Generic Programming

July 21, 1998

A Dagstuhl Seminar on the topic of Generic Programming was held April 27—
May 1, 1998, with forty seven participants from ten countries. During the
meeting there were thirty seven lectures, a panel session, and several problem
sessions. The outcomes of the meeting include

e A collection of abstracts of the lectures, made publicly available via this
booklet and a web site at

http://www-ca.informatik.uni-tuebingen.de/dagstuhl/gpdag.html.

e Plans for a proceedings volume of papers submitted after the seminar
that present (possibly extended) discussions of the topics covered in the
lectures, problem sessions, and the panel session.

e A list of generic programming projects and open problems, which will be
maintained publicly on the World Wide Web at

http://www-ca.informatik.uni-tuebingen.de/people/musser/gp/pop/index.html
http://www.cs.rpi.edu/ “musser/gp/pop/index.html.

Contents

1

2

Motivation 3
Standards Panel 4
Lectures 4
3.1 Foundations and Methodology Comparisons 4
Fundamentals of Generic Programming. 4
Jim Dehnert and Alex Stepanov
Automatic Program Specialization by Partial Evaluation 4
Robert Gliick
Evaluating Generic Programming in Practice. 6
Mehdi Jazayeri
Polytypic Programming. 6
Johan Jeuring
Recasting Algorithms As Objects:
An Alternative to Iterators 7
Murali Sitaraman
Using Genericity to Improve OO Designs. 8
Karsten Weihe
Inheritance, Genericity, and Class Hierarchies 8
Wolf Zimmermann
3.2 Programming Methodology 9
Hierarchical Iterators and Algorithms. 9
Matt Austern
Generic Programming in C++: Matrix Case Study 9
Krzysztof Czarnecki
Generative Programming: Beyond Generic Programming. 10
Ulrich Eisenecker
Generic Programming Using Adaptive and
Aspect-Oriented Programming 10
Karl Lieberherr
Complete Traversals: Implementation and Generality 11
Arturo Sanchez-Ruiz
Template Support for Variation 11
Georg Trausmuth
An Overview of Generic Programming in RESOLVE. 12
Bruce W. Weide
3.3 Applications. oo oo o 12
Software Components for Computer Algebra. 12

Giuseppe Attardi

3.4

3.5

Generic Programming in the POOMA Framework. 13
James Crotinger

Generic Programming with Black Boxes. 14
Erich Kaltofen and Angel Diaz
STL-Style Generic Programming with Images 14

Ullrich Kéthe
Wrapping Computer Algebra Components

with Javaand CORBA 15
Wolfgang Kiichlin
Generic Graph Algorithms 16

Dietmar Kiihl

A Generic Programming Environment for

High-Performance Mathematical Libraries 18
Wolfgang Schreiner

Generic and Generative Programming in Blitz++ 19
Todd Veldhuizen

Specification and Verification, 20

Representing, Verifying, and Applying

Generic Software Development Steps Using PVS 20
Axel Dold

Filter-based Model Checking of Partial Systems 20
Matthew B. Dwyer and Corina S. Pasareanu

Generic Specification and Verification. 21
Friedrich von Henke

Applying Larch/C++ tothe STL 21

Gary Leavens

Mizar Verification of Generic Algebraic Algorithms 23
Christoph Schwarzweller

Language Independent Container Specification. 23
Alexandre Zamulin

Language Design or Extensions 24

Piccola—a Small Composition Language 24
Oscar Nierstrasz

Controlling Genericity. oL 24
Riidiger Loos

Generic Java—Making the Future Safe for the Past 25
Martin Odersky

Generic Programming in SuchThat 25
Sibylle Schupp

Xroma: Extensible Translation. 25

Daveed Vandevoorde

3.6 Libraries and Standardization 26

Exception Safety in Generic Components. 26
David Abrahams
Issues of the Standard. STL. 26

Nicolai Josuttis

What Kind of Standards Should There Be

for Generic Algorithm Performance? 27
David Musser
Generic Programming in CGAL 27

Stefan Schirra

1 Motivation

This statement, written by the organizers, was included with the invitations to
participants.

Generic programming is a sub-discipline of computer science that deals
with finding abstract representations of efficient algorithms, data structures, and
other software concepts, and with their systematic organization. The goal of
generic programming is to express algorithms and data structures in a broadly
adaptable, interoperable form that allows their direct use in software construc-
tion. Key ideas include:

e Expressing algorithms with minimal assumptions about data abstractions,
and vice versa, thus making them as interoperable as possible.

o Lifting of a concrete algorithm to as general a level as possible without
losing efficiency; i.e., the most abstract form such that when specialized
back to the concrete case the result is just as efficient as the original
algorithm.

e When the result of lifting is not general enough to cover all uses of an
algorithm, additionally providing a more general form, but ensuring that
the most efficient specialized form is automatically chosen when applicable.

e Providing more than one generic algorithm for the same purpose and at
the same level of abstraction, when none dominates the others in effi-
ciency for all inputs. This introduces the necessity to provide sufficiently
precise characterizations of the domain for which each algorithm is the
most efficient.

The intention in this seminar is to focus on generic programming techniques
that can be used in practice, rather than to discuss purely theoretical issues.
By the end of the seminar we would like to come up with the following results:

1. A list of problems in generic programming. These include new compo-
nents, new kinds of abstractions, language extensions, tools.

2. A process for extending the existing body of generic components, as well as
methods for their specification and verification and for establishing their
efficiency in actual programs.

We think that to accomplish these goals we need to share a common vocabu-
lary. Therefore, we will use the vocabulary established by the C++ Standard
Template Library (STL) of fundamental data structures and algorithms. This
is not intended to preclude discussion of generic programming issues that occur
in other areas and that might be more easily illustrated with other libraries
and languages. For example, topics might include language extensions to sup-
port generic programming in more recent languages such as Haskell or Java, or
how generic programming goals intersect with design patterns or frameworks
research.

2 Standards Panel

A panel session was held during the meeting on the topic of Library Stan-
dardization. The panel members were Matt Austern (SGI), Kurt Melhorn
(Saarbriicken), and Wolf Zimmermann (Karlsruhe); Riidiger Loos moderated.
[A report on the session is in preparation.]

3 Lectures

There were thirty seven lectures by participants, on topics that can be classi-
fied (post-hoc) into the following categories. Note that in many cases, however,
lectures touched on issues in more than one of the categories. Full paper sub-
missions corresponding to many of the talks are being collected for a refereed
proceedings publication.

