Continuous Engineering for Industrial Scale

Software Systems

Organizers: Herbert Weber, Hausi Miiller

Dagstuhl Seminar 98092

Contents

Herbert Weber: Introduction

Herbert Weber: Continuous Engineering of Information and Com-
munication Infrastructures — A Position Statement
Hausi A. Muller: Reverse Engineering Strategies for Software Mi-
gration L
Ric Holt: Transformations of Software Architectural Structures
Steven Woods: Evolving Legacy Systems: New Technologies Sup-
porting Architectural Views of Software
Stefan Tai: Component and Connector Abstractions in Software
Design for Integrated Object Systems
Wolfgang Deiters: The Contribution of Process Management to a
Continuous Engineering of Office Applications
Sebastian Erdmann: A Workflow-Based Software Architecture for
Flexible Systems oo
Kenny Wong: On Inserting Program Understanding Technology
into the Software Change Process
Alex Sellink and Chris Verhoef: Native Patterns
Alex Sellink and Chris Verhoef: Development, Assessment, and
Reengineering of Language Descriptions
Ralf Kramer and Ulrike Kolsch: Data is the Core of Continuous
Engineeringo
Gunter Saake: Evolving Objects: Conceptual Description of Adap-
tive Information Systemso
Stefan Conrad: Heterogeneity and Autonomy in Federated Infor-
mation Systemso

Ralf-Detlef Kutsche: On the Role of Object-Oriented Modeling in
Continuous Engineering of Distributed, Heterogeneous Infor-
mation Systemso

List of Participants

Introduction

by Herbert Weber, Technical University of Berlin
and Fraunhofer ISST Berlin/Dortmund, Germany

Information and Communication Systems are growing together to long-living
Information and Communication Infrastructures that are mission critical to
organizations, businesses and the whole society. As any other kinds of arte-
facts Information and Communication Infrastructures age over time getting
out of synchrony with business demands and advanced technology. As a con-
sequence they need their continuous modification to live up to the changing
requirements.

A solid scientific foundation for a continuous engineering of those infras-
tructures is on its early stage: most of the practical approaches are rather
ad-hoc approaches and lack systematics and engineering rigor. Scientific ap-
proaches often lack the association with reality.

The seminar is intended to bring people with industrial experience and
solid scientific background together to lay the ground for a scientific under-
pinning of practical continuous engineering.

Continuous Engineering of Information and
Communication Infrastructures — A Position
Statement

by Herbert Weber, Technical University of Berlin
and Fraunhofer ISST Berlin/Dortmund, Germany

New Challenges

Radical changes are taking place throughout the economy. Efforts aimed at
gaining a competitive edge in terms of price and quality are seldom limited to
regional markets. Today’s entrepreneurs face competition on a global scale,
and this global change has put them under increasing pressure to review
traditional products and organizational and work processes — including the
underlying information technology.

Information has long since become a production factor. A smooth and
steady flow of information, both within and between organisations, is now
a strategic imperative. A competitive advantage will thus only be enjoyed
by those who exploit to the full the potential benefits of modern information
and communication technology.

Information highways, broadband communication, multimedia, video
conferences, teleworking and telecooperation — these are just a few of the

catch-words used to denote the possibilities seen in the years ahead. This
development heralds the end of an era in which centralized company de-
partments were made responsible to provide for the information technology
requirements of all users.

The 1980s were characterized by dramatic advances in hardware develop-
ment. Large mainframes were complemented by midrange computers which
were in turn complemented by powerful personal computers and worksta-
tions.

Networked workstations have already brought about a decentralization of
computer services in many corporations. These networks encourage the inte-
gration of independent data processing capabilities and isolated subsystems
into larger configurations.

A further change in the structure of information technology has been
taken place since the beginning of the 1990’s. Individual information systems
were being inter-connected to form coherent structures.

Such integrations lead to new configurations which — analogous to other
basic structural forms — are referred to as information and communication
infrastructures.

Transforming independent information systems into integrated structures
also changes their basic characteristics. Whereas previously such systems
were developed to satisfy immediate needs, the principle aim pursued in the
development of Information and Communication Infrastructures is to ensure
that the systems’ useful life can be prolonged indefinitely, in much the same
way as this principle applies to comparable infrastructural entities, such as
road networks and telephone systems.

New Applications
Business Applications

Changes in the management structures implemented in industry have in-
tensified the demand for an effective exchange of information and improved
efficiency in communication between collaborative work groups. The tran-
sitions from closed DP “islands” to integrated distributed system solutions
as well as the division of corporations into cooperative and flexible profit
centers, the flattening of administrative hierarchies and the integration of
outsourced external services have become an essential factor in responding
to global markets.

Various developments in information technology are currently paving the
way for the inter-connection of independent applications:

ete.

Client /server systems based on PCs and workstations complement cen-
tralized mainframe architectures.

Computers are being transformed into working environments capable
of supporting complex work processes.

Substantial progress has been made in establishing international stan-
dards for protocols, platforms, and interfaces, such as TCP/IP, http,
HTML, X.400, X.500, SQL, EuroISDN.

Manufacturer alliances are being formed to enforce industrial stan-

dards, for example OMG with CORBA, OSF with MOTIF and DCE.

Simple alphanumeric terminals are being replaced by others equipped
with graphic interface systems, window technology and multimedia ca-
pabilities.

High-speed broadband networks are advancing rapidly to replace slower
conventional telecommunications lines.

Groupware and workflow systems enable the coordination of teamwork
in offices and even the coordination of work in large organisations.

Multimedia systems allow for the visualization of complex information.

Virtual reality systems allow the simulation of activities in 3D spaces
ete.

