focusing on a specific, but very substantial case
study experience to ill ustrate or derive more general approaches.

52

Carroll , Rosson, Chin and Koenemann investigate the impact of scenario usage on stakeholder
participation in requirements development, grounded in experiences with the lead scenario of a
major community networking project in the United States. Stiemerling and Cremers investigate the
specific question of cooperation scenarios for CSCW systems, using the demonstration case study of
POLITeam, one of the applied research projects prototyping the networked government approach
associated with the partial move of the German federal government from Bonn to Berlin.

Finally, Dzida and Freitag discuss the role of scenarios in requirements validation, focusing in
particular on usabili ty engineering; from these rather mature if relatively narrow experiences in the
HCI domain, a semi-formal process model characterizing the different roles of scenarios in
requirements engineering can actually be derived which may be evaluated against the broader
requirements perspective taken by general software and systems engineering.

We appreciate the courage of the TSE Editorial Board to take on this somewhat unconventional but
undoubtedly important topic for a Special Issue. Also the production of such an interdisciplinary
special issue required unusual effort. Without the cheerful and inspiring Dagstuhl atmosphere where
many authors had an opportunity to discuss their contributions, also without the untiring
commitment of all the authors and referees, it would not have been possible to put a coherent special
issue with reasonably consistent terminology together. We should like to thank Stefan Zlatintsis and
Jürgen Rack for the technical support over more than a year to manage this process.

Aachen and Tampere, September 1998.

Matthias Jarke and Reino Kurki-Suonio

[1] Anton, A.I., McCracken, W.M., Potts, C. 1994. Goal decomposition and scenario analysis in business process
re-engineering. Proc. 6th Intl. Conf. Advanced Information Systems Engineering (CaiSE 94), Utrecht, NL,
Springer-LNCS, 94-104.

[2] Carroll , J.M., Ed. 1995. Scenario-based design: Envisioning work and technology in system development.
New York: John Wiley and Sons.

[3] Dardenne, A., van Lamsweerde, A., Fickas, S. 1993. Goal-directed requirements acquisition. Science of
Computer Programming 20, 1, 3-50.

[4] Jacobson, I. 1995. The use-case construct in object-oriented software engineering. In J.M. Carroll (Ed.),
Scenario-based design: Envisioning work and technology in system development. New York: John Wiley &
Sons, pp. 309-336.

[5] Jarke, M., Bui, X.T., Carroll , J.M. 1998. Scenario management: an interdisciplinary perspective. Requirements
Engineering 3, 3.

[6] McMenamin, S.M., Palmer, J.F. 1984. Essential Systems Analysis. Prentice Hall .

[7] Mylopoulos, J., Chung, L., Nixon, B. 1992. Representing and using non-functional requirements: a process-
oriented approach. IEEE Trans. Software Eng.18, 6, 483-497.

[8] Rolland, C., Ben Achour, C., Cauvet, C., Ralyte, J., Sutcli ffe, A., Maiden, M., Jarke, M., Haumer, P., Pohl, K.,
Dubois, E., Heymans, P. 1998. A proposal for a scenario classification framework. Requirements Engineering 3,
1, 23-47.

[9] Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P. 1998. Scenario usage in current practice. IEEE Software,
March 1998, 34-45.

53

Table of Content

Requirements Elicitation and Validation with Real World Scenes
P. Haumer, K. Pohl, K. Weidenhaupt

Guiding Goal Modelli ng Using Textual Scenarios
C. Rolland, C. Souveyet, C. B. Achour

Supporting Scenario-Based Requirements Engineering.
A.G. Sutcli ffe, N.A.M. Maiden., S. Minocha, D. Manuel

Inferring Declarative Requirements Specifications from Operational Scenarios
A v. Lamsweerde, L. Will emet

Integration and Analysis of Use Cases Using Modular Petri Nets
W.J. Lee, S.D. Cha, and Y.R Kwon

Scenario-Path Signatures as Architectural Entities for Complex Systems
R. J. A. Buhr

Requirements Development in Participatory Design
J.M. Carroll , M.B. Rosson, G. Chin, J. Koenemann

The Use of Cooperation Scenarios in the Design and Evaluation of a CSCW System
O. Stiemerling, A.B. Cremers

Making Use of Scenarios for Validating Analysis and Design
W. Dzida, R. Freitag

54

Interdisciplinary Uses of Scenar ios:
Editor ial to a Special Issue

Requirements Engineering Journal 3, 3-4 (1998)

Matthias Jarke
RWTH Aachen, Informatik V (Information Systems)

Ahornstr. 55, 52074 Aachen, Germany
Jarke@informatik.rwth-aachen.de

An interdisciplinary workshop on Scenario Management took place at Dagstuhl Castle, the German
Computer Science Meeting Center, from February 9-13, 1998. The goal of this workshop was to
bring together expertise in scenario management from different disciplines, most notably Human-
Computer Interaction (HCI), Software and Systems Requirements Engineering (RE), and Strategic
Management (SM). The initiative for this effort stemmed from a Long Term Research Project within
the European Strategic Programme in Information Technologies (ESPRIT), called CREWS
(Cooperative Requirements Engineering With Scenarios [CREWS98]), which is coordinated by the
Guest Editor. The workshop was organized in cooperation with the IFIP Working Group 2.9
(Requirements Engineering), the RENOIR Network of Excellence, and with the RE groups in the
British Computer Society and the German Informatics Society. 24 workshop participants from all
over the world joined lively discussions in the stimulating atmosphere of Dagstuhl Castle.