3.1 Foundations and Methodology Comparisons

Fundamentals of Generic Programming
Jim Dehnert and Alex Stepanov

Generic programming depends on the decomposition of programs into com-
ponents which may be developed separately and combined arbitrarily, subject
only to well-defined interfaces. Among the interfaces of interest, indeed the most
pervasively and unconsciously used, are the fundamental operators common to
all C4++ built-in types, as extended to user-defined types, e.g. copy constructors,
assignment, and equality.

We investigate the relations which must hold among these operators to pre-
serve consistency with their semantics for the built-in types and with the expec-
tations of programmers. We can produce an axiomatization of these operators
which yields the required consistency with built-in types, matches the intuitive
expectations of programmers, and also reflects our underlying mathematical
expectations.

Automatic Program Specialization by Partial Evaluation
Robert Gliick

Partial evaluation is an automatic program optimization technique, similar
in concept to, but in several ways different from optimizing compilers. Optimiza-
tion is achieved by changing the times at which computations are performed.
A partial evaluator can be used to overcome losses in performance that are due
to highly parameterized, modular software. This has a quite remarkable impact
on software development because it allows the design of general and reusable

software without the penalty of being too inefficient. This presentation gives an
introduction to automatic program specialization by off-line partial evaluation.

Resources Good starting points for the study of partial evaluation are Jones,
Gomard, and Sestoft’s textbook [JGS93], Consel and Danvy’s tutorial notes [CD93],
Mogensen and Sestoft’s encyclopedia chapter [MS97], and Gallagher’s tutorial
notes on partial deduction [Gal93].

Further material can be found in the proceedings of the Gammel Avernaes
meeting [BEJ88, NGC88], in the proceedings of the ACM conferences and
workshops on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM) [PEPMa, PEPMb], and in special issues of several journals [JFP93,
JLP93, LASC95, TCS98]. A comprehensive volume on partial evaluation ap-
peared in the Lecture Notes of Computer Science series [DGT96].

References

[BEJ88] Bjgrner, D., Ershov, A. P., and Jones, N. D. Eds. Partial Evaluation and
Mixed Computation. North-Holland 1988.

[CD93] Consel, C. and Danvy, O. Tutorial notes on partial evaluation. In Proc. 20th
Annual ACM Symposium on Principles of Programming Languages, pp. 493-501.
ACM Press, 1993.

[DGTY96] Danvy, O., Gliick, R., and Thiemann, P. Eds. Partial Evaluation, Volume
1110 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[Gal93] Gallagher, J. Tutorial on specialisation of logic programs. In Proc. ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Ma-
nipulation, pp. 88-98. ACM Press, 1993.

[JFPI3] Journal of Functional Programming, special issue on Partial Evaluation, 3(3)
1993.

[JGS93] Jones, N. D., Gomard, C. K., and Sestoft, P. Partial Evaluation and Auto-
matic Program Generation. Prentice-Hall, 1993.

[JLP93] Journal of Logic Programming, special issue on Partial Deduction, 16(1&2),
1993.

[LASC95] Lisp and Symbolic Computation, special issue on Partial Evaluation, 8(3),
1995.

[MS97] Mogensen, T. . and Sestoft, P. Partial evaluation. In A. Kent and J. G.
Williams Eds., Encyclopedia of Computer Science and Technology, Volume 37, pp.
247-279, Marcel Dekker 1997.

[NGC88] New Generation Computing, special issue on Partial Evaluation and Mixed
Computation, 6(2&3), 1988.

[PEPMa] Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation. ACM Press, 1991, 1993, 1995, 1997.

[PEPMb] Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation. 1992, 1994.

[TCS98] Theoretical Computer Science, special issue on Partial Evaluation. to appear
1998.

Evaluating Generic Programming in Practice
Mehdi Jazayeri

We all think generic programming is wonderful and will lead to improvements
in software engineering. But other than an intuitive feeling about it, how do
we really know it? How do we convince practicing software engineers that this
is a technology they should learn and use? While many researchers are busy
developing new techniques and extensions to old ones, we should also pay some
attention to concrete measurements of the benefits of the technology. With the
appearance of STL, we have an instance of a generic programming library that
may actually be useful in practice and therefore can be used in experiments to
measure the benefits of the technology. We have conducted one such experiment.
The results are not conclusive or even convincing. But it is a start and we see
future steps to take. The experiment involved transforming a 5000-line network-
management program written in C into a C++ program. The major part of
the transformation was to replace hand-crafted C-code to the use of STL data
structures and algorithms. We expected to see a reduction in code size because
of the replacement of repeated code sequences by calls to library routines. In
fact, the code size did not change appreciably. The pure code (.c files) decreased
in size while the header files (.h files) increased in size. Intuitively, we can argue
that the new code is better because it factors common code into header files.
The code size measure, however, does not prove the superiority of the new code.
It is possible to conduct experiments to see how maintainable the code is but
such experiments are expensive and are usually not convincing. Instead, we
prefer to look for code metrics that are more appropriate for evaluating generic
code.

Polytypic Programming
Johan Jeuring

Many functions have to be written over and over again for different datatypes,
either because datatypes change during the development of programs, or be-
cause functions with similar functionality are needed on different datatypes.
Examples of such functions are pretty printers, debuggers, equality functions,
unifiers, pattern matchers, etc. Such functions are called polytypic functions.
A polytypic function is a function that is defined by induction on the structure
of user-defined datatypes. This talk introduces polytypic functions, and shows

some example applications: pretty printing, data compression, and database
table generation.

Recasting Algorithms As Objects:
An Alternative to Iterators

Murali Sitaraman

Typical techniques for problem solving separate the steps of choosing data
structures and algorithms. This separation and encapsulation of algorithms
as procedures exposes representation details, and complicates specification and
reasoning. In addition, a procedural encapsulation of algorithms leads to com-
putation of entire solutions in batch style, even for problems where only partial
solutions are needed and where partial solutions can be computed efficiently in
incremental fashion.

