
Programs with Recursively Defined Data Structures

Using Pointers

Organizers:

M. Sagiv (Tel Aviv), M. Schwartzbach (Aarhus)
K. Weihe (Konstanz), K. Mehlhorn (Saarbrücken)

April 20–24, 1998

1 Introduction

The theme of this seminar was to study programs that manipulate dynamically allocated data.
The attendees were researchers from three different areas:

• Design and implementation of combinatorial (e.g., graph) algorithms with a heavy usage
of dynamically allocated memory. Many of these algorithms are currently implemented
in C++, e.g., see [MN95].

• Verification of partial correctness of such implementations, e.g., proving that a program
only refers to allocated memory cells. Proving that a program does not create memory
leaks. By convention, we call these cleanness checks since they must hold for every
reasonable program as opposed to correctness, which is program specific. The hope is
that some of these tests can be carried out by future compilers.

• Compiler optimization to speed up the execution time of such programs. For example
prefetching of linked data structures can improve performance by 45%, see [LM96].

Three panels of open problems were held (summarized in Section 3). Few of the open problems
already initiated research, e.g., in the area of improving locality of programs that manipulate
dynamically allocated memory and in the area of automatically eliminating “checking code”
that validates that certain invariants are maintained after a library operation, e.g., that the
insertion of a new edge into a directed graph, maintains the Euler equation.

33 talks were given presenting the state of art techniques in these areas (the schedule is given
in Section 2 and the abstract is summarized in Section 4). The talks were very interesting and
accessible to all groups. Some of the talks presented solutions to open problems. One of the
most interesting subject studied is the treatment of memory hierarchy in general and cache
in particular. Finally, one talk by John L. Ross presented a solution to a problem posed by
Luddy Harrison at the Dagstuhl seminar No. 9535, held in August 1995.

The schedule of the workshop was not fixed on the usual daily basis. Instead, we did an
experiment on Monday afternoon: the schedule was fixed in an additional “problem session.”

3



In this session speakers from different fields were encouraged to discover relations between
their works (the preceding “five minutes madness” session helped a lot) and to build a session.
Moreover, we included time for questions at the end of these and other sessions to review all
talks in summary. In our opinion, some of the most interesting insights came about this way.

Preliminary conclusions of the seminar are summarized in Section 5.

Acknowledgments

Thanks to Reinhard Wilhelm for inviting us to organize this Dagstuhl seminar for many
insights that contribute to the success of this workshop; to Angelika Müller and Annette Bayer
in the Dagstuhl office in Saarbrücken and the staff at Dagstuhl for ensuring that everything ran
perfectly; to the participants for making the seminar lively, fruitful and of very high quality;
and to Markus Mohnen for coordinating the production of this report.

2 Schedule

Monday, April 20

9:00– 9:05 Reinhard Willhelm: Welcome and Opening

9:05– 9:45 Karsten Weihe: Challenges from the Algorithms and Data Structures Frontier

9:45–10:40 Michael I. Schwartzbach: A Brief Survey on Pointer Verification

10:40–11:00 Coffee Break

11:00–11:40 Hanne Riiis Nelson: An Overview of Program Analysis Techniques

11:40–12:15 Mooly Sagiv: An Overview on Pointer Analysis

12:15–14:00 Lunch

14:00–15:00 “Five Minutes Madness”: Everybody presents her-/himself.

15:00–16:00 Session on the Workshop Schedule for the rest of the week: Chair : Karsten
Weihe

16:00–17:30 First Open Problem Session: Chair : Michael I. Schwartzbach

17:30–18:00 Break

18:00–20:00 Dinner

20:00–21:00 Software Demos:

• Florian Martin: Shape Analysis in PAG

• Uwe Assman: PRISMA, an Interprocedural Chase/Wegman/Zadeck Heap Analyzer

Tuesday, April 21

9:00– 9:45 Amer Diwan: Type-Based Alias Analysis

9:45–10:30 Mooly Sagiv: Detecting Memory Errors via Static Analysis

10:30–10:50 Coffee Break

4



10:50–11:35 Michael I. Schwartzbach: Automatic Verification of Pointer Programs using
Monadic Second-Order Logic

11:35–12:10 Andreas Podelski: Abstract Debugging of Programs with Tree-like Data Struc-
tures is Model Checking of Pushdown Systems

12:10–13:50 Lunch

13:50–14:35 Shai Rubin: Virtual Cache Line: A New Technique to Improve Cache Exploit-
ation for Recursive Data Structures

14:35–15:35 Trishul Chilimbi: Cache-Conscious Data Structures

15:35–16:20 Claudia Leopold: Arranging Statements and Data of Program Instances for
Locality

16:20–16:40 Coffee Break

16:40–17:10 Reinhard Willhelm: Predicting Cache Behavior Fast and Efficiently

17:10–17:25 Rudolf Fleischer: Caching — A Theoretician’s View

17:25–17:55 David Bernstein: FDPR - A Postpass Code Locality Optimization Tool

17:55–20:00 Dinner

20:00–21:00 Problem Session on Locality

Wednesday, April 22

8:45– 9:40 Andreas Crauser, Ulrich Meyer, Michael Seel: LEDA - Library of Efficient Data
Types and Algorithms

9:40–10:10 Lutz Kettner: Designing a Polyhedral Surface Data-Structure in C++

10:10–10:20 Discussion of the Last Two Talks

10:20–10:40 Coffee Break

10:40–11:20 Michael Hind: Empirically Comparing Interprocedural Pointer Analysis

11:20–12:00 Laurie Hendren: Putting Heap Analysis to Work

12:00–12:10 Discussion of the Last Two Talks

12:10–13:15 Lunch

13:15–13:30 Preparing for Hike and Excursion

13:30–18:00 Hike and Excursion

18:00–19:30 Dinner

19:30–20:30 Session on Algorithm and Data Structures Problems or
What the “Client Group” Can Do for the “Server Groups”: Chair : Karsten Weihe

Thursday, April 23

8:45–10:15 Anne Rogers and Laurie Hendren: Supporting Dynamic Data Structures on
Distributed Memory Machines

10:15–10:25 Discussion of the Last Two Talks

10:25–10:45 Coffee Break

10:45–11:35 Thomas Reps: Parametric Shape Analysis via 3-Valued Logic

5



11:35–12:10 Martin Trapp: Heap–SSA

12:10–12:20 Discussion of the Last Two Talks

12:20–14:00 Lunch

14:00–14:40 John Ross: Building a Bridge Between Pointer Aliases and Program Depend-
ences

14:40–15:10 Hanne Riis Nielson: Store Models Challenge the Semanticists Toolbox

15:10–15:20 Discussion of the Last Two Talks

15:20–15:40 Trishul Chilimbi (incl. Discussion): An Answer to Open Question 18 for a spe-
cific model

15:40–16:10 Coffee Break

16:10–16:50 Markus Mohnen: The Expressive Power of Escape Analysis

16:50–17:20 Helmut Seidl: Compile-Time Garbage Collection for Object-Oriented Languages

17:20–17:30 Discussion of the Last Two Talks

17:30–17:50 Claudia Leopold: Cache-Conscious Sorting

18:00–19:30 Dinner

19:30–20:30 Second General Open Problem Session: Chair : David Bernstein

Friday, April 24

8:45– 8:50 General Announcements

8:50– 9:25 Karsten Weihe: Statically Type-Safe, Run-Time Dynamic Interfaces to Tabular
Data Structures

9:25– 9:55 Alex Bijlsma: Construction of Pointer Programs

9:55–10:15 Coffee Break

10:15–11:05 Bernhard Möller: Calculating with Pointer Structures

11:05–11:15 Discussion of the Last Two Talks

11:15–12:05 Thomas Reps: Program Analysis via Graph Reachability

12:05–12:10 Discussion

12:10–12:15 Good-Bye

12:15–13:30 Lunch

3 Open Problems

We spent three evenings in understanding the open problems in this field. There are number of
reasons why dynamically allocated memory will be more important in the research community
and in the industry in the near future:

• Stack and statically allocated storage cannot be used for many of the combinatorial
algorithms.