All these new concepts and technologies contribute to the “re-vitalization”
or even ‘re-invention” of many applications like

in the banking business

in the insurance business
in commerce

in the publication business
in the logistics business

in tourism

in the service and maintenance business

Technical application

Information and communication technologies are paving the way towards
intelligent products of many different kinds. Therefore they are developed as
an integral part of many engineering systems like

e automobiles
e aircraft and space vehicles, and
e last but not least, many houshold goods.

The infrastructures in demand here are expected to conform to especially
high quality standards which in turn lead to demands for “safty-critical” or
even “zero-defect” software in information and communication infrastruc-
tures.

Many new products like telephone sets, consumer electronic products,
micro-electronic devices etc. are subject to permanent improvements and
refinements and this demands for their continuous engineering. These im-
provements and refinements are whereever possible left to changes to software
of the embedded information and communication infrastructures.

Manufacturing technologies undergo again dramatic changes. Early at-
tempts to fully integrate different stages in the production of goods are re-
considered now and brought to a consolidation based on new integration
technologies for information and communication infrastructures. As a con-
sequence manufactured goods are brought to the market faster and global
competition is largely based on “time-to-market” performance of corpora-
tions. By the same token the continuous improvement and refinement of
goods demands for continuous adaptations of their manufacturing technolo-
gies. Once again many of these adaptions are meant to be achieved with
changes in the supporting information and communication infrastructure.

Most visibly are at the moment dramatic changes in production tech-
nologies for the car manufacturing. These publicly debated revolutionary
developments represent however just the tip of the iceberg. Both the pro-
duction and disposal of almost all technical goods is being reconsidered, new
production technologies based on new divisions of labor and on new informa-
tion and communication technologies are implemented in almost all sectors
of the industry.

Last but not least, information and communication technologies are re-
placing traditional technologies. The best known example is the replacement
of hydrolic steering and control systems in aircrafts by “fly-by-wire” tech-
nologies, which are again based on highly complex information and commu-
nication infrastructures.

New Structures

Substantial productivity gains can be achieved in many domains with the
amalgamation of previously autonomous computer applications. In this way,
programs and software systems do not remain separate but become linked via
different kinds of integration and communication platforms into compounds
that become critically important to the application. As a consequence, many
of the programs and software systems installed in recent years have evolved
into assets of an unexpected durability. We refer to such durable and evolving
systems as Information and Communication Infrastructures.

Like other kinds of infrastructures, Information and Communication In-
frastructures are developed for continuous use and to enable adaptations
and extensions through partial renewal, partial extension and partial replace-
ment, without changes to the underlying basic concept. The establishment of
Information and Communication Infrastructures thus demands a wide range

of skills:

o the skill of the business consultant for the analysis of business structures
and practices which the infrastructures are meant to support,

e the skill of the engineer for the analysis of the engineering problem and
for the specification of the requirements for the needed infrastructure,

e the skill of the technology advisor for the choice of the right concepts
and systems for the infrastructure,

e the skill of the technology developer for the adaptation of existing prod-
ucts to their use in an infrastructure,

e the skill of the technology and systems integrator for the amalgamation
of individual technologies and systems into a coherent overall infras-
tructure.

Information and communication infrastructures are meant to provide nu-
merous decisive advantages when compared with traditional systems:

e [T infrastructures are built to be improved in an evolutionary manner
based on a fundamental concept that has been carefully planned and
established.

e IT infrastructures are built to be altered and extended at any time,
allowing entrepreneurs essential flexibility in responding to changing
requirements.

e [T infrastructures make it possible to utilize new and improved com-
ponents in conjunction with older existing systems.

e This capacity to develop infrastructures gradually over an extended
period of time safeguards investments.

IT infrastructures present a substantial change to software and systems
engineering. The logical relationships between the components in software
and systems are highly complex, and this complexity increases as these sys-
tems themselves are combined into a larger whole. That demands for modern
architectures that are

e modular:
Components are constructed as independent, reusable entities.

e open:
Systems can be used and adapted over long times

e compatible:
Structures have to be established that are compatible to acceptanced
principles, and the use of standardized interfaces, components and in-
variant platforms.

New Characteristics

Information and Communication Infrastructures are in most cases product,
mission or even business critical. They must guarantee maximum safety and
reliability. This is particularly true for systems used in high-risk applications,
such as nuclear power stations and aircraft piloting, traffic control, banking
and telephone networks.

The infrastructures currently used often do not fulfil this prerequisite. In
many cases there are substantial shortcomings in their quality:

e Systems are often faulty and unreliable. This can often be attributed
to such factors as unsystematic engineering techniques, a lack of the-
ory and formalization, inadequate quality assurance, and bad systems
management, among others.

e The architecture and functions of legacy systems are often not known
in detail. In the majority of cases this is attributable to inadequate
maintenance techniques, and to incomplete or non-existent documen-
tation.

If these factors are present simultaneously, systems can become an incal-
culable risk. This presents corporate users with new challenges, particularly
in view of their exposure to competition in international markets.

7

New Technologies
Network Technologies

Network technologies facilitate the realization of integrated Information and
Communication Infrastructures, offering several substantial benefits:

e They support geographically distributed organizations.

e They protect investments made in independent systems and user-
specific software.

e They reduce the high cost of new developments through the integration
of existing systems.

e They improve and accelerate work practices by providing reliable col-
laboration support to users.