Recasting is an alternative approach in which data structures and algorithms
are encapsulated together to address a particular class of problems. Generic
data abstractions that result from recasting hide both how and when computa-
tions take place, and provide both functional and performance flexibility. When
a data abstraction interface is suitably designed and specified, it permits al-
ternative implementations to be developed using different data structures and
algorithms so that there is at least one efficient implementation for each in-
tended class of application of the abstraction. Through recasting, for example,
the problems of ordering a collection of items and sorting are unified and recast
into a Prioritizer data abstraction, which provides an abstract data type and
operations to insert items to be prioritized and to remove a next item in order.
Instead of a procedure for finding a minimum spanning forest of a graph (and
other graph optimization problems), recasting leads to data abstractions that
permit edges on a solution to be extracted one at a time. Alternative imple-
mentations of these abstractions may compute the solution either incrementally
or in batch style, providing clients with a new degree of temporal flexibility.

Recasting is one of the key research results of the RESOLVE work on
component-based software engineering framework, discipline, and language. For
more information see: http://www.csee.wvu.edu/ resolve

References

B. W. Weide, W. F. Odgen, and M. Sitaraman, “Recasting Algorithms to
Encourage Reuse,” IEEE Software, Vol. 11, No. 5, September 1994, 80-88.

S. Sreerama, D. Fleming, and M. Sitaraman, “Graceful Object-Based Perfor-
mance Evolution,” Software - Practice and Experience, Vol. 27, No. 1, January

1997, 111-122.

M. Sitaraman, B. W. Weide, and W. F. Odgen, “Using Abstraction Relations

to Verify Abstract Data Type Representations,” IEEE Transactions on Software
Engineering, March 1997, 157-170.

Using Genericity to Improve OO Designs
Karsten Weihe

Translating an abstract object-oriented design into a programming language
is a difficult task. We consider one particular problem, the classical circle-
ellipse dilemma, and discuss various approaches for resolution. It turns out that
common approaches either result in an unsafe realization or in a combinatorial
explosion of classes. We show that this combinatorial explosion can be avoided
to some extent by introducing layers of generic holds-a relations into the in-
heritance hierarchy. Roughly speaking, these layers turn explicit interrelations
between classes into implicit ones, which reduces the complexity of the whole
system.

Inheritance, Genericity, and Class Hierarchies
Wolf Zimmermann

The talk reports experiences and conclusions drawn from the development
of the class library KARLA (KARIlsruhe Library on Algorithms). We observed
that combining classes using genericity and inheritance may lead to unexpected
errors which might occur deeply in the calling hierarchy of a library. The talk
presents results on how to combine classes safely using inheritance and generic-
ity.

We assume that every class C' is specified by its invariant Inve, and pre-
and postconditions Pre,, ¢ and Post,, c, respectively, for all its methods m.
Consider now method calls .m(y,,...,yx) where the declared type A of x is
polymorphic (i.e., can be an object of any subclass of A) or a parameter of a
generic class. Two questions arise:

1. What must be satisfied in order to ensure the precondition of the method
call without knowing the concrete class of 7

2. What is satisfied after the method call; i.e., which invariant and postcon-
dition?

The conformance condition is the key to answer these questions. Informally, a
class B conforms to a class A iff A can always be substituted by B. Formally, this
condition is defined by implications on invariants, pre- and postconditions. If
conformance is required for inheritance, then for the method call x.m(y,, .. ., yx)
it is sufficient to show that Pre,, 4 is satisfied, and after the call Inv s A Post,, 4
is satisfied. If the declared type of x is a generic parameter 1" and we bound the
genericity by A, i.e., all instances for 7" must conform to A, we have the same
situation.

10

Inheritance is also used for code reuse. Therefore, there are non-conforming
inheritance relations. In particular, the specialization relation turns out to be
important in practice. Informally, a class B is more special than a class A,
if all objects of class B are the objects of A which satisfy some constraint,
e.g. the class of acyclic directed graphs is a specialization of the class of directed
graphs. The talk discusses several specialization hierarchies and their systematic
construction.

3.2 Programming Methodology

Hierarchical Iterators and Algorithms
Matt Austern

Many data structures are naturally segmented; generic algorithms that ig-
nore this feature, and that treat segmented data structures as a flat one-dimensional
range of elements, are unnecessarily inefficient. Segmented iterators make it
possible to write generic algorithms that explicitly make use of segmentation.

Generic Programming in C++: Matrix Case Study
Krzysztof Czarnecki

This talk presents a concrete example of a complete generative development
method for libraries of reusable algorithmic components and its application to
the domain of matrix computations. The overall method is a specialization of
the domain engineering method ODM by Simos et al. In the analysis phase,
an extended version of so-called feature diagrams is used to model the features
of the domain as well as the features of the key concepts and constraints be-
tween features are recorded in constraint tables. In the design phase, domain
specific languages (DSL) and the implementation component architecture are
derived from the domain analysis model. The concrete matrix computation
example involves defining a matrix configuration DSL and a matrix expression
DSL. The implementation architecture is based on the layered GenVoca model,
where the valid combinations of the implementation components are described
by an implementation components configuration language (ICCL). Finally, tem-
plate metaprogramming is used to implement a generator component translat-
ing matrix descriptions in the configuration DSL into concrete configurations in
the ICCL. The expression DSL is implemented using expression templates to
achieve loop fusing and eliminating temporaries. The generative matrix com-
ponent currently covers 1840 different types of matrices using about 6000 lines
of code. The performance of the generated matrices corresponds to the perfor-
mance of hand-optimized matrix variants.

11

Generative Programming: Beyond Generic Programming
Ulrich Eisenecker

Most of the current object-oriented analysis and design methodologies focus
on developing single systems only. Little support is provided for developing
reusable software, e.g. frameworks or component libraries. Furthermore, when
we increase the generality of reusable software implemented using conventional
technology (e.g. framework and component technology), its complexity grows
more than required and it also suffers unnecessary performance losses. Gener-
ative programming addresses these three problems. First, it deploys Domain
Engineering, which allows us to model classes of systems rather than single
systems. Second, aspect-oriented decomposition and composition techniques,
domain-specific languages, and configuration knowledge are used to increase
the intentionality of system representation and reduce unnecessary complexity.
Third, generative programming techniques (e.g. generators, dynamic metapro-
gramming, and reflection) are used to implement the above concepts and to
achieve high performance. This talk presents some generative C++ techniques
allowing for parameterization of method binding time and implementation of
statically configurable frameworks with statically bound methods and no over-
head in time and space incurred by unused polymorphic functionality as in
dynamic frameworks.

Generic Programming Using Adaptive and
Aspect-Oriented Programming

Karl Lieberherr

Aspect-Oriented Programming (AOP) addresses the problem of tangling of
aspects in programs and splits a program into loosely coupled building blocks.
Each building block addresses one aspect of the application; some example as-
pects are: structure, synchronization, remote invocation, quality of service, etc.
A weaver combines the building blocks, at least conceptually, into a program
where the building blocks are tangled together and sometimes replicated several
times.