• It is well known that programs that manipulate dynamically allocated memory are hard
to debug, prove correct, and optimize.

6



• Many of the pragmatic open compiler research problems related to stack and statically
allocated memory were already solved. For example, Michael Hind presented in the
seminar an empirical study which indicates that in many cases, flow insensitive analysis
of stack allocated pointers provides information that is as precise as the flow sensitive
approaches.

• There are many opportunities to speed up the execution of programs that manipulate
dynamically allocated memory both on existing and on future architectures.

• Programming languages like Java create many challenges by opening many of the re-
search ideas such as safe pointer dereferences and garbage collection to a wide audience.

Below we summarize the open problems that we have identified. Each of this problem is
characterized as follows:

C A conceptual problem

P A pragmatic problem

A An algorithmic problem

3.1 List of Open Problems

1. (C) Can (explicit) pointers (sometimes) be avoided by introducing stronger language
concepts?

(a) Eliminate pointer arithmetic and explicit addressing (C → Java)

(b) Eliminate Java style pointers (references)

2. (C+P) Can verification of cleanness or even correctness of programs with pointers be
feasible?

(a) Automatically

(b) With user information + how much?

i. Interactively

ii. Annotations as comments (a-la-LCLint [Eva96a, Eva96b])

iii. Program checking, e.g., using ANSI C assert — can the compiler optimize a
way or reorder these checks?

iv. Programming language styles, e.g., isolate pointer stuff in a separate function
and use smart pointers in the rest of the code — can the compiler eliminate
the cost via optimizations?

3. (C) How to do run-time prediction., e.g., of cache models?

4. (C) Can templates be used to verify libraries in a “generic way” without investigating
the application programs?

5. (C) Can program analysis be used to verify that reasonable graph operations preserve
Euler equations?

7



6. (P) How much can pointer analysis buy for classical machine (in)dependent optimiza-
tions? (Amer Diwan answered that for a particular optimization of redundant loads)

(a) Which pointer analysis is best for a given application?

7. (C) Is there a way to improve the process of testing using information obtained by
program analysis/verification?

8. (A+P) How can the memory efficiency of programs with pointers be improved?

9. (C+A+P) How can locality of references be expressed, proved or analyzed?

10. (P) Can flow sensitive algorithms for analyzing dynamic allocated data structure scale
up for large programs?

11. (P) Is there a benchmark that is preferable for pointer verification and/or analysis
(Spec [SPE92], Olden [RCRH95], LEDA, Todd Austin’s pointer intensive benchmark)?

12. (C) User interface to allow tuning the garbage collection performance (w/o changing
program semantics).

13. (P) Use cheap analysis (e.g., linear time point-to) in order to improve the running time
of a more expensive, e.g., flow sensitive analysis?

14. (C) Can code idioms that identify special data structure manipulations, e.g., can inser-
tions into a single linked list be identified via program analysis (in order to be replaced
by a more efficient implementation)?

15. (A) Demand-driven pointer analysis.

16. (C) Pointer analysis in “open” programming environments (languages), e.g., Java dy-
namic loading.

17. Can domain specific information be used to improve efficiency of the memory subsystem
performance (by a user or compiler)

18. Is there a formula that predicts the number of cache misses for a given program. Trishul
Chilimbi partially answered this question.

References

[Eva96a] D. Evans. LCLint User’s Guide, 1996. Available at http://larch-www.lcs.mit.edu:
8001/larch/lclint/guide/.

[Eva96b] D. Evans. Static detection of dynamic memory errors. In SIGPLAN Conference
on Programming Languages Design and Implementation, 1996. Available at http:
//larch-www.lcs.mit.edu:8001/∼evs/pldi96-abstract.html.

[LM96] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for recursive data
structures. In Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 222–233, Oc-
tober 1996.

8



[MN95] K. Melhorn and S. Nähr. LDEA: A platform for combinatorial and geometric
computing. Communications of the ACM, 38(1):96–102, 1995.

[RCRH95] Anne Rogers, Martin C. Carlisle, John Reppy, and Laurie Hendren. Supporting
dynamic data structures on distributed memory machines. ACM Transactions on
Programming Languages and Systems, 17(2):233–263, March 1995. Article and
benchmark suit available at http://www.cs.princeton.edu/∼mcc/olden.html.

[SPE92] SPEC Component CPU Integer Release 2/1992 (Cint92). Standard Performance
Evaluation Corporation (SPEC), Fairfax, VA, 1992.

4 Abstracts of Talks

Challenges from the Algorithms and Data Structures Frontier

Karsten Weihe (Universität Konstanz)

In this seminar, the participants doing research on efficient implementations of sophisticated
algorithms and data structures are the “clients” who pose problems, and the other two groups
(hopefully) offer solutions, which means they are the “servers.”

In this talk, I tried to formulate a few “challenges” to the other groups, that is open problems
whose solutions are possibly found in their research areas.

A Brief Survey on Pointer Verification

Michael I. Schwartzbach (University of Aarhus)

Pointer programming is difficult and risky, but may become safer through static analysis that
seeks detect pointer errors at compile-time. This survey describes the fundamental problems
in such analyses and discusses a number of tools that offer practical solutions for at least a
subset of those. The conclusion is that such tools appear to be feasible, but must be carefully
designed to strike a compromise between precision and efficiency.

An Overview of Program Analysis Techniques

Hanne Riis Nielson (Aarhus University)

Program analysis offers static techniques for predicting safe and computable approximations
to the set of values or behaviours arising dynamically during the execution of programs. The
analysis problem clearly depends on the application one has in mind and it is here important
to clarify what demands it put to the analysis and thereby to the technique used to specify it:

• Generality: to which class of programming languages and program analysis problems
can the technique be applied.

• Precision: does the technique inherently limit the precision of the specified analyses and
can it be used to guarantee a certain level of precision for a given class of programs.

9



• Efficiency: does the technique inherently limit the efficiency of the specified analyses
and does the technique scale up for large programs.

• Correctness: does the technique offer results that lighten the burden of establishing
correctness results for the analyses.