Network technologies allow now the deployment of:

e heterogeneous communication systems

e heterogeneous information management systems, comprising file sys-
tems, relational and object-oriented databases

e different hardware and software within the same Information and Com-
munication Infrastructure

Process Management

Private enterprises and public organizations continuously address themselves
to the task of reorganization. Business concepts — such as lean manage-
ment, lean production or business process reengineering — can only be put
into practice successfully if supported by information technology. Compa-
nies with flat, customer-oriented management structures must be able to call
upon high-performance communication systems that are readily adaptable
to changing needs.

The organization of activities into work groups plays a key role in the
decentralized management structures being adopted today. The effectiveness
of such groups has a decisive influence on critical business performance factors
such as costs, processing time, productivity, time ot market and the quality
of products and services.

Industry and public organizations are increasingly aware of the need to
enhance the effectiveness of such work groups. They are now taking a criti-
cal look at their organizational structures and procedures, as well as at the
corresponding business processes.

Computer supported process management provides organizations with
far-reaching advantages:

Explicit models enable cooperative processes to be more readily under-
stood and critically examined.

Teamwork is improved, and cooperation between team members is
guided and comprehensively supported.

Problems in communication, attributable to misunderstandings, mis-
direction etc., can be alleviated.

Information Management

Development of Information and Communication Infrastructures increasingly
relies upon the implementation of comprehensive information models.
These information models:

offer a uniform, global view on information maintained in an enterprise,
and

enable the documentation of relationships between the data compiled
in different parts of an organization

They facilitate:

a better understanding of complex organizational structures

the application integration into Information and Communication In-
frastructures

the systematic design of software

New modelling techniques are needed to

document the semantic content of data at various levels of abstraction
check on their syntactic and semantic consistency
enable the development of domain and customer specific view on models

enable their implementation by means of different kind of data man-
agement systems like data bases, object bases etc.

enable the coexistence of different models in heterogeneous Information
and Communication Infrastructures

enable the re-engineering and migration of models

Continuous Engineering

Software and systems that make up Information and Communication Infras-
tructures are different in nature from those that serve as products of a limited
lifetime. Their development and evolution require practises other than those
of classical software and systems engineering.

1. Infrastructures must be continuously enhanced, so that they can cope
with changing user or business requirements with ease.

2. Existing systems must be easy to amalgamate with new systems in an
infrastructure.

3. The replacement of components in existing infrastructures by new, im-
proved components must be straightforward and the migration from an
old infrastructure to an updated one must take place in a controlled
way.

4. The porting of systems in an infrastructure from one standard platform
to another standard platform must be possible with minimum effort.

5. The reuse of existing systems and components in the same and in other
infrastructures must be possible with minimum effort.

Software represents the predominant investment factor in Information
and Communication Infrastructures. Over many years and at great expense
companies and public organizations have created infrastructures which satisfy
their specific requirements. As a consequence many organizations continue to
use software systems that are far too rigid to respond to the rapidly changing
conditions.

Substantial efforts must therefore be invested to modernise those systems
and to acquire detailed knowledge of how they were designed and how they
function in their reverse engineering.

This is an essential step prior to altering or extending that software in its
reengineering. The reengineering of legacy software systems opens up a wide
variety of possibilities:

e Protection of existing investments

e Structural improvement of outdated or substantially altered software
systems

e Increased comprehensibility of programs

10

e Adaptation of existing software to new tasks and operating environ-
ments

e Restructuring, for example from mainframe applications to client/
server architectures

e Modernization of software, for example, with sophisticated graphical
user interfaces

e Improvement in the operation and maintenance properties of software

The possibilities outlined above must, however, be offset of the costs
involved.

Reverse Engineering Strategies for Software Migration
by Hausi A. Miiller, University of Victoria, Canada

The need for maintaining and improving software and information systems
has risen dramatically over the past decade. Dealing with old software sys-
tems, which constitute billion-dollar assets to corporations and governments,
has been recognized as a critical problem by industry, academia, and en-
trepreneurs. Migrating and reengineering involves capturing, preserving, and
extending knowledge about software, analyzing and understanding software,
and finally changing, improving, and evolving software. Reverse engineering
approaches have been particularly useful in the reengineering arena. Reverse
engineering is the process of generating new information about software such
as synthesizing abstractions and generating different views. This presentation
concentrates on the reverse engineering strategies for software migrationand
reports on our experience migrating PL/I to C++ code in collaboration with
IBM Toronto Laboratory.

About the author

Hausi A. Miiller received a Diploma Degree in Electrical Engineering from
the Swiss Federal Institute (ETH) in Zurich. From 1979 to 1982 he worked
as a software engineer for Brown Boveri & Cie in Baden, Switzerland (now
called ASEA Brown Boveri). In 1984 and 1986, he received M. Sc. and Ph. D.
degrees in computer science from Rice University, Houston, Texas, respec-
tively. Since 1986 he has been at the University of Victoria, British Columbia
where he is an Associate Professor of Computer Science and served as Acting
Chair for 1995/96.

11

In 1992/93 Dr. Miiller was on sabbatical at the Centre for Advanced Stud-
ies in the IBM Toronto Laboratory working with the program understanding
group. While at IBM, Miiller analyzed the source code of SQL/DS, a multi-
million-line database management system, using his Rigi reverse engineering
environment. He currently is a principal investigator of CSER (Consortium
for Software Engineering Research), a Canadian, industry-lead consortium
sponsored by NSERC and NRC.

His research interests include software engineering, software evolution,
reverse engineering, software reengineering, software migration, program
understanding, software architecture, and software maintenance. He was
a Program Co-Chair for the IEEE International Conference on Software
Maintenance-ICSM 94 in Victoria, September 19-23, 1994, for the 7th IEEE
International Workshop on Computer-Aided Software Engineering- CASE
'95 in Toronto, July 10-14, 1995, and the IEEE 4th International Workshop
on Program Comprehension-WPC 96 in Berlin, March 29-31, 1996. He is
on the Editorial Board of IEEE Transactions on Software Engineering.