Adaptive Programming is the special case of Aspect-Oriented Programming
where one of the building blocks is expressible in terms of graphs and where the
other building blocks refer to the graphs using traversal strategies. A traversal
strategy is a partial specification of a class diagram pointing out a few corner-
stone classes and relationships. Traversal strategies are graphs where each edge
defines a regular expression specifying a traversal through a graph.

The experience with AP has been very positive. It has been used in several
industrial projects. Programs become both simpler and more flexible. For more
information, see www.ccs.neu.edu/research/demeter

12

Complete Traversals: Implementation and Generality
Arturo Sanchez-Ruiz

This talk has two parts. The first part presents the concept of complete
traversal (CT), which for a given a container C' (such as a set) is defined by the
iteration scheme

forallz e C
F(z,C)

where F is a function that might possibly modify C' by inserting new elements
into it. We assume that the order in which the elements are treated is not
relevant, as long as the iteration continues until F has been applied to all of
the elements currently in C, including those F has inserted. Standard iteration
mechanisms, such as the iterators provided in the C++ Standard Template
Library (STL), do not directly support complete traversals. We show generic
solutions to the complete traversal problem by means of two generic algorithms
and a container adaptor. We also discuss the complexity of these solutions, and
their scope in terms of the class of containers they support. This part is based
on a joint paper with Dave Musser and Eric Gamess published elsewhere.*
The second part of the talk addresses the question of how general this itera-
tion scheme (CT) is. The way of approaching this question is by comparing the
CT problem with well-known problems such as the computation of the tran-
sitive closure (TC) of a relation, and the computation of the closure of a set
under a given relation (CR). We formally define the meaning of problem and
the relation is an instance of among problems, to prove that TC and CR are
indeed instances of the CT problem, and present a diagram which depicts the
relation is an instance of among CT, TC, CR, and other well-known problems.

Template Support for Variation
Georg Trausmuth

Generic programming based on C++ templates can be used to model a
generic framework for a family of software systems that share common structure.
We developed an approach that uses templates and compile-time instantiation to
configure the various members of a system family. We explored the technique
in an industrial case study to adapt a generic configuration to meet specific
functional requirements imposed by hardware variation. As the software was
targeted for an embedded system, the resulting code size is of high interest. We
could show that the code is highly optimized through the use of inlined template
functions. Optimizations comparable to those achieved are not possible for
similar C4++ designs which are based on inheritance and virtual functions. A

IEric Gamess, David Musser, and Arturo J. Sdnchez-Ruiz. Complete Traversals and their
Implementation Using the Standard Template Library, in Proceedings of the XXIII Lati-
namerican Conference on Informatics, Valparaiso, Chile. November, 1997.

13

drawback of our technique is its current limitation to create executables that
contain only one variant of the software at a time. As future work we will be
testing advanced template techniques to overcome these difficulties for the next
versions of the framework.

An Overview of Generic Programming in RESOLVE
Bruce W. Weide

RESOLVE is the name for three related notions: (1) a conceptual framework
for thinking about, understanding, and designing component-based software;
(2) a research language that supports this conceptual framework; and (3) a dis-
cipline for software component engineering within this conceptual framework
that can be applied in practice in languages that support generic program-
ming, particularly C+4 and Ada. Our emphasis is on “industrial-strength”
software systems, so we focus on key technical issues of concern in the software
engineering community: correctness, efficiency, and maintainability. Key ideas
and mottoes from RESOLVE include contributions to specification design (for-
mal model-based specifications, a.k.a. “domain analysis considered harmful”),
behavioral interface design (the swapping paradigm, a.k.a. “assignment con-
sidered harmful”, and recasting algorithms as objects, a.k.a. “iterators consid-
ered harmful”), implementation design (fully-parameterized components, a.k.a.
“concrete-to-concrete component coupling considered harmful”), and applica-
tion design (modular reasoning about component-based software, a.k.a. “visible
pointers considered harmful”). The RSRG web page is at http://www.cis.ohio-
state.edu/rsrg.

3.3 Applications

Software Components for Computer Algebra

élf?g%);%% é()g)rcr?;r)%lnents encourage code reuse and simplify application develop-
ment. An increasing number of applications are built assembling components
developed by third parties, taking advantage of language-independence, object
orientation, ease of use and other features of modern component architectures.

Computer algebra systems could exploit the software component approach,
but several issues must be addressed, mostly due to the sophisticated data
structures required for representing mathematical objects. We discuss these
problems and present a proposal based on the OpenMath specifications.

We built an prototype framework for developing and using mathematical
components. The framework uses IDL from CORBA for specifying the inter-
faces for objects. Code developed in the framework is mapped into either the
COM object model for creating ActiveX components or into CORBA objects
for creating servers implemented as dynamic modules.

14

Generic Programming in the POOMA Framework
James Crotinger

POOMA (Parallel Object Oriented Methods and Applications) is a C++
framework for developing portable parallel scientific applications. In order to
present a high level of abstraction without sacrificing performance, POOMA
depends heavily on generic programming techniques in general, and expression
templates in particular (in the form of PETE, the Portable Expression Template
Engine). The next version of POOMA, currently under development, introduces
the concept of an Engine that is responsible for managing the storage of data
and for mapping sub-domains to subsets of the Engine’s values. These “Views”
are also managed by Engines, possibly of a different type. An Array class,
templated on an Engine, has been introduced. This class essentially provides
a common user-interface for all Engines (including “View” Engines), and will
serve as a basis for implementing the Field, ParticleAttribute, and other data-
parallel classes. I present an overview of the current PETE, and discuss the
new Engine-based Arrays, the implications that they have on using PETE, and
extensions that have been made to PETE to support this new design.

15

Generic Programming with Black Boxes
Erich Kaltofen and Angel Diaz

The FoxBox system puts in practice the black box representation of sym-
bolic objects and provides algorithms for performing the symbolic calculus with
such representations. Black box objects are stored as functions. For instance:
a black box polynomial is a procedure that takes values for the variables as
input and evaluates the polynomial at that given point. FoxBox can compute
the greatest common divisor and factorize polynomials in black box representa-
tion, producing as output new black boxes. It also can compute the standard
sparse distributed representation of a black box polynomial, for example, one
which was computed for an irreducible factor. We establish that the black box
representation of objects can push the size of symbolic expressions far beyond
what standard data structures could handle before.