Over the years a number of program analysis techniques have been developed with different
strengths and weaknesses with respect to the above criteria. In this talk I give an overview of
some of the main techniques. This includes the traditional intra- and inter-procedural data flow
approaches, the constraint-based approaches to control flow analysis and the main ingredients
of abstract interpretation: Galois connections, a catalogue of techniques for combining Galois
connections, the approximation technique of widening and the technique of inducing one ana-
lysis from another. Approaches based on denotational semantics, type and effect systems and
more general logical approaches are briefly mentioned.

An Overview of Pointer Analysis

Mooly Sagiv (Tel-Aviv University)

We describe different variants of the problem of statically analyzing pointer references. These
problems have many classifications including:

May-alias analysis: locating pointer access paths that always denote different locations, e.g.,
proving that two pointer variables x and y denote different locations at every execution
path leading to a given program point.

Shape-analysis: locating the shape of the data structures manipulated by the program, e.g.,
discriminating between a list and a cyclic list.

We sketch some of the many potential applications of pointer analysis for compiler optimiza-
tions and program understanding.

A full version of the talk can be retrieved from: http://www.math.tau.ac.il/∼sagiv/DAG98/
overview.ps

Type-Based Alias Analysis

Amer Diwan (Stanford University)

My talk (presenting work by Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss)
evaluated three alias analyses based on programming language types. The first analysis uses
type compatibility to determine aliases. The second extends the first by using additional high-
level information such as field names. The third extends the second with a flow-insensitive
analysis. Although other researchers suggests using types to disambiguate memory references,
none evaluates its effectiveness. We present results for both static and dynamic evaluations
of type-based alias analyses for Modula-3, a statically-typed type-safe language. The static
analysis reveals that type compatibility alone yields a very imprecise alias analysis, but the
other two analyses significantly improve alias precision. We use redundant load elimination
(Redundant load elimination) to demonstrate the effectiveness of the three alias algorithms
in terms of the opportunities for optimization, the impact on simulated execution times,

10



and to compute an upper bound on what a perfect alias analysis would yield. We show
modest dynamic improvements for (Redundant load elimination), and more surprisingly, that
on average our alias analysis is within 2.5% of a perfect alias analysis with respect to Redundant
load elimination on 8 Modula-3 programs. These results illustrate that to explore thoroughly
the effectiveness of alias analyses, researchers need static, dynamic, and upper-bound analysis.
In addition, we show that for type-safe languages like Modula-3 and Java, a fast and simple
alias analysis may be sufficient for many applications.

Detecting Memory Errors via Static Analysis

Mooly Sagiv (Tel Aviv University)

Programs which manipulate pointers are hard to debug. Pointer analysis algorithms (originally
aimed at optimizing compilers) may provide some remedy by identifying potential errors such
as dereferencing NULL pointers by statically analyzing the behavior of programs on all their
input data.

Our goal is to identify the “core program analysis techniques” that can be used when devel-
oping realistic tools which do not generate too many false alarms. It is an open question if
exists a conservative technique that will yield only a modest number of false alarms, and if
so, if it will scale for large programs. Our preliminary experience indicates that the following
techniques are necessary: (i) finding aliases between pointers, (ii) flow sensitive techniques
that account for the program control flow constructs, (iii) partial interpretation of conditional
statements, (iv) analysis of the relationships between pointers, and sometimes (v) analysis of
the underlying data structures manipulated by the C program.

We show that a combination of these techniques yields better results than those achieved by
state of art tools.

This is a joint work with Nurit Dor and Micky Rodeh which will appear in PASTE’98 http:
//www.math.tau.ac.il/∼sagiv/paste98.ps.

Automatic Verification of Pointer Programs using Monadic Second-
Order Logic

Michael I. Schwartzbach (University of Aarhus)

Joint work with Jakob L. Jensen and Michael E. Jørgensen.

We present a technique for automatic verification of pointer programs based on a decision
procedure for the monadic second-order logic on finite strings.

We are concerned with a while-fragment of Pascal, which includes recursively-defined pointer
structures but excludes pointer arithmetic.

We define a logic of stores with interesting basic predicates such as pointer equality, tests for
nil pointers, and garbage cells, as well as reachability along pointers.

We present a complete decision procedure for Hoare triples based on this logic over loop-free
code. Combined with explicit loop invariants, the decision procedure allows us to answer
surprisingly detailed questions about small but non-trivial programs. If a program fails to
satisfy a certain property, then we can automatically supply an initial store that provides a
counterexample.

11



Our technique has been fully and efficiently implemented for linear linked lists, and extends
in principle to tree structures. The resulting system can be used to verify extensive properties
of smaller pointer programs and could be particularly useful in a teaching environment.

Abstract Debugging of Programs with Tree-like Data Structures is

Model Checking of Pushdown Systems

Andreas Podelski (Max-Planck-Institut für Informatik)

Abstract debugging (a term coined by Francois Bourdoncle) stands for the inference of neces-
sary conditions for the correctness of programs wrt. invariant or intermittent assertions (initial
values not satisfying the conditions are bugs). In the system considered by Bourdoncle, asser-
tions could be used to described interval ranges of program variables; the necessary conditions
were inferred using static analysis based on abstract interpretation techniques. In a first step
towards extending this system, we analyze that abstract debugging is abstract model check-
ing. That is, a conservative approximation of the initial states satisfying certain temporal
logic properties is computed. We then ask how we can extend the framework to programs
over pointers; i.e., how can we formulate assertions over “intervals” of pointers, and what are
the corresponding abstract interpretation techniques. We restrict this question to tree-like
data structures as they were considered in the first shape-analysis papers by Neil Jones and
others. We establish a connection between that work on shape-analysis and model checking
of pushdown systems. An extension of pushdown systems is used as an abstraction of while
programs over trees. In summary, we derive that abstract debugging of while programs over
trees is model checking of extended pushdown systems.

Virtual Cache Line: A New Technique to Improve Cache Exploita-

tion for Recursive Data Structures

Shai Rubin (The Technion)

Joint work with David Bernstein (IBM Research Lab) and Michael Rodeh (The Technion and
IBM Research Lab).

Recursive data structures (lists, trees, graphs, etc.) are used throughout scientific and com-
mercial software. The common approach is to allocate storage to the individual nodes of
such structures dynamically, maintaining the logical connection between them via pointers.
Once such a data structure goes through a sequence of updates (inserts and deletes), it may
get scattered all over memory yielding poor spatial locality, which in turn introduces many
cache misses. Furthermore, such updates invoke the memory manager, quite often degrading
performance even further. In this paper we present the new concept of Virtual Cache Lines
(VCLs). This machine independent concept is designed to support reducing the cache miss
ratio and improving memory utilization when recursive data types are used. Basically, the
mechanism keeps groups of consecutive nodes in close proximity, forming virtual cache lines,
while allowing the groups to be stored arbitrarily far away from each other. Virtual cache lines
increase the spatial locality of the given data-structure resulting in better locality of reference.
Furthermore, since the spatial locality is improved, software prefetching becomes much more
attractive. Indeed, we also present two software prefetching algorithms that can be used when
dealing with VCLs resulting in even higher data cache performance. Our results show that the

12



average performance of linked list operations, like scan, insert, and delete can be improved by
more than 200% even in architectures that do not support prefetching, like the Intel Pentium.
Moreover, when using prefetching (e.g. on the IBM PowerPC) one can gain additional 200%
improvement.