Dr. Miiller is President of Hypersystems Technologies Inc., a company
specializing in tools and consulting for reengineering and migrating legacy
software systems such as for the Year 2000 Problem.

Transformations of Software Architectural Structures
by Ric Holt, University of Waterloo, Canada

There is a method of software architecture extraction in which the person
doing the extraction takes a hybrid approach, deriving facts from the code
and determining heriarchic structure by interviewing persons familiar with
the software. These two sources of informations are merged to derive the
higher level structure (the concrete architecture) of the software system.

This work is illustrated using Software Bookshelf tools operating on a
250,000 line industrial program. An algebraic approach is used to transform
the low level structure from source code to higher level structures, at the
architectural level.

The low level facts are represented as edges (tuples) in a typed graph.
Using Tarski’s theory that defines an algebra of operations on such graphs,
these facts are manipulated to high level facts. These operations include
relation union, intersection, composition, transitive closure, etc., all incorpo-
rated into a script language called Grok. Using this language, relations are
aggregated, sub-trees are consolidated to single nodes, and sub-trees (sub-
systems) are separated for analysis. All of these manipulations, or structure

12

transformations, can be thought of as data base queries, and are written as
Tarski graph operators.

Evolving Legacy Systems: New Technologies
Supporting Architectural Views of Software

by Steven Woods, Carnegie Mellon University, USA

The SEI’s Product Line Systems (PLS) Program aims to enable widespread
Product Line Practice (PLP) through architecture-based development. PLP
focuses on engineering and reengineering software-intensive systems from
the perspective that that an organization’s evolving software asset base is
best viewed as a core “product” with a corresponding reference architecture.
THis “core” represents an attempt to manage and constrain possible system
variability according to carefully determined enterprise-wide business goals.
While each organization’s differences entail different paths towards sound
PLP, the SEI is refining a framework accomodating various organizational
starting points. One key aspect of moving towards product lines is the tran-
sitioning between legacy systems (and legacy architecture) and a carefully
designed (new) target architecture. The process of acquiring a high-level
system understanding can be assisted through the application of emerging
technologies in computing — in particular, the SEI is currently investigat-
ing application of architectural recovery, distributed object technologies and
net-centric computing to reengineering. Reengineering tools and methods
help leverage software legacy assets by supporting expert architectural anal-
ysis and extraction through software visualization and flexible, intelligent
componentization. While many similar and complimentary tools exist, the
interoperability of these reengineering tools has long been a source of dif-
ficulty for researchers and practictioners alike. An attempt at defining and
reaching consensus on an open middleware schema (CORUM) for reengineer-
ing tools has recently been commenced in cooperation with no fewer than 6
concerned institutions, and this work is continuing as anevolving middleware
for SEI's architectural analysis toolset (DALI).

Component and Connector Abstractions in Software
Design for Integrated Object Systems

by Stefan Tai, Technical University of Berlin, Germany

In our research, we focus on two major directions supporting continuous soft-
ware engineering: software architecture, and object integration technologies.

13

In software architecture, a system is viewed and modeled as a set of
components and connectors. Components are abstractions of system level
computational parts, connectors are abstractions of component interdepen-
dencies. The components, and the mechanisms guiding their interoperation
(like communication styles and interaction protocols), are recorded as sepa-
rate, distinct architectural abstractions. This separation of design concerns
leads to system representations that make information about component con-
nections explicit, thus facilitates component (ex)change and partial modifi-
cations.

Object integration technologies like the OMG’s CORBA, on the other
hand, address implementation support for the integration of diverse soft-
ware components in distributed, heterogeneous environments. They define
standard component interconnection and interoperation models to encapsu-
late incompatible component implementations: All integrated software enti-
ties are considered objects that export object-like interfaces and interact by
means of method invocation.

In order to effectively abstract, structure, and express the software ar-
chitecture of systems that are continuously build using object integration
technology, dedicated software architectural design support is needed. Fur-
thermore, impacts on software system design as introduced by the chosen
object technology (for example, regarding general purpose object services
like the CORBAServices) must be well understood and recorded to support
system understanding and continuous development.

In this talk, we propose a software component and connector model for
architectural representation of integrated object systems. We argue to rep-
resent the software architecture of ORB-based systems on two different lev-
els of abstraction: using connectors as pattern-like, distinct abstractions of
component interactions in an abstract architecture, and using component
abstractions only that relate to ORB object computational models in a con-
crete architecture. We exemplify our concepts for modeling CORBA systems
and discuss related design issues of continuous engineering on an example of
a large, long-lived system.

The Contribution of Process Management to a
Continuous Engineering of Office Applications

by Wolfgang Deiters, Fraunhofer ISST Dortmund, Germany

A systematic management of business processes is considered to be one ap-
proach that contributes to a continuous engineering of software systems.
Managment of business process means on the one hand side the proper defi-

14

nition, analysis and improvement of business processes, thus yielding in im-
proved process oriented business organizations. On the other hand side it
means the process oriented design and implementation of the IT-systems
supporting the organization’s business. One enabling technology supporting
a process oriented IT-development is the workflow technology. The basic
principle of that technology is to define the IT relevant parts of the business
processes in so called workflow models. The main parts of a workflow model
are the definition of activities to be performed in the processes, the definition
of the possible activity schedules that are valid and the definitions of respon-
sibilities (i.e. the definition of who is allowed to perform which activity). In
a workflow system the workflow models are being processed by a workflow
engine thus driving the process along. For supporting the various activities
tool services are being called during activity execution.