Furthermore, FoxBox demonstrates the generic program design methodol-
ogy. The FoxBox system is written in C++. C++ template arguments provide
for abstract domain types. Currently, FoxBox can be compiled with SACLIB
1.1, Gnu-MP 1.0, and NTL 2.0 as its underlying field and polynomial arith-
metic. Multiple arithmetic plugins can be used in the same computation.
FoxBox provides an MPI-compliant distribution mechanism that allows for par-
allel and distributed execution of FoxBox programs. Finally, FoxBox plugs into
a server/client-style Maple application interface.

STL-Style Generic Programming with Images
Ullrich Ko6the

As in other domains, reusability is a major goal of software design in the field
of image processing and analysis. Three main requirements must be met by a
design method in this domain: First, reusability must not lead to performance
degradation. Second, especially good support for algorithm reuse is needed
since algorithms are the most important abstractions. Third, the method must
lead to independent components that can be combined in many different ways,
according to the requirements of the application context.

During the past several years, we have been developing the generic image pro-
cessing and analysis library VIGRA which achieves these goals by applying the
design principles of the Standard Template Library (STL). Based on a detailed
analysis of algorithm requirements, we have defined new iterator categories for
2-dimensional and cyclic data access. Iterators conforming to these require-
ments were implemented for many different image and graph data structures.
To further decouple our algorithms from the underlying data representations,
we have found promotion traits and data accessors extremely useful, because
they allow us to treat scalar and multi-spectral (e.g., RGB) images uniformly.

16

As a result, we can easily customize our algorithms for the task at hand.
This leads to dramatic reductions in source code size (up to 90%) and develop-
ment time since we do not need different algorithm implementations for minor
variations, as was the case in traditional libraries. Our experience with over
50 algorithms currently implemented shows that generic programming on the
basis of the C++ template mechanism is well suited to achieving high flexibility
whithout loss of performance.

Wrapping Computer Algebra Components
with Java and CORBA

Wolfgang Kiichlin and Andreas Weber

We address two software reuse problems in the field of Computer Algebra.
First, we investigate an architecture for the use of installed remote systems via
a Java based Web interface. Second, we show how, and at what levels of granu-
larity, algebraic algorithms can be efficiently reused in other Computer Algebra
systems by calling them as CORBA objects. The first problem is illustrated by
a parallel Grobner solver [1] which is best installed on a shared memory parallel
SPARC server. While the system is portable to a large degree, porting parallel
software is generally much more problematic than sequential software. There-
fore it is advantageous to access the remote parallel server via a Java-based Web
interface. Our interface includes data format conversion routines for polynomi-
als based on the MathBus protocol. The interface comes in two flavors, one for
interactive GUI access, and one for scripting access from source code. For a
more detailed exposition see [3].

The second problem is illustrated by the task of extending the Groébner
basis software to include parametric Grobner bases. The new algorithm needs
g.c.d. computations on multivariate polynomials which already exist in various
other systems, such as SACLIB. However, the memory management of these
systems is incompatible with ours. Therefore we wrapped the necessary SACLIB
algorithms as CORBA objects, using the ILU implementation of CORBA, and
thus reused the SACLIB code rather than reimplementing the algorithms. We
show detailed timings indicating the performance and overhead of this approach.
Overall, we found that we could efficiently reuse algorithms at a granularity
down to a few tens of milliseconds. For a more detailed exposition see [2].

References

[1] AMRHEIN, B., GLOOR, O., AND KUCHLIN, W. A case study of multi-threaded
Grobner basis completion. In Proc. Intl. Symposium on Symbolic and Algebraic
Computation (ISSAC ’96) (Zurich, July 1996), Y. N. Lakshman, Ed., Association
for Computing Machinery.

[2] Hoss, J., KUCHLIN, W., AND WEBER, A. Wrapping computer-algebra-systems

as software components—the CORBA /ILU approach. In Proceedings Sizth Rhine
Workshop on Computer Algebra (1998).

17

[3] WEBER, A., KUcHLIN, W., EGGERS, B., AND SiMONIs, V. Parallel computer
algebra software as a web component. In ACM 1998 Workshop on Java for High-
Performance Network Computing (Palo Alto, CA, U.S. A., Mar. 1998), S. Hassan-
zadeh and K. Schauser, Eds., Association for Computing Machinery, pp. 261-264.
http://www.cs.ucsb.edu/conferences/java9s.

Generic Graph Algorithms
Dietmar Kiihl

Implementing (non-trivial) graph algorithms is generally a difficult enterprise
due to the complexity of the algorithms. Thus, it is desirable that an implemen-
tation of graph algorithms is widely applicable. That means in an ideal world
it is possible to apply the implementation of a graph algorithm to an arbitrary
graph data structure (as long as it is suited to the requirements of the algo-
rithms: it makes no sense to apply an algorithm for planar graphs to a general
graph). Since graph algorithms often extend more basic algorithms, injecting
additional computation into an algorithm would also be desirable. Both goals
can be achieved, at least to a certain degree. The applicability to an arbitrary
graph data structure can be provided by implementing algorithms independent
from a graph data structure and using only some kind of minimal abstraction.
A workable abstraction consists of the following parts:

e STL-like iterators to access the set of nodes and edges
e adjacency iterators to access the edges incident to a node

e data accessors to access data associated with an object identified by an
iterator

These abstractions are sufficient for a large class of algorithms. Additionally,
auxiliary modifications of graphs can easily be made by adapters providing a
different view of the graph. To also provide additional operations during the
execution of an algorithm, the easiest approach is to use algorithm objects which
behave similarly to iterators. After initialization the algorithm object is used
advanced stepwise until the user of the algorithm wants to execute additional
code. The algorithm object iterates through the states of the algorithm with
the user having full control over the execution of the algorithm.

Iterators There is nothing special about the iterators accessing the set of
nodes and edges; these are just iterators for sequences like, for example, the
STL iterators. The only thing to be noted is that the data associated with an
object identified by an iterator is not directly accessed via the iterator but rather
through a data accessor (see below). Special to graphs are adjacency iterators
which are used to explore the local structure of a graph. An adjacency iterator
iterates over the nodes adjacent to a fixed node. A possible set of methods (in
addition to general functions like constructors, assignment, and destructors) for
an adjacency iterator could be (aitl and ait2 are adjacency iterators):

18

aitl.valid() Return true if there still is an adjacent node
aitl.next() Advance the iterator to the next adjacent node
aitl.cur_adj() Return an adjacency iterator for the current adjacent node

aitl.same node(ait2) Return true if both iterators are positioned on the
node (independent from the current node)

aitl.same edge(ait2) Return true if both iterators are positioned on the
same current edge

Like the iterators for the set of nodes and edges, data for the objects identified
by an iterator is accessed through data accessors.