We believe that given a program which manipulates certain recursive data structures, compilers
will be able to generate VCL-based code. This observation builds on recent results in shape
analysis. Also, until this vision becomes true, VCLs can be used to build more efficient user
libraries, operating-systems and applications programs.

Cache-Conscious Data Structures

Trishul Chilimbi (University of Wisconsin-Madison)

Joint work with James R. Larus and Mark D. Hill.

Processor and memory technology trends show a continual increase in the cost of accessing
main memory. Machine designers have tried to mitigate the effect of this trend through
hardware and software prefetching, multiple levels of cache, non-blocking caches, dynamic
instruction scheduling, speculative execution, etc.

These techniques unfortunately, have only been partially successful for pointer-manipulating
programs. This talk explores the complementary approach of redesigning and reorganizing
data structures to improve cache locality. Pointer-based structures allow data to be placed
in arbitrary locations in memory, and consequently in a cache. This freedom enables a pro-
grammer to improve performance by applying techniques such as clustering, compression, and
coloring.

To reduce the cost and complexity of applying these techniques, this talk also presents two
semi-automatic techniques for implementing cache-conscious data structures with minimal
programmer effort. The first reorganizes tree-like data structures to improve locality. The
second is a cache-conscious heap allocator. Our evaluations – with a tree microbenchmark, four
Olden benchmarks, and two large applications – show that cache-conscious data structures,
including those implemented by semi-automatic techniques, can produce large performance
improvements and outperform hardware and software prefetching.

Arranging Statements and Data of Program Instances for Locality

Claudia Leopold (Universität Jena)

In memory hierarchies, programs can be speeded up by increasing their degree of locality. The
talk suggested a semi–automatic method for locality optimization that is based on the human
approach of considering several small program instances, optimizing the instances for locality,
and generalizing the structure of the solutions to the program.

Emphasis was given to a local search algorithm that automatically optimizes the locality of
program instances. It takes as input a set of statement instances where each statement instance
is characterized by a sequence of data accesses. The algorithm orders the statement instances,
thereby respecting data dependencies, and groups the data into blocks of memory. It uses
a novel objective function that reflects the ’the–closer–the–better’ principle of the intuitive
notion of locality. Advantages of this function over a function based on communication costs
were shown.

13



Finally, I gave experimental results that compare so–optimized instances with corresponding
instances derived from compiler–optimized programs. The results indicate that the optimiz-
ation algorithm produces high–quality output. I also illustrated the semi–automatic method
with examples and showed that the method can speed up programs.

For further information see my homepage: http://www.minet.uni-jena.de/www/fakultaet/ips/
claudia.html

Predicting Cache Behavior Fast and Efficiently

Reinhard Wilhelm (Universität des Saarlandes)

Joitn work with Christian Ferdinand and Florian Martin (Universität des Saarlandes).

There is a tremendous gap between the cycle times of modern microprocessors and the access
times of main memory. Caches are used to overcome this gap in virtually all performance-
oriented processors (including high-performance microcontrollers and DSPs).

Hard real-time systems have specified deadlines for their tasks. It is the duty of the developer
to guarantee that the tasks making up the system will always meet the deadlines specified.
When it comes to processors with caches, computing sharp upper limits on the worst-case
execution time is of critical importance.

The widely used classical methods of predicting execution times are not generally applicable.
Software monitoring or the dual loop benchmark changes the code, in the process influencing
cache behavior. Hardware simulation, emulation or direct measurement with logic analyzers
can only determine the execution time for one input. This can generally not be used to infer
the cache behavior for all possible inputs.

We have developed static analyses of programs which predict the program’s behavior on the
cache for a given architecture. In other words, these analyses classify most of the memory
references as cache hits or misses. The analysis is generic, i.e. it can be easily instantiated
using another cache architecture, and with moderate effort it can also be adapted to a new
instruction set.

Experiments on a set of relevant programs, djpeg, fft, ndes, ... have shown that the best/worst-
case cache behavior interval is very small, i.e. it corresponds to a relatively small portion of
the actual execution time. By contrast, making the safe, yet for the most part unrealistic
assumption that all memory references result in cache misses results in the execution time
being overestimated by several hundred percent.

The analyses developed by us are

provably correct owing to our systematic approach based on abstract interpretation theory,

extremely precise due to a representation of the sets of possible cache content that preserves
relevant information; this allows for exact predictions of cache behavior,

fast due to an efficient representation of the cache content and elaborate iteration algorithms,

generic i.e. easily adaptable to many cache architectures,

automatically generated from concise specifications using the Program Analyzer Gener-
ator PAG.

14



Caching — A Theoretician’s View

Rudolf Fleischer (Universität Trier and Max-Planck-Institut für Informatik)

In this talk, I give a short overview of the theoretical questions arising in the study of caching.
There are two main directions of research : Probabilistic analysis of caching strategies, suppor-
ted by experimental data, and competitive analysis as a measure of worst-case performance.
Whereas the former method faces the problem that reality does rarely behave according to a
simple probability distribution, the latter method is often overly pessimistic. To get closer to
reality, it has been tried to refine competitive analysis by assuming certain access patterns as
given by the control flow graph of a program, for example.

FDPR - A Postpass Code Locality Optimization Tool

David Bernstein (IBM Haifa Research Lab)

Recent superscalar and VLIW processors feature multiple functional units which reduce the
execution time of computational programs quite significantly. It turns out, however, that larger
and larger fractions of execution time programs spend in accessing the memory hierarchy,
specifically the instruction and data caches and the main memory. This becomes even more
pronounced, as the increase in memory speed does not keep pace with superfast clock rates of
recently announced microprocessors.

The focus of this work is to demonstrate how the code locality of application programs can
be improved via profiling-based optimization. We describe a stand-alone optimization tool,
called FDPR for Feedback Directed Program Restructuring, which can globally reorder ap-
plication programs after they passed the compilation and linkage process. Currently, FDPR
is operational on IBM’s UNIX (AIX) and it can optimize XCOFF binary programs compiled
with IBM’s XL compilers.

Improved code locality resultant from FDPR optimization leads to less instruction cache and
instruction TLB misses, as well as to a smaller number of page faults and reduced branch
penalty. The performance improvements achieved by FDPR for SPECint92 benchmarks are
in the range of 5% on average for the IBM PowerPC and POWER2 processors. For big
programs, like the DB2/6000 database applications, the achieved performance gains are well
beyond 20%.

LEDA - Library of Efficient Data Types and Algorithms

Andreas Crauser (MPI - Saarbrücken)

Joint work with Ulrich Meyer and Michael Seel (MPI - Saarbrücken).

We give an overview of the LEDA platform for combinatorial and geometric computing and an
account of its development. The talk is an introduction to the functionality and applicability
of LEDA as a programming toolbox. Moreover some programming concepts are presented
which are of interest to the communities of this workshop.