There are a couple of workflow management systems available on the
market that support the workflow management paradigm. However, in many
cases there are several problems that hinder the proper development of work-
flow based applications. Among these problems are the legacy problem, i.e.
the problem to adaequately integrate existent applications into a workflow
application, the data problem, i.e. the necessity to partially store redun-
dant data that could lead to inconsistencies, and the problem of how to
appropriately separate legacy systems’ functionality from workflow system’s
functionality.

Furthermore workflow management system that are available today still
lack some concepts for exception handling and ad hoc modifications. With
respect to this issue concepts for a late modelling of processes and concepts
for a flexible process model configuration are sketched. Furthermore, a clas-
sification scheme for distinguishing between different classes of structured
and semi-structured processes is shown. For supporting processes belonging
to different classes of that classification scheme different techniques (beside
workflow management systems) have been developed or are being developed.
The problem to integrate these different kinds of CSCW systems is addressed
and the need to develop a service oriented architectural framework for the in-
tegration of workflow systems, groupware systems and other kinds of CSCW
systems is discussed.

15

A Workflow-Based Software Architecture for Flexible
Systems

by Sebastian Erdmann, Technical University of Berlin, Germany

Many organisations are faced with the need to reorganise their business from
functional to process oriented approaches. Such reorganisation can be sup-
ported by workflow technology.

By using process models, the global flow of control and flow of business-
relevant data is modelled explicitly. Formerly, it was hidden in custom (or
off-the-shelf) software systems. Separating the process model, the computa-
tional aspects, and the data management enhances the system flexibility and
configurability.

In current workflow management systems, however, the integration of ex-
ternal software components is problematic. In particular, the data exchange
between the workflow management system and external software relies on
ad-hoc solutions. Two data models of the business-relevant data exist: one
in the workflow schema, and one in the application model.

We propose a solution based on the FUNSOFT process modelling lan-
guage. We extend the FUNSOFT language by an object-oriented type system
and provide a common meta model which integrates process modelling and
the object-oriented modelling. Thereby, consistency between both kinds of
models can be achieved.

We use the viewpoint concept of RM-ODP as a general framework for our
models. Process models are used in the Enterprise Viewpoint to specify gen-
eral relations between actors, activities, and data. Object-oriented modelling
is used in the Information Viewpoint and the Computational Viewpoint to
specify the structural and behavioural properties of the system, respectively.

On Inserting Program Understanding Technology into
the Software Change Process

by Kenny Wong, University of Victoria, Canada

Program understanding technologies can be applied effectively in the anal-
ysis phase of a software change process. The analysis phase naturally fol-
lows a goal-driven metaprocess. Described are issues involved with inserting
program understanding technology into existing practice and into such a
metaprocess. The implied processes of program understanding and reverse
engineering tools play an important role. These issues pose major programs
for the acceptance of redocumentation tools such as Rigi, an evolvable re-

16

verse engineering tool. An example using Rigi and its analysis methodology
for change-impact analysis is considered.

Program understanding tools and techniques can play an important role
in the analysis part of the software change process. In particular, tools such
as Rigi can use exact interfaces to help answer the question of whether cer-
tain changes should proceed. It is important to recognize the issues limiting
the adoption of program understanding technology for continuous engineer-
ing. Tools have their own implied methodologies, processes, and strategies of
use. These implied processes need to coexist within an analysis process that
is naturally goal-directed. However, some tools have substantial preparation
and forward-feeding "eager” activities. These aspects and other overhead
may account partly for the difficulty of introducing certain program under-
standing tools into the development environment, where the tool users have
high expectations of quick, guaranteed results, with no learning curve.

Open, lightweight tools that are specialized to do only a few things very
well may be needed for easier technology insertion. Adaptable tools where it
is simple to work around or recover after their problems are needed. Toward
this need, Rigi supports tool evolution where the tool becomes more domain-
specific. Strategies such as conceptual modeling and script writing are used
to help capture analysis experience and knowledge about the business. The
tradeoft is that although these activities may be reusable, they are often time
consuming.

Native Patterns

by Alex Sellink and Chris Verhoef, University of Amsterdam, The
Netherlands

We generate a native pattern language from a context-free grammar. So
if we have the underlying grammar of code that needs to be analyzed, or
renovated the pattern language comes for free. We use native patterns for
recognition and renovation of code. The pattern language is global in the
sense that patterns can match entire programs. We illustrate native patterns
by discussing a tool that remediates a notoriously difficult Year 2000 problem
using native patterns.

Categories and Subject Description:

D.2.6 [Software Engineering]: Programming Environments—Interactive;
D.2.7 [Software Engineering]: Distribution and Maintenance-Restructuring;
D.3.4 [Processors]: Parsing.

17

Additional Key Words and Phrases:
Reengineering, System renovation, Patterns, Plans, Clichis, Native pattern
language, Year 2000 problem, Leap year problem.

Development, Assessment, and Reengineering of
Language Descriptions

by Alex Sellink and Chris Verhoef, University of Amsterdam, The
Netherlands

We discuss tools that aid in the developent, the assessment and the reengi-
neering of language descriptions. The assessment tools give an indication
what is wrong with an existing language description, and give hints towards
correction. From a correct and complete language description, it is possible
to generate a parser, a manual, and on-line documentation. The parser is
geared towards reengineering purposes, but is also used to parse the examples
that are contained in the documentation. The reengineered language descrip-
tion is a basic ingredient for a reengineering factory that can manipulate this
language. We demonstrate our approach with a proprietary language for real
time embedded software systems that is used in telecom industry. The de-
scribed tool support can also be used to develop a language standard without
syntax errors in the language description and the code examples.