Data Accessors Graph algorithms normally access data associated with the
nodes and edges of the graph which is often interpreted as weight, length, cost,
or flow, depending on the context of the algorithm. Because graph algorithms
often use other algorithms as subalgorithms, the interpretation of the associ-
ated data may change, for example, from “length” to “cost.” In addition, the
algorithms need to store auxiliary data with the nodes and/or edges, for exam-
ple to indicate a temporary flow value or that a node was already visited. In
general, there are many ways to represent the data used by the algorithms. For
example, the data may be stored in the node or edge data structure or in some
container indexed by node or edge numbers, or the data may be calculated from
other fields. Algorithms should not depend on a specific approach for the rep-
resentation but rather allow the user of the algorithm to select an appropriate
representation. Thus, data associated with objects identified by iterators are
not directly accessed but rather through some abstraction called data accessor
with a simple interface such as (da is a data accessor, it is some iterator, and
val is an object of the type of the associated data):

get(da, it) Retrieve the data identified by da which is associated with the
object identified by it

set(da, it, val) Set the data identified by da which is associated with the
object identified by it to the value val

In some sense the data associated with a node or an edge can be seen as a table
where the rows are identified by an iterator and the columns are identified by
data accessors. However, the organization of this table can be very different
from a normal table: some columns may be made up from one or more tables
while other columns are stored with the corresponding objects directly or are
calculated.

Algorithm Objects Graph algorithms are often slightly modified to suit spe-
cific needs. For example, during the execution of an algorithm certain interme-
diate data may be recorded (a typical example is the DFS number during the

19

execution of a DF'S) or some data is collected to provide a “certificate” justifying
the correctness of a result. Although the additional computations are essential
in some situations, they are completely useless in others. To provide the pos-
sibility to modify an algorithm, non-trivial algorithms should be implemented
as algorithm objects which behave much like iterators. The major difference be-
tween normal iterators and algorithm objects is that the latter iterate over a set
of intermediate states during an algorithm instead of iterating over a collection
of objects. Together with appropriate access functions to the current state of
the algorithm, this can be used for example to record intermediate data, in-
ject additional computations, modify the behavior of the algorithm, terminate
the algorithm prematurely after the desired result is computed, or to provide
recovery points to avoid loss of computed results during time consuming compu-
tations. This approach is, of course, not specific to graph algorithms. However,
it is not yet widely applied (e.g., the STL algorithms are all monolithic blocks).

A Generic Programming Environment for
High-Performance Mathematical Libraries

Wolfgang Schreiner

We describe a programming environment for developing generic mathemati-
cal libraries with high-performance requirements. The environment is based on
the concept of functors as pioneered by SML, but also on a number of origi-
nal concepts; we especially focus on the combination of the functor-based pro-
gramming principle with software engineering principles in large development
projects. The generated code is highly efficient and can be easily embedded into
foreign application environments.

The features of the programming environment include:

e Specifications

Module interfaces are described by axiomatic specifications that do not
only represent syntactic interfaces but also semantic properties (input and
output conditions). These properties do not only give precise meanings
to modules but are also (with restrictions) used to automatically gener-
ate assertions and also default implementations. Specifications may be
parameterized to describe functor interfaces; a specification (i.e., also a
module) may contain modules as components.

e Functors

Functors are parameterized over other modules with denoted specifica-
tions and return a result module. Contents of other modules may be
referenced by qualification or by import into the current environment;
multiple functions with the same name but different type interfaces may
coexist in the same environment (overloading). Types have constructors
and destructors associated to them that are invoked when corresponding

20

values/variables are declared. No direct reference to any builtin type is
required, all language constructs can be used in a generic fashion.

o Module Instantiation

Functors may be instantiated with modules (i.e., the results of other func-
tors) in order to yield executable results. The instantiation system for-
wards all implementation information transparently to the code generator
such that e.g. function code may be inlined and special code may be gen-
erated for machine-level operations. The generated C++ code is compiled
with the native machine compiler and has the same performance as man-
ually written code.

e Packages

A sophisticated package handling concept allows to group specifications,
functors, module descriptions, and also packages into hierarchies of pro-
gram units. The environment of program units visible in a package and
thus the access to other program units may be explicitly controlled, also
may the contents of other packages be imported and thus virtual package
environments be constructed.

e Dependence and Permission Control

The system utilizes an efficient dependence control mechanism which frees
the user from any concern about the maintenance of relationships between
different program units. This is of particular importance, since a functor
is in general the source of different module instantiations on which in turn
other instantiations may depend. Likewise, a permission control mecha-
nism allows to share the same package tree by multiple software developers
without need for duplication of module instantiations.

The system is currently in transit from alpha to beta state; a corresponding
mathematical sample library is under development. We will further develop
the system in order to support revision control and to include higher-order
functors (functors as components of modules and functors parameterized over
other functors).

Generic and Generative Programming in Blitz++
Todd Veldhuizen

Scientific computing requires domain-specific abstractions, such as arrays,
matrices, and tensors. Implementing these abstractions in libraries (rather than
in compilers) makes them hard to optimize, since compilers lose semantic knowl-
edge of the abstractions. The solution may be to move high-level optimizations
out of compilers and into libraries. The Blitz4++ library offers an example of
how this may be done: using the compile-time metalevel processing abilities
of C++, Blitz++ implements many optimizations which were previously the

21

responsibility of compilers. The library offers functionality and efficiency com-
petitive with Fortran, but without any language extensions.