For more information about LEDA please visit: http://www.mpi-sb.mpg.de/LEDA.

15



Computing in Secondary Memory - A Library Prototype

Andreas Crauser (MPI - Saarbrücken)

Data to be processed is growing so fast that secondary storage (disks, tapes) must be used
for computation. In this talk we present the classical two-level memory model, introduced by
Aggarwal and Vitter. In this model, our computer consists of a small and fast internal memory
of size M and a large and slow secondary memory. data is exchanged between the two memories
in blocks of size B, this is called I/O. Algorithmic performance in this model is measured by
counting a) the number of I/Os, b) the CPU-time and c) the number of occupied blocks in
secondary memory. We show that many internal memory data structures and algorithms fail
if used in secondary memory. This is often the reason if they access secondary memory in an
unstructured way by the use of pointers. To circumvent this problem, new algorithms and data
structures must be introduced. We present our library prototype LEDA-SM which provides a
collection of data structures and algorithms explicitely designed for secondary memory usage.
This library is an extension of the LEDA library.

Single Source Shortest Path - The Quest for an I/O Efficient Al-
gorithm and its Spinoffs

Ulrich Meyer (MPI - Saarbrücken)

After the introduction of LEDA-SM we present a case study for the Single Source Shortest
Path (SSSP) problem in External Memory. The previously best solution [KS96] needs Θ(n)+
O(m/(DB) log

2
m/(DB)) I/O for graphs having n nodes and m edges. It is an adaption of

Dijkstra’s Algorithm using I/O efficient data structures. We show how to divide Dijkstra’s Al-
gorithm into r phases such that the outgoing edges of all nodes removed from the queue during
a single phase can be treated in parallel. This observation can be used to reduce Θ(n) I/O for
accessing the adjacency lists to O(n/D) I/O where D is restricted to min n/(r log n), M/B.
For random graphs with random edge weights we prove that r = O(n1/3) with high probab-
ility. A more aggressive variant of Dijkstra’s Algorithm even achieves r = O(log2 n) phases
at the cost of O(n) reinsertions. Thus, we are able to derive an algorithm that shows even
better I/O performance although it scans the whole graph representation during each phase:
O(r(n + m)/(DB)) I/O on random graphs with random edge weights with high probabil-
ity, D ≤ min n/(r log n), M/B. Our techniques also yield improvements for other models of
computation: Sequentially, it is possible to compute SSSP in O(n + m) time on the average
(random graphs, random edge weights) using an appropriate bucket structure. Extending
the ideas of the sequential solution we derive a PRAM algorithm which solves the SSSP in
poly-logarithmic time and O(n + m) work on the average. Both, sequential and parallel im-
plementations show the practicality of our approaches. Part of these results will be included
in the forthcoming proceedings of ESA ’98.

Designing a Polyhedral Surface Data-Structure in C++

Lutz Kettner (ETH Zurich)

An overview of CGAL, the Computational Geometry Algorithms Library, was given. Design
solutions for a program library were presented for combinatorial data structures, such as

16



planar maps and polyhedral surfaces. Particular issues considered are flexibility, correctness,
time and space efficiency, and ease-of-use with the focus on topological aspects of polyhedral
surfaces. The design follows the generic programming paradigm known from the Standard
Template Library (STL) for C++. The design consists of three layers: at the bottom the
classes for vertices, halfedges and facets, in the middle the halfedge data-structure, and at the
top the high-level, easy-to-use interface for polyhedral surfaces, which maintains combinatorial
integrity by means of Euler-operators.

Library development poses the question to program verification, how to cope with separate
compilation and the unkown application the library will be used for. The use of templates
aggravates the situation, since library users could exchange internal parts of library com-
ponents with the choice of template arguments. For compiler optimization arises interesting
data-structures with pointers, beginning with highly regular Delaunay triangulations, con-
tinuing over planar maps and trapezoidal decompositions up to polyhedral surfaces. Typical
algorithms would be ray shooting along a horizontal direction, along an arbitrary direction,
or the inspection of the neighborhood for one or multiple (random) points.

Further references and the CGAL library can be found at http://www.cs.ruu.nl/CGAL/. A
comprehensive directory of available source code in computational geometry is presented at
http://www.geom.umn.edu/software/cglist/.

Empirically Comparing Interprocedural Pointer Alias Analyses

Michael Hind (SUNY at New Paltz and IBM Research)

Joint work with Anthony Pioli, Michael Burke, Paul Carini, and Jong-Deok Choi.

To enhance program optimization, a recent trend in program analysis has been to analyze
whole programs, rather than each procedure in isolation. Although this approach can in-
crease precision, it may also increase compilation time. In order for these interprocedural
analysis techniques to make the transition from research efforts to production compilers, the
cost/precision tradeoffs must be clearly understood.

This talk describes an empirical comparison of four context-insensitive pointer alias analysis
algorithms that use varying degrees of flow-sensitivity: a flow-insensitive algorithm that tracks
variables whose addresses were taken and stored, a flow-insensitive algorithm that computes a
solution for each function, a variant of this algorithm that uses precomputed kill information,
and a flow-sensitive algorithm. In addition to contrasting the precision and efficiency of these
analyses, we describe implementation techniques and quantify their analysis-time speed-up.

Further details can be found in publications located at www.mcs.newpaltz.edu/∼hind/papers

Putting Pointer Analysis to Work

Laurie Hendren (McGill University)

There has been a lot of work on pointer analysis, but relatively little research into the effect-
iveness of pointer analysis - how useful is it?

This talk presented the three major pointer analyses that have been implemented in the
McCAT C compiler. Points-to analysis estimates pointer relationships for stack locations.
Connection analysis estimates connection properties of heap-directed pointers. Shape analysis

17



estimates the shape (TREE, DAG, CYCLIC) for heap structures accessible from each stack
pointer.

Given the information computed by these pointer analyses, techniques were presented for com-
puting read/write sets, extended SSA numbers and dependence testing. Based on this, tech-
niques for optimizing memory references via loop-invariant removal, common sub-expression
elimination and location invariant detection were presented.

A collection of pointer-intensive benchmarks showed speedups of 1-10speedup due to these
memory optimizations.

Other applications discussed included improved array dependence testing, summarizing the
effect of procedure calls, and McWeb - a web-based tool for browsing programs to display the
results of pointer analyses.

This work was done as part of the McCAT compiler project at McGill University. This talk
presented work done by Rakesh Ghiya, Maryam Emami and Christopher Lapkowski.

Supporting Dynamic Data Structures on Distributed Memory Ma-
chines

Laurie Hendren (McGill University) and Anne Rogers (AT&T Labs)

Compiling for distributed-memory machines has been a very active research area in recent
years. Much of this work has concentrated on programs that use arrays as their primary
data structures. To date, little work has been done to address the problem of supporting
programs that use dynamic data structures. The techniques developed for supporting SPMD
execution of array-based programs rely on the fact that arrays are statically defined and
directly addressable. Recursive data structures do not have these properties, so new techniques
must be developed. In this talk, we described two approaches— Olden and McCat Earth-C
—for supporting programs that use pointer-based dynamic data structures.