Categories and Subject Description:

D.2.6 [Software Engineering]: Programming Environments—Interactive;
D.2.7 [Software Engineering]: Distribution and Maintenance-Restructuring;
D.3.4 [Processors]: Parsing.

Additional Key Words and Phrases:

Reengineering, System renovation, Language description development, lan-
guage engineering, grammar reengineering, generation of manuals, genera-
tion of on-line documentation, computer aided language engineering, CALE,
Message Sequence Charts.

Data is the Core of Continuous Engineering
by Ralf Kramer and Ulrike Kolsch, FZI Karlsruhe, Germany
Introduction and Motivation

Most re-engineering approaches for dealing with legacy systems focus on the
re-engineering of programs. From our perspective and experience, however,
these approaches are neither sufficient for implementing the changes in these

18

huge information and application systems that run the business of the en-
terprises where they are employed, nor are they sufficient to effect enduring
change in the business processes of an enterprise.

The core of every legacy (or heritage) system and application is data. In
order to re-engineer existing applications, it is mandatory that the seman-
tics of the data be understood, because the semantics of the data determine
the semantics of the application program. The approach developed in our
previous projects, the extraction of an object-oriented model of a system’s
data and its functionality obtained by viewing the given system and extract-
ing information from the data structure description, application programs,
and documentation provides the background and the methodology we use in
this paper. As a result of this reverse engineering approach, we achieve a
data-centered object-oriented model of the legacy application.

The reverse engineered, object-oriented model as a representative of
the legacy system’s data and functionality is the appropriate basis for re-
engineering and, in the long run, for continuously engineering information
and application systems.

In the remainder of this position paper, we want to provide evidence
for this claim based on our projects in two fields: namely, environmental
information systems for public authorities and financial systems.

Experience from real-world projects

In both application areas, technological advances were the starting point:

e For environmental information systems (EIS) used by public author-
ities, Web technology offered the opportunity to serve both in-house
users and the public (as required by EU law) cost efficiently for the
first time.

e In the finance sector, middleware for open client/server architectures
(OMG’s CORBA) was the starting point, because it promised to allow
for more user-friendly, distributed and loosely-coupled applications.

Distributed Environmental Information Systems

In a fairly large number of EIS projects, we started with the almost classical
approach of using HTML, HTTP, and CGI to access (relational) databases,
geographic information systems (GIS) and other systems that were already
in place. In the second generation, this approach was complemented by
Java-based retrieval modules that allowed the implementation of advanced
retrieval capabilities and the avoidance of some of the deficiencies of the CGI

19

approach. Due to rapidly evolving technologies in this field, we currently are
dealing with the third generation of Web-based systems, which take advan-
tage of Java for data updates throughout the Web, as well.

Parallel to the evolution of technologies, the underlying databases were
only changed modestly. This holds both for databases that have already been
in place for some time (like the EIS Baden-Wiirttemberg) and for databases
that are built at the same time as Web-based software is being developed.
(like WebCDS for the European Environment Agency). This supports our
claim that data is the most valuable asset each organization has and that
data is the core of every approach to develop new application software.

Finance Sector

In the finance sector, mainframes play an important role, because they en-
sure reliability in the presence of mass data processing, secure and safe 24
hours a day, 7 days a week, 52 weeks a year operation, scalability up to ter-
abytes of data stored in databases (not necessarily in database management
systems), and a level of security which can be considered to be much higher
than that of client/server systems. Furthermore, those mainframe systems
guarantee that all data is handled in a legally correct fashion by a super-
visiory banking agency which makes sure that mainframe systems fulfill all
legal requirements. Obviously, these host-based application and information
systems are highly-sensitive and crucial for the banking industry.

On the other hand, these systems often suffer from severe drawbacks in
their development and maintenance history. They are often written in 3GL
or even Assembler, they use proprietary and degenerated interfaces for their
data, they often use file system-based databases and not DBMS, and they
use clumsy and user-unfriendly character-oriented interfaces.

Since users become increasingly well-acquainted to GUIs, terminal ap-
proaches are clearly inadequate. Given the promising nature of open middle-
ware approaches, that support heterogeneous and distributed environments,
such as CORBA; it comes as no surprise that a distributed architecture in
which data is managed locally is an approach worth investigating. Another
appealling concept is that of the object-oriented modelling of business ob-
jects and their processes combined with the promise of fast and easy changes
and the adoption of such a model for changing business requirements.

However, when starting with a purely object-oriented data model, there is
no clue about the model inherent to the already existing application. It is like
the design and development of a stand-alone application with no environment
to react to and no significant considerations to take into account about how
to co-exist with existing application systems or third vendor systems (like

20

e.g. SAP R3). Obviously, this is not an adequate or sensible approach
in an enterprise with a long history of using IT as there will always be
existing systems to co-operate and to coordinate with. There are always
official standards to be met and so-called standards which are non-offical,
but nevertheless compelling, as well as regulations to obey.

Thus, as a consequence of the situation described, we need to adapt the
object-oriented modelling and software engineering technique, in order to
turn it into an evolutionary and adaptive approach applicable in real world
situations.

Proposed Approach

Based on our experience, we do not propose developing a new business object
model from scratch. Instead, it makes more sense to reverse engineer existing
data, physical data structures, and applications, in order to obtain an object-
oriented model of the given information system. Since the already existing
information system and its data describe the same are as the intended new
application, in most cases a proper object-oriented model can be extracted
by stripping away the technical constraints of the older systems used. The
reverse object-oriented model is not designed as perfectly as a new one, but
it is the result of years of use and fine tuning to an operational application
system. So this model takes into account the real needs of the business and
focuses on details often overlooked in the first run in modeling approaches
that start from scratch, because they lack the accumulated knowledge.