3.4 Specification and Verification

Representing, Verifying, and Applying
Generic Software Development Steps Using PVS

Axel Dold

This talk shows how to use the specification and verification system PVS
as a framework for formal software development. Software is developed ac-
cording to the methodology of stepwise refinement: starting from an abstract
requirement specification a series of correctness-preserving development steps
is applied to obtain an executable and efficient program. We use PVS to pro-
vide a fully mechanized treatment of the transformational development process
which comprises the formalization (i.e., implementation in the PVS specifica-
tion language), verification, and correct application of development steps and
development methods. A rigorous formal treatment is important since it greatly
increases the confidence in the soundness of transformations and their applica-
tion to specific problems. The software development steps presented in this talk
include the well-known algorithmic paradigm of divide-and-conquer, the opti-
mization transformation finite differencing, and an example of data structure
refinement (implementing finite sets by binary trees). All development steps are
represented within a parameterized PVS theory which defines the required data
structures and formalizes the application conditions by means of assumptions.
Application (i.e., instantiation) of the steps is illustrated by means of simple
examples. For example, we show how to correctly derive a mergesort pro-
gram using divide-and-conquer. When applying a software development step
the system automatically generates the necessary proof obligations which can
be discharged using built-in and user-defined proof strategies.

Filter-based Model Checking of Partial Systems
Matthew B. Dwyer and Corina S. Pasareanu

Recent years have seen dramatic growth in the application of model checking
techniques to the validation and verification of correctness properties of hard-
ware, and more recently software, systems. Success in scaling these techniques
to be practical for realistic software systems has met with a number of obsta-
cles, such as exponentially-sized state spaces and the problem of constructing
finite-state system models for analysis. We describe an automatable approach
for building finite-state models of partially defined software systems that are
amenable to model checking using existing tools. It enables the application of
model checking techniques to individual system components taking into account
assumptions about the behavior of the environment in which the components

22

will execute. We illustrate the application of the approach by validating and
verifying properties of a reusable parameterized programming framework.

Generic Specification and Verification

Friedrich von Henke, in collaboration with
F. Bartels, A. Dold, H. Pfeifer, H. Ruef

We discuss formal specification and verification in a generic context. Our
view is that generic entities, such as templates or generic program components,
may benefit from applications of formal methods even more than non-generic
ones since often their correctness crucially depends on parameters being properly
instantiated; thus the formal specification of semantic requirements on param-
eters and the verification that instantiations satisfy those constraining require-
ments is essential.

The talk builds on the experience gained in building up a collection of generic
theories for programming language semantics and compilation of simple Pascal-
like languages, in the context of project Verifiz. The basic theories include a
development of the required mathematics, including domain theory, fixed-point
theory and fixed-point induction; denotational semantics for elementary pro-
gramming constructs and, derived from this, other forms of semantics. The
compilation theories are structured into several conceptually different levels
(identifiers and variables, expressions, control structures) in such a manner that
each level abstracts as much as possible from details of the lower ones. In all
theories, special emphasis is given to modularity and genericity to maximize the
degree of reusability. The vehicle for the formal development is the PVS system:;
we discuss to what extent PVS provides appropriate mechanisms for achieving
the desired level of genericity.

Although this work addresses issues of generic programming only in a rather
restricted domain (compilation), we believe that both the approach to generic
specification and verification and the mathematical theories developed so far
provide us with a model that will be applicable to the formal treatment of a
much wider variety of generic programming problems.

Applying Larch/C++ to the STL
Gary Leavens

Larch/C++ is a model-based interface specification language tailored to the
specification of C++ programs. As background, some basics of model-based
interface specifications were described. By giving an abstract model of container
objects, one can state conditions that require elements to remain in a container
after they are inserted. Aspects of specification related to templates, the so-
called “required interface” can be precisely described by Larch/C++, as shown
by a case study involving the set template of the Standard Template Library

23

(STL). This case study revealed some minor documentation problems in the
STL, and pointed out some problems in Larch/C++.

24

Mizar Verification of Generic Algebraic Algorithms
Christoph Schwarzweller

We propose the Mizar system as a theorem prover capable of verifying generic
algebraic algorithms on an appropriate abstract level. The main advantage of
the Mizar theorem prover is its special input language that enables textbook-
style presentation of proofs, hence proofs in the language of algebra. Using Mizar
we were able to give a rigorous machine-assisted correctness proof of a generic
version of Brown/Henrici arithmetic in the field of quotients over arbitrary ged
domains. In this talk we give a short introduction into the Mizar language and
show how to use the system to verify generic algebraic algorithms. We also deal
with proof documentation based on literate programming, claiming that even
complex proofs can be presented so that they stay readable and understandable.

Language Independent Container Specification
Alexandre Zamulin

The purpose of this talk is to propose an iterator and container specification
mechanism which makes the specification independent of a particular Program-
ming Language and makes the specification formal. The following options have
been considered:

e classical algebraic specifications.

Advantages: sound mathematical foundation, languages and
tools exist.

Disadvantages: state must be modeled, very complex specifica-
tions as a result, differences between containers disappear.

e Abstract State Machines (evolving algebras).

Advantages: imperative style of specification, built-in notion of
state.

Disadvantages: too low level of specification, container opera-
tions cannot be formally specified.

The chosen technique, called Object-Oriented Gurevich Machine, combines ad-
vantages of both approaches mentioned above. It permits conventionally speci-
fying a needed set of data types and specifying by transition rules a needed set
of object types. An object is an entity possessing a unique identifier and a state.
It is characterized by a number of attributes defining its state and a number
of methods for observing (observers) and changing (mutators) the state. An
object type defines a set of states of a particular object.

25

An iterator is represented as an object of the corresponding iterator type
with an address as the object’s identifier. Iterator types are combined in iter-
ator categories each having a definite set of iterator operation. A container is
represented as an object of the corresponding container type possessing a num-
ber of attributes, observers, and mutators. Observers are specified in terms of
attribute values. Mutators are specified in terms of transition rules updating
attribute values.

3.5 Language Design or Extensions

Piccola—a Small Composition Language
Oscar Nierstrasz

Piccola is a “small composition language” currently being developed within
the Software Composition Group. The goal of Piccola is to support the flexible
composition of applications from software components.

Piccola can be seen as a “scripting language” in the sense that compositions
should compactly describe how components are plugged together. Because Pic-
cola should also document the architectural styles that components conform to,
it should also function as an architectural description language.

Since components may come from diverse platforms and adhere to very dif-
ferent architectural styles, a third important aspect is that Piccola can be seen
as a “glue language” for adapting components so they can easily work together.
Finally, since components and applications are inherently concurrent and dis-
tributed, Piccola can also be viewed as a coordination language.

To address these various issues, we propose to develop Piccola based on a
formal model of composable “glue agents” that communicate by means of a
shared composition medium. Abstractions over messages and agents are first
class values, and can be used to adapt compositions at run-time.