Olden provides a pair of complementary mechanisms for managing remote data, software cach-
ing and computation migration, and introduces parallelism using a technique based on futures
and lazy task creation. It also includes a compile-time heuristic for choosing between software
caching and computation migration automatically. The talk discussed these mechanisms and
included a report on experiments with ten benchmarks.

McCat Earth-C is targeted for a distributed-memory machine that has multi-threaded pro-
cessors. In addition to managing remote references and synchronization, the Earth-C compiler
must also generate static threads for the processors. The compiler uses stack and heap pointer
analysis to improve: dependence testing, reduce pointer dereferences via common subexpres-
sion elimination and loop invariant removal, infer locality, and move and block communication.
Overall these optimizations are designed to reduce communication and increase thread length.
The talk included a report of experimental results on five benchmarks and a discussion of the
relative importance of the optimizations.

Parametric Shape Analysis via 3-Valued Logic

Thomas Reps (University of Wisconsin)

We present a family of algorithms that are sometimes capable of determining “shape invari-
ants” of programs that perform destructive updating on heap-allocated storage. The ap-

18



proach described is parametric: it provides the basis for generating a family of shape-analysis
algorithms. This is achieved by applying the following principle of abstraction to stores:

Memory locations are partitioned into equivalence classes according to their sets of “abstrac-
tion–property” values. Every store is then represented (conservatively) by a condensed store
in which each element of the condensed store represents an equivalence class.

By varying the parameter that controls abstraction — namely, the set of properties used for
abstraction — one can specify different shape-analysis algorithms.

Condensation does not preserve (in)equality, and hence a single element in a condensed store
may represents multiple memory locations of the concrete store. Because of this aspect of
abstraction, the logic that is most natural to the problem is a three-valued logic (with a
semantics due to Kleene).

(Joint work with Mooly Sagiv (Tel Aviv Univ.) and Reinhard Wilhelm (Univ. des Saar-
landes).)

Heap–SSA

Martin Trapp (University of Karlsruhe)

Static Single assignment (SSA) form is a graph based representation for program code. The
main advantages for program optimization is that def-use-chains are made explicit and com-
monalities are factored by so-called φ-nodes, which allow for a compact representation of
dependencies. SSA-Form for programs with pointers requires considerable exact alias or
points-to information. Currently, most approaches to pointer analysis use the power-set of
a set of abstract objects as the domain of their data flow analysis. This modeling leads to a
non-distributive data flow analysis which involves a loss of information at CFG joins which
is unacceptable for our purpose. More exact analysis like the shape analysis of Reps, Sagiv,
and Wilhelm avoid to merge information at join points as far as possible: A program point is
annotated with a set of storage graphs, where the number of graphs may be exponential to
the number of local variables.

The main point of this talk is to show, how φ-functions can profitably be applied to storage
graph representation to achieve a more compact representation, higher accuracy and even
better runtime of the analysis. Moreover, these techniques can be generalized to a framework
for arbitrary non-distributive data flow problems. The key observation is that a φ-function
delivers its result depending on some control condition. With DAGs of φ-functions we are able
to distinguish values that reach a given program point over different control flow paths. Adding
φ-terms to the domain of a data flow analysis allows for the encoding of control flow history
into the data flow values. Thus we gain the effect of distinguished values for different control
flow paths and only need a single representation for all possible alternatives at a given program
point. The φ-functions manage to factor the common parts of the alternatives. Equivalently,
we can view a φ-function of two data flow values as a symbolic join operations with defered
evaluation. Of course this evaluation cannot be indefinitely defered, since a unbound number
of different control flow paths may exist. We can at any time abstract from different control
flow leading to a program point by widening, i.e. replacing the φ-function by the join of
its arguments. φ-functions act like multiplexers where same control conditions mean same
switching behavior. Thus they can correlate alternatives at different points reached under the
same control conditions.

19



Based on these ideas, we define a data flow lattice for pointer analysis and give formal transfer
functions for object allocation and read/write access to heap cells. We show how to make
strong updates even in the presence of non-unique pointers and that we can represent in-
formation in linear space for cases where approaches with separate graphs would suffer from
exponential blow up. Moreover the encoding of control flow history into data flow values with
help of φ-functions can also be exploited to distinguish different call contexts in the inter-
procedural analysis. This gives the effect of inlining without code replication and is still more
compact and accurate than the standard approach of distinguishing contexts by k-suffixes of
call strings.

Building a Bridge Between Pointer Aliases and Program Depend-
ences

John Ross (University of Chicago)

In this talk we present a surprisingly simple reduction of the program dependence problem
to the may-alias problem. While both problems are undecidable, providing a bridge between
them has great practical importance. Program dependence information is used extensively in
compiler optimizations, automatic program parallelizations, code scheduling in super-scalar
machines, and in software engineering tools such as code slicers. When working with languages
that support pointers and references, these systems are forced to make very conservative as-
sumptions. This leads to many superfluous program dependences and limits compiler perform-
ance and the usability of software engineering tools. Fortunately, there are many algorithms
for computing conservative approximations to the may-alias problem. The reduction has the
important property of always computing conservative program dependences when used with
a conservative may-alias algorithm. We believe that the simplicity of the reduction and the
fact that it takes linear time may make it practical for realistic applications.

Store Model Challenge the Semanticists Toolbox

Hanne Riis Nielson (Aarhus University)

Abadi and Cardelli have introduced the imperative object calculus, a untyped but statically
scoped calculus for studying the creation of objects, the dynamic updating of their methods
and the invocation of their methods; additionally, the calculus also contain constructs for
cloning objects and for local definitions.

The operational semantics of the imperative object calculus relies on a store and we study two
different organisations of the store: one that associates locations with the individual methods
of the object and one that associates locations with the objects themselves. While this might
seem to be a fairly innocent difference it turns out that there is quite some difference in the
kind of the mathematical techniques needed for proving the correctness of even simple program
analyses.

The program analysis we consider will for each expression determine which objects, abstracted
by the list of their method names, it might evaluate to and hence which methods might be
invoced and updated at the various points in the program. We prove the correctness of the
analysis with respect to the two semantics. In the case where the store model associates
locations with the methods, our proof relies on Kripke logical relations as well as coinduction.

20



In the case where locations are associated with the objects themselves it suffices to introduce
a notion of heap signature and except for ordinary induction no special proof techniques are
required.

A Pointer Data Structure-Centric Cache Model

Trishul Chilimbi (University of Wisconsin-Madison)

Joint work with James R. Larus and Mark D. Hill.

This talk presents an analytic framework for evaluating and quantifying the performance
benefits of cache-conscious pointer-based structures. A key part part of this framework is
a data structure-centric cache model of a series of accesses that traverse a pointer-based
structure. The model has good predictive power, underestimating the actual performance
improvement by not more than 15% and accurately predicting the shape of speedup curves.
In addition, the model indicates that list structures are inherently more suited to caches than
tree structures.