This object-oriented model provides the basis for the new development
of an application system. It sets the limits for the new application, in such a
way that there are no changes allowed to the model, in order not to risk the
co-operation of old and new applications. At the same time, it also clearly
illustrates the deficiencies of the existing applications and data and provides
the possibility of enhancing and enlarging the model, in order to support the
new business features of the application to be developed.

Conclusions

Given a situation in which companies want to react to changes in the market
in a more timely fashion, existing and newly developed applications are ag-
ing at an accelerated speed. The faster the business changes, the faster the
applications crucial for the success of a business become out-dated. Thus,
application systems have not only to be re-engineered, but they have to be
enhanced and adapted in order to preserve and enhance their functionality
as well. These enhancements in their functionality require additional data,

21

as well. Based on our project experience, especially in the finance sector,
we argue that in certain cases a semantic understanding of the host data
and modular additions to this data are an adequate approach to provide
the newly required functionalities. Neither a complete migration to a dis-
tributed client/server architecture, nor the co-existence of the host data and
application and the new client/server application are adequate.

Because of the characteristics of contemporary system development and
system evolution, it is absolutely necessary to come up with an approach
which allows the permanent and evolutionary engineering of software for new
and already-existing information and application systems. The future suc-
cess of software engineering is dependent upon adaption to the ever-changing
needs of its customers. Hence, an approach which enables the real and fore-
seeable continuous engineering of systems is required. The requirement is
to plan and construct with room for changes, adoptions, and enhancements,
since this will happen in the lifetime of every large information system. As
illustrated by Web-based EIS, especially in fields using rapidly evolving tech-
niques, this is even likely to happen in the short run. Furthermore, it is a
fact that in real-world software processes, there is always a legacy to work
with, to co-operate with, and to integrate the new systems into; software
development does not start from scratch, although this is the impression of-
ten given. Given a flexible concept of semantic and technical integration,
the co-existence and a fruitful co-operation between the systems of different
origin and generation can be easily achieved without friction and without
the problem of embedding a newly developed application system in a legacy
information technology structure and culture as is often encountered.

Acknowledgments

We would like to thank all members of the Database Research Group at
FZI (Wassili Kazakos, Arne Koschel, Ralf Nikolai, Claudia Rolker, Rainer
Schmidt, Mechtild Wallrath, and Sonja Zwiller) and Prof. Dr. P. C. Locke-
mann for their ideas, efforts, and contributions to the projects that are the
background for this position paper.

Evolving Objects: Conceptual Description of Adaptive
Information Systems

by Gunter Saake, University of Magdeburg, Germany

A common metaphor is to see program construction as similar to building a
house: an architect is planning the structure, building a house is a sequence of

22

concrete steps, and the building process terminates after finishing the house.
For information systems, the ‘information-system-as-city’ metaphor is more
appropriate: an information system consists of many buildings (= programs)
using a shared infrastructure; building a city is a vivid and sometimes chaotic
process; there are rather restrictions than concrete prescriptions for building
houses; and the construction process will never be finished. Old and new
buildings have to co-exist, and old buildings are used for purposes the never
been planned for.

The talk discusses the need for adaptive database applications as com-
ponents of such an information system. Database objects, for example in a
bank application or production documents, may have a very long life-span.
Some information has to be stored and manipulated for centuries. Together
with this object we have a fixed part of manipulation functions, which is
ideally stable for the life-span of the object (basic routines for manipulating
attribute values, withdraw / deposit for bank accounts). We call this part the
rigid part of the object behaviour. The rigid part is typically ‘hard-coded’
in database applications and realized by optimized code.

Other parts of a database application are subject to frequent change:
constraints or business rules, exception activation and notification triggers.
Rules for computing interests in a bank application or billing processes are ex-
amples of such changing parts. We call these parts evolving. These changes
may result from changes in business processes and policies, but may even
modify the behaviour of single instances of object classes. In current ap-
plications, the evolving part may be realized by interpreted SQL triggers
and stored procedures, which can be activated, modified or deactivated at
runtime.

This situation leads to the notion of ‘evolving objects’ as building blocks
of an information system which are designed for being adaptable to new re-
quirements. Our work starts with the object specification language TROLL,
which is based on a temporal logic framework for describing objects as ob-
servable processes. As an extension to TROLL, a language is presented which
allows to separate the rigid (= stable) part of an object specification from an
evolving part. This evolving part is stored in specification attributes which
can be manipulated in the same fashion like base attributes storing data val-
ues. The evolving part corresponds to run-time interpreted SQL triggers and
stored procedures in current database applications. The separation of these
aspects of object functionality is a key principle for preparing objects for evo-
lution during the design phase. As basis for maintenance and re-engineering,
this separation has to be made explicit in implementations, too.

23

Heterogeneity and Autonomy in Federated
Information Systems

by Stefan Conrad, University of Magdeburg, Germany

In this talk we discuss aspects of heterogeneity and autonomy in federated
information systems and sketch basic solutions developed for building feder-
ated database systems. Heterogeneity and autonomy cause a lot of problems,
in particular in building a federated system from (pre-) existing information
systems and in adapting a federated system to changing or new requirements.

Starting from a basic architecture of federated database systems, we first
consider the (logical) integration of data managed by already existing in-
formation systems. Due to autonomy the data is often described by using
different data models, applying different modeling constructs, and thus re-
sulting in heterogeneous (database) schemata.