Building on the observation, that scenarios are possibly one of the least understood recent success
stories in the IT and management areas, the workshop cross-examined the effectiveness and
efficiency of using scenarios as a tool for modeling, design, development and (technical and
organizational) implementation in HCI, RE, and SM. A corollary theme was the question how the
three different disciplines manage scenarios as complex artifacts throughout the planning and
systems lifecycle. The discussions and subsequent joint work by the three organizers Matthias Jarke,
X. Tung Bui, and John M. Carroll led to an interdisciplinary perspective which is described in the
introductory paper of this Special Issue, “Scenario Management: An interdisciplinary approach” .

The other four papers in this Special Issue exemplify the broad variety of viewpoints through which
different disciplines approach the scenario phenomenon.

The second paper, “Scenario development and practical decision making under uncertainty“ by Jean-
Charles Pomerol, builds on the classic decision-theoretic approach which is the formal basis for
scenario usage in strategic management. Robustness and re-ordering of decisions for risk reduction
and flexibili ty are typical strategies investigated via scenario analysis in this kind of approach, and
relationships between decision theory from Operations Research and case-based reasoning in
Artificial Intelli gence are drawn. As the paper points out, a bridge from strategic management
decisions to high-level requirements engineering can be envisioned but is still an elusive, if important
goal.

The third paper looks at one such potential bridge, namely the one between acquisition management
and commercial software development. Many large organizations are facing the move from bespoke
systems development towards strategies that emphasize the effective use of commercial off-the-shelf
(COTS) software. “Scenario-based analysis of COTS acquisition impacts“ by Mark Feblowitz and
Sol Greenspan develops a strategy for requirements engineering in this challenging and increasingly
important domain, based on their experiences in a large telecom enterprise.

55

The fourth paper ill ustrates the efforts from the formal methods community to exploit scenarios in
making their techniques more accessible. Increasingly, distributed and embedded systems are
becoming too critical to be specified without formally grounded computer support, yet the
formalisms themselves are hard to understand and to use correctly, especially by non-specialist
stakeholders. “Scenario-based techniques for supporting the elaboration and the validation of formal
requirements” , by Patrick Heymans and Eric Dubois, demonstrates how this problem can be
addressed by cooperative animation of formal specifications in the style of management games that
are widely popular in business education.

The final paper, “A representational framework for scenarios of system use“ by Annie Anton and
Colin Potts, takes a broader perspective, starting from an HCI-oriented RE background.
Complementing recent general surveys of research and practice in scenario usage [Arnold et al.
1998, Carroll 1995, Fili ppidou 1998, Rolland et al. 1998, Weidenhaupt et al. 1998], they provide a
focused overview of the textual and graphical scenario representations applied or proposed in
different disciplines, centering around the object-oriented approach.

In addition to the interdisciplinary set of papers presented in this Special Issue of the Requirements
Engineering Journal, a collection of papers geared more specifically towards the software
engineering domain – some authored by workshop participants, some by other researchers -- is
published in a parallel Special Issue of the IEEE Transactions on Software Engineering [Jarke and
Kurki-Suonio 1998].

This Special Issue would not have been feasible without the help of many people. Special thanks go
to the members of the CREWS team from RWTH Aachen, City University London, University of
Namur, and University of Paris-Sorbonne, to the co-organizers of the Dagstuhl Workshop, Tung
Bui and Jack Carroll, and to the cheerful people at Dagstuhl Castle; also to the European
Commission, especially David Cornwell, for supporting the underlying projects. The authors and
reviewers for this Special Issue worked hard under tight deadlines to enable timely publication
within less than a year from the call for papers; Stefan Zlatintsis and Jürgen Rack helped with the
processing of all the reviews, and the Editorial Office of REJ offered more patience and support than
could be reasonably expected. All these efforts aim at establishing a more coherent research
community in the field of Scenario Management.

Arnold, M., Erdmann, M., Glinz, M., Haumer, P., Knoll , R., Paech, B., Pohl, K., Ryser, J., Studer, R., Weidenhaupt,
K., 1998. Survey on the scenario use in twelve selected software projects. Aachener Informatik Berichte 98-7,
RWTH Aachen, Germany.

Carroll , J.M., Ed. 1995. Scenario-Based Design: Envisioning Work and Technology in System Development. New
York: John Wiley and Sons.

CREWS, 1998. Home page of ESPRIT Long Term Research Project 21.903 (CREWS), http://sunsite.informatik.rwth-
aachen.de/CREWS/

Fili ppidou, D. 1998. Designing with scenarios: a criti cal review of current research and practice. Requirements
Engineering 3, 1, 1-22.

Jarke, M., Kurki-Suonio, R., Eds., 1998. Special Issue on Scenario Management. IEEE Transactions on Software
Engineering, December 1998.

Rolland, C., Ben Achour, C., Cauvet, C., Ralyte, J., Sutcli ffe, A., Maiden, M., Jarke, M., Haumer, P., Pohl, K.,
Dubois, E., Heymans, P. 1998. A proposal for a scenario classification framework. Requirements Engineering 3,
1, 23-47.

Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P. 1998. Scenario usage in software development: current practice.
IEEE Software, March 1998, 34-45.