The Expressive Power of Escape Analysis

Markus Mohnen (RWTH Aachen)

The aim of escape analysis is to extract information about the storage behaviour of functional
programs, needed for optimisations like compile–time garbage collection. We consider two ap-
proaches to escape analysis, both based on abstract interpretation: The analysis by Goldberg
& Park and our analysis.

In this talk, we compare the relative expressive power of these analyses. For the first–order case
both analyses have the same expressive power. Goldberg & Park’s analysis is incomparable
with ours in the higher–order case. However, we show that if we restrict the higher–order
case to the functional escape behaviour then both analyses have the same expressive power
even for the higher–order case. Moreover, our analysis is more precise for extensions of the
language with product types and inductive types.

Compile-Time Garbage Collection for Object-Oriented Languages

Helmut Seidl (Universität Trier)

We suggest a heap analysis for Java-like languages that has the following advantages:

• It analyzes lifetimes of objects and allows destructive updates of objects.

• It is based on a concrete operational semantics; thus, correctness can be proved rigor-
ously. This aspect, seems especially demanding for security critical applications.

Our analysis algorithms are taylored for a modified heap management scheme. Abstract
locations of the analysis correspond to fractions of collectible objects. For each such fraction
we provide a distinct slice of heap storage into which its objects reside. Our analyses allow
to (partially) empty these slices again. Two strategies are supported. The first one resets a
slice completely but only at program points where all objects of that fraction are definitely

21



garbage. The second more flexible strategy maintains each slice in a stack-like fashion. It may
de-allocate already that portion of a slice that contains just objects created since invocation
of the current method and have found to be garbage. Not only for efficiency reasons but also
for this second strategy we rely onto the concept of local heaps.

A full version of the talk can be retrieved from: http://www.informatik.uni-trier.de/∼seidl/
papers/OO.ps.gz

Cache-Conscious Sorting

Claudia Leopold (Universität Jena)

The talk gave an overview on the following two papers:

• A. LaMarca and R. Ladner: The Influence of Caches on the Performance of Sorting. in:
Proceedings ACM-SIAM Symposium on Discrete Algorithms, 1997, pp. 370–379

• A. LaMarca and R. Ladner: The Influence of Caches on the Performance of Heaps.
Technical Report TR-96-02-03, University of Washington, 1996

The papers describe some techniques for a cache–conscious algorithm design and give im-
pressive experimental results indicating that cache–consciousness can have a high impact on
performance. Furthermore, they introduce a technique for analyzing cache misses, called col-
lective analysis.

Statically Type-Safe, Run-Time Dynamic Interfaces to Tabular Data
Structures

Karsten Weihe (Universität Konstanz)

An attributed data type may be viewed as a data type whose items define the rows of a table
(with the attributes constituting the individual columns of this table). If an algorithm shall
be generic in the sense that it shall not assume a specific constellation of attributes, it must
apply some sort of run-time type information, which destroys static type safety.

This talk presents a design concept for interfaces to tables, which allows one to implement
statically type-safe algorithms, although the set of attributes may be given only at run time.
The key idea is to enable the algorithm to integrate all type-dependent stuff into the interface.

Construction of Pointer Programs

Alex Bijlsma (Eindhoven University of Technology)

Program construction is the activity of transforming, using precise mathematical rules, spe-
cifications into efficient, correct programs. Guided by heuristics, both general and problem-
specific, this transformation is intended to be performed by hand. A calculus is proposed where
transformation steps based on logic or set theory are interspersed with program statements.

Pointers form a special problem because, applied naively to pointers, the general construction
method would lead to unfeasibly large formulas. It is a challenge to come up with concepts

22



and notations that are sufficiently expressive to specify the desired properties of dynamic data
structures, and at the same time satisfy extremely simple proof rules. The talk contains a
proposal for a family of such concepts.

The slides are available as Word97 document at http://www.win.tue.nl/inf/staf/secties/st/pm/
lexb/ab64s.doc.

Calculating With Pointer Structures

Bernhard Möller (Universität Augsburg)

In calculational program design one derives implementations from specifications using se-
mantics preserving deduction rules. The aim of modern algebraic approaches is to make both
specification and calculation more concise and perspicuous by compacting logic into algebra
as much as possible. The essential aims are:

• To package frequently occurring shapes of formulae, notably larger aggregations of quan-
tifiers, into algebraic operators and to prove strong equational or inequational laws for
them. Such a law usually compacts a series of inference steps in pure predicate calculus
into a single one.

• To make the formulae involved more concise and less repetitious. Then writing them
will be less error-prone, in particular, since copying mistakes are reduced, and reading
and understanding them will be easier and quicker.

• To raise the level of discourse in formal specification and derivation close to that of
informal reasoning, to achieve formality and understandability at the same time.

We present such an algebraic approach to the calculation of programs with pointer structures.
It is based on the algebra of relations and partial maps. We investigate sufficient criteria for
preservation of substructures under selective updating. The approach is illustrated with some
simple examples such as list concatenation and reversal, tree rotation and search tree insertion
and deletion. The approach covers also cyclic structures like cyclic lists or threaded trees.

Program Analysis via Graph Reachability

Thomas Reps (University of Wisconsin)

This talk describes how a wide variety of program-analysis problems can be solved by trans-
forming them to “context-free-language reachability problems”. Let L be a context-free lan-
guage over alphabet A, and let G be a graph whose edges are labeled with members of A.
Each path in G defines a word over A, namely, the word obtained by concatenating, in order,
the labels of the edges on the path. A path in G is an L-path if its word is a member of L.
Context-free-language reachability involves determining which pairs of vertices are connectd
by L-paths.

Some of the program-analysis problems that are amenable to this approach include:

• Interprocedural program slicing

• Interprocedural dataflow analysis

23



• Flow-insensitive points-to analysis

• Analysis of dependences transmitted via manipulations of structured data (for languages
that permit the use of heap-allocated storage but do not permit destructive updating of
fields).

The talk is based in part on joint work with Susan Horwitz, Mooly Sagiv, Genevieve Rosay,
and David Melski. Various papers concerning the material covered are available over the
World Wide Web at URL http://www.cs.wisc.edu/∼reps/.

5 Conclusions

There are number of interesting conclusions that we concluded from the seminar:

• Despite of the difference in background and interest the different groups interact very
well.

• At the organizational level, it may be better to present research in groups to save time
and make discussions more interesting. Also, talks can be shorter and not everybody
needs to give a talk.

• Memory hierarchy will continue to be a challenging issue both to algorithm designers
and compiler implementors.

• Cleanness checking is a very important and difficult problem.

• Many of the pointer analysis algorithms and in particular the flow insesitive ones are
mature enough to be implemented in industrial compilers.