We give a brief overview of possible integration conflicts occurring during
schema integration: semantic conflicts, description conflicts, heterogeneity
conflicts, and structural conflicts. Furthermore, we present the basic ideas of
the Generic Integration Model (GIM), an approach developed in our group
in Magdeburg. GIM provides an intermediate representation for schemata.
GIM schemata describe the relationships between disjoint extensions (sets
of objects) and attributes as properties of these objects. In order to obtain
a GIM schema from an existing database schema an extensional analysis is
needed to determine the disjoint extensions. For that, subset relationships
(due to specialization) and general overlapping of class extensions must be
resolved. Given a GIM schema for the database schemata which are to be
integrated we can easily derive an integrated schema. We demonstrate this by
applying applying the method of concept analysis based on the mathematical
theory of concept lattices.

Furthermore, we emphasize the requirements for dynamic or iterative in-
tegration methods. Dynamic integration is needed to adapt the federated
system to changing requirements (for instance, schema evolution in com-
ponent systems; addition of further component systems; unavailability of
component systems).

Finally, we briefly discuss the problem of behavior integration. There
are some concepts of how to provide a global transaction management for
transactions using the integrated schema on the federation layer while local
transactions within the component system are preserved. However, hetero-
geneity and autonomy of the component systems can cause severe conflicts
between global and local transactions as well. Semantic integration of be-

24

havior (e.g. on a design level) is still an open problem which we demonstrate
by means of a simple example.

On the Role of Object-Oriented Modeling in
Continuous Engineering of Distributed, Heterogeneous
Information Systems

by Ralf-Detlef Kutsche, Technical University of Berlin
and Fraunhofer ISST, Berlin, Germany

Building and evolving large-scale information infrastrucutures, the integra-
tion and/or federation of distributed heterogeneous information resources
(often given by databases, local information systems and a bunch of rather
local applications around them) has to be combined with a general view
of software evolution, combining forward, reverse and re-engineering steps
consistently into a continuous engineering process.

One of the major issues in the development and evolution of informa-
tion systems typically is the requirement of maintaining legacy components
in their old shape and organizational embedding as autonomous systems,
although becoming well-integrated members of the whole infrastructure.

These premises given, we suggest a general methodology of continuous
information systems engineering based on object-oriented models and their
consistent evolution. This approach is the outcome of a number of projects in
different application domains, such as information systems for tele-medicine
services, and environmental information systems. Technically, we make use
of the manifold of techniques in the Unified Modeling Language UML within
the object-oriented paradigm for the information systems development, me-
thodically emphasizing on the following tasks, which appear in a multi-cycle
development model:

e modeling use cases for the new system to be built;
e modeling information structure of the new system;

e modeling information structure and application contexts of the under-
lying legacy systems — only as far as required;

e relating the underlying models with the (possibly virtual) new struc-
tures;

e modeling functional and behavioural aspects of the legacy systems;

25

e modeling and relating new functionality with existing functionality by
functional modeling and specification;

e modeling and relating new behaviour with existing behaviour;

and, in addition, having two specific essentials in our approach towards a
continuous evolution on information infrastructures:

e modeling information and metainformation simultaneously, and relat-
ing information/metainformation models with each other;

e developing analysis and design models simultaneously, using the
metainformation structures for better coherence between analysis and
design models.

Practical experiences show that this OO diagrammatic approach can be
successfully applied on different levels of abstraction and in all phases of
continuous information systems engineering. However, there still remain a
number of open questions w. r. t. semantic coherence of the respective models.

26

List of Participants

Stefan Conrad
University of Magdeburg, Germany
conrad@iti.cs.uni-magdeburg.de

Wolfgang Deiters

Fraunhofer Institute for Software
Engineering and Systems Engineering,
Dortmund, Germany
deiters@do.isst.thg.de

Sebastian Erdmann

Technical University of Berlin,
Germany

serdmann@cs.tu-berlin.de
http://cis.cs.tu-berlin.de/~serdmann/

Ric Holt
University of Waterloo, Canada
holt@Quwaterloo.ca

Ulrike Kolsch

Forschungszentrum Informatik (FZI),
Karlsruhe, Germany

koelsch@fzi.de

Ralf Kramer

Forschungszentrum Informatik (FZI),
Karlsruhe, Germany

kramer@fzi.de

Ralf-Detlef Kutsche

Technical University of Berlin

and Fraunhofer Institute for Software
Engineering and Systems Engineering
(ISST) Berlin, Germany
rkutsche@cs.tu-berlin.de
http://cis.cs.tu-berlin.de

http: //www.isst.fhg.de

Hausi A. Miiller

University of Victoria, Canada
hausi@csr.uvic.ca

http: //www.rigi.csc.uvic.ca

Gunter Saake
University of Magdeburg, Germany
saake@iti.cs.uni-magdeburg.de

Alex Sellink

University of Amsterdam,
The Netherlands
alex@wins.uva.nl

Stefan Tai

Technical University of Berlin,
Germany

stai@cs.tu-berlin.de
http://cis.cs.tu-berlin.de/~stai/

Chris Verhoef

University of Amsterdam,
The Netherlands
x@wins.uva.nl

Herbert Weber

Technical University of Berlin

and Fraunhofer Institute for Software
Engineering and Systems Engineering
(ISST) Berlin/Dortmund, Germany
Herbert.Weber@isst.fhg.de

Kenny Wong
University of Victoria, Canada
kenw@csr.csc.uvic.ca

Steven Woods

Carnegie Mellon University, USA
sgw@sei.cmu.edu

27