6 Participants

Uwe Assmann
Universität Karlsruhe
Inst. für Programmstrukturen
und Datenorganisation
Am Zirkel 2, Postfach 6980
D-76128 Karlsruhe, D
phone: +49-721-608-6088
fax: +49-721-30047
assmann@informatik.uni-karlsruhe.de

i44www.info.uni-karlsruhe.de/
∼assmann/

David Bernstein
IBM - Haifa
IBM Haifa Research Lab
34995 Haifa
IL
phone: +972-4-829-6268
fax: +972-4-829-6114
Bernstn@haifa.vnet.ibm.com

Alex Bijlsma
Eindhoven University of
Technology
Dept.of Mathematics and
Computing Science
Den Dolech 2
P.O. Box 513
NL-5600 MB Eindhoven, NL
phone: +31-40-247-4317
fax: +31-40-245-1733
lexb@win.tue.nl

Andreas Crauser
MPI - Saarbrücken
MPI für Informatik
Im Stadtwald
D-66123 Saarbrücken, D
phone: +49-681-9325-504
fax: +49-681-9325-199
crauser@mpi-sb.mpg.de

Amer Diwan
Stanford University
Dept. of Computer Science
CA 94305-9020 Stanford, USA
phone: +1-650-723-4013
fax: +1-650-725-6949
diwan@cs.stanford.edu
suif.stanford.edu/∼diwan

Rudolf Fleischer
MPI - Saarbrücken
MPI für Informatik
Im Stadtwald
D-66123 Saarbrücken, D
phone: +49-681-9325-119
fax: +49-681-9325-199
rudolf@mpi-sb.mpg.de

24



Laurie Hendren
McGill University
School of Computer Science
Mc Connell Bldg. - Room 318
3480 University Street
QC-H3A 2A7 Montreal, CDN
phone: +1-514-398-7391
fax: +1-514-398-3883
hendren@cs.mcgill.ca
www-acaps.cs.mcgill.ca/∼hendren

Michael Hind
136 North Chestnut Street
App. 16B
NY 12561 New Paltz
USA
phone: 914-257-3567
fax: 914-257-3571
hind@camelot.mcs.newpaltz.edu

Lutz Kettner
ETH Zurich
Institut für Theoretische
Informatik
IFW B 46.2
CH-8092 Zurich
CH
phone: +41-1-632-7339
fax: +41-1-632-1172
kettner@inf.ethz.ch

Claudia Leopold
Universität Jena
Institut für Informatik
Ernst-Abbe-Platz 1-4
D-07743 Jena, D
phone: +49-3641-94 63 34
fax: +49-3641-94 63 03
claudia@inf.uni-jena.de
www.minet.uni-jena.de/www/
fakultaet/ips/claudia.ht

Florian Martin
Universität des Saarlandes
FB 14 - Informatik
PF 15 11 50
D-66041 Saarbrücken
D

Ulrich Meyer
MPI - Saarbrücken
MPI für Informatik
Im Stadtwald
D-66123 Saarbrücken
D
phone: +49-681-9325-506
fax: +49-681-9325-199
umeyer@mpi-sb.mpg.de

Markus Mohnen
RWTH Aachen
Lehrstuhl für Informatik II
D-52056 Aachen, D
phone: +49-241-80-21240
fax: +49-241-8888-217
mohnen@informatik.rwth-aachen.de

www-i2.informatik.rwth-aachen.de/

∼mohnen/

Bernhard Moller
Universität Augsburg
Institut für Informatik
Universitätsstr. 14
D-86135 Augsburg
D
phone: +49-821-598-2164
fax: +49-821-598-2274
moeller@uni-augsburg.de

Andreas Podelski
MPI für Informatik
Im Stadtwald
D-66123 Saarbrücken, D
phone: +49-681-9325-204
fax: +49-681-9325-299
podelski@mpi-sb.mpg.de
www.mpi-sb.mpg.de/guide/staff/
podelski/pode

Thomas Reps
University of Wisconsin-Madison

Computer Sciences Dept.
1210 W. Dayton St.
WI 53706 Madison, USA
phone: +1-608-262-20 91
fax: +1-608-262-97 77
reps@cs.wisc.edu

Hanne Riis Nielson
Aarhus University
Dept. of Computer Science
Ny Munkegade
DK-8000 Aarhus, DK
phone: +45-89 42 32 76
fax: +45-89 42 32 55
hrn@daimi.aau.dk

Anne Rogers
AT&T Labs-Research
180 Park Avenue, P.O. Box 971
NJ 07932-0971 Florham Park
USA
phone: +1-973-360-8668
fax: +1-973-360-8077
amr@research.att.com

John Ross
Apt. 25E, 5201 S. Cornel
IL 60615 Chicago, USA
phone: +1-773-752-6389
fax: +1-773-702-8487
johnross@uchicago.edu
www.cs.uchicago.edu/∼johnross

Shai Rubin
IBM - Haifa
IBM Haifa Research Lab
3200 Haifa - Matam, IL
phone: +972-4-829-6145
fax: +972-4-829-6115
rubin@haifa.vnet.ibm.com

Mooly Sagiv
Tel Aviv University
Dept. of Computer Science
Ramat Aviv
69978 Tel Aviv, IL
fax: +972-3-640-93 57
sagiv@math.tau.ac.il

25



Michael Schwartzbach
BRICS, University of Aarhus
Dept. of Computer Science
Ny Munkegade
DK-8000 Aarhus, DK
phone: +45-89 42 3374
fax: +45-89 42 3255
mis@brics.dk

Michael Seel
MPI für Informatik
AG 1, Raum 329
Im Stadtwald
D-66123 Saarbrücken, D
phone: +49-681-9325-129
fax: +49-681-9325-199
seel@mpi-sb.mpy.de

Helmut Seidl
Universität Trier
FB IV - Mathematik/Informatik

Universitätsring 15
D-54286 Trier, D
phone: +49-651-201-2835
fax: +49-651-201-3822
seidl@uni-trier.de

Kurt Sieber
Universität des Saarlandes
FB 14 - Informatik
Raum 432, Postfach 15 11 50
D-66041 Saarbrücken, D
phone: +49-681-302-3235
fax: +49-681-302-2414
sieber@cs.uni-sb.de
www.cs.uni-sb.de/∼sieber/

Martin Trapp
Universität Karlsruhe
Inst. für Programmstrukturen
und Datenorganisation
Am Zirkel 2, Postfach 6980
D-76128 Karlsruhe, D
phone: +49-721-7400
fax: +49-721-30047
trapp@ipd.info.uni-karlsruhe.de

Trishul Chilimbi
University of
Wisconsin-Madison
Computer Sciences Dept.
1210 W. Dayton St.
WI 53706 Madison, USA
phone: +1-608-262-4196
fax: +1-608-262-9777
chilimbi@cs.wisc.edu

Karsten Weihe
Universität Konstanz
Fak. f. Mathematik u. Informatik

Fach D 188
D-78457 Konstanz, D
phone: +49-7531-88-43 75
fax: +49-7531-88-35 77
karsten.weihe@uni-konstanz.de

Reinhard Wilhelm
Universität des Saarlandes
FB 14 - Informatik
PF 15 11 50
D-66041 Saarbrücken, D
phone: +49-681-302 3434
fax: +49-681-302 3065
wilhelm@cs.uni-sb.de

Mark Ziegelmann
MPI für Informatik
AG 1, Raum 408
Im Stadtwald
D-66123 Saarbrücken, D
phone: +49-681-9325-508
fax: +49-681-9325-199
mark@mpi-sb.mpg.de

26