Controlling Genericity
Riidiger Loos

Starting with Knuth’s definition of an algorithm we call an algorithm generic
if we drop the requirement of definiteness. In 1971, David Musser and George
Collins called generic algorithms ‘abstract’ algorithms and we draw a historical
parallel to the concept of abstract or modern algebra introduced at the begin-
ning of this century. Van der Waerden renamed his Modern Algebra after 17
successful editions to Algebra and we expect that ‘generic programming’ will
one day simply be called ‘programming.’

Details of a generic algorithm left unspecified may be the particular domain,
the representation of the elements of the domain, and the subalgorithms used.
Particular specifications result in definite algorithms. Hence, generic algorithms

26

have to deal with specifications of abstract concepts in order to control gener-
icity.

We propose to use Musser’s concept specification language Tecton together
with algorithm descriptions for generic programming. The Tecton language was
introduced for the Tecton proof system, but in addition it can be combined with
generic algorithms in order to verify them, to control type parameter instanti-
ation, and to specify algorithmic efficiency requirements for a library of generic
algorithms.

Currently, Tecton has two major applications. It is suitable for expressing a
formal, C++ independent specification of the Standard Template Library. Also,
it provides a basis of the semantics of Sibylle Schupp’s and the author’s generic
programming language SuchThat and allows for the verification of the axioms
of SuchThat’s type system. We report on work in progress to implement the
Tecton language.

Generic Java—Making the Future Safe for the Past
Martin Odersky, joint work with Philip Wadler and Enno Runne

We present a design to add generic types and methods to the Java pro-
gramming language. These are both explained and implemented by translation
into the unextended language. In fact, there are two such translations: the ho-
mogeneous translation maps type variables to a uniform representation, while
the heterogeneous translation expands the program by specializing parameter-
ized classes according to their arguments. This talk describes both translations
in detail, compares their time and space requirements and discusses how each
affects the Java security model.

Generic Programming in SuchThat
Sibylle Schupp

SUCHTHAT is a purely generic programming language under active devel-
opment. Focusing on type checking issues of generic programming we explain
the requirements of a type system for a generic language and give a rationale
for the SUCHTHAT type system. We illustrate the challenge of type checking
parameterized and attributed structures with examples from computer alge-
bra, and present the implication calculus as a formalism that models well the
instantiation of generic algorithms.

Xroma: Extensible Translation

Daveed Vandevoorde

27

Xroma is a translation environment that supports the concept of smart li-
braries: libraries that can actively inspect the environment in which they are
used and adapt to it. The Xroma system enables this both at compile-time
and at run-time through the general principle of reflection. The system ex-
poses syntax trees (called Xromazene), the translation cycle (parsing, semantic
checking, ?) and the Xroma object model. Thus the Xroma programmer can
substitute library-specific actions at specified points of the translation cycle to
take control of the process. These actions are themselves Xroma elements and
can be treated as ordinary software library components. Applications include
component-specific optimizations, generalized genericity constraints, evolving
interfaces, program analysis tools, and the coexistence and derivation of multi-
ple object models (e.g., Xroma-to-COM translation).

3.6 Libraries and Standardization

Exception Safety in Generic Components
David Abrahams

Contrary to popular lore, it is both possible and practical to provide exception-
safety in generic components. In fact, exceptions usually lead to more efficient
code than “traditional” error-handling methods. Generic exception-safety relies
for its foundation on a contractual arrangement between component and client,
whereas clients of traditional libraries are usually bound by comparatively few
requirements. Also covered are: levels of exception-safety, techniques for distin-
guishing how much exception-safety should be specified for a component, and
an automated testing method for verifying exception-safety.

Issues of the Standard STL
Nicolai Josuttis

The upcoming C++ standard contains the generic template library STL as
a library component. However, the library and the standard STL are neither
complete nor perfect. So, for the ordinary user there are a lot of practical issues
to get the most benefit from using the STL.

Among other things we have the remaining problems of unnecessary incon-
sistencies, missing minor components (such as some function adapters), not
handling const correctness in the best way, and inconveniences in the interface.
In addition, we need more and better environments to help the programmer to
avoid making mistakes. I simply would like to emphasize the aspect that it is
always very important to provide techniques and components that are as intu-
itive and convenient as possible. And I try to put the focus on the point that it
is very important not to forget the details that help great ideas, concepts, and
innovations to become an easy-to-use reality.

28

What Kind of Standards Should There Be
for Generic Algorithm Performance?

David Musser

The first premise of this talk is that for maximum usability (including porta-
bility), a library of generic software components should be standardized—there
can be many different implementations of the library, but every implementation
must adhere to a given set of requirements. The recently finalized ANSI/ISO
C++ standard is an example. A second premise is that there must be some
form of requirements on performance. How should they be expressed? Com-
pared to traditional analysis of concrete algorithms, performance analysis of
generic algorithms must be done more abstractly to encompass the range of
possible algorithm specializations. But for greatest range of use and most accu-
rate algorithm selection, performance must be characterized more precisely than
is possible with O notation. This is an open problem, but looking at it from the
standpoint of generic program library standardization may provide new insights
and tools to help solve it. Several small examples of performance requirement
specification and algorithm design are presented as background to the problem.

Generic Programming in CGAL
Stefan Schirra

CGAL (Computational Geometry Algorithms Library) is a C++ software
library of geometric algorithms and data structures. It is developed by several
European research institutes and universities, see http://www.cs.ruu.nl/CGAL
for further information. We give three examples of genericity in CGAL. In the
first two examples genericity is achieved by parameterization. Thus they are
examples for generic programming via parameterized programming.

The first example is parameterization of the classes in the kernel of CGAL.
All constant-size geometric types in the kernel are parameterized by a “repre-
sentation class.” Essentially, this parameter must provide an implementation
for the kernel types. CGAL currently offers two concrete models for the con-
cept representation class, a model which uses Cartesian coordinates for the
implementation and a model using homogeneous coordinates. Both models are
parameterized by the number type used for the coordinates. We use computa-
tion of minimum diameter of a set of moving points to illustrate the use of the
number type real from LEDA (see http://www.mpi-sb.mpg.de/LEDA) in the
CGAL kernel classes to abolish precision problems.

The second example is data types and algorithms in the basic library part
of CGAL. They are parameterized by the types on which they operate and the
components that are used to operate on these types. Instead of having a long
parameter list, parameters are collected into a single class called “traits class” in
CGAL. The name was chosen because of the conceptual similarity to the traits
classes used in the C++ standard library. By the parameterization CGAL gains

29

a lot of flexibility and adaptability.

The third example is the circulator concept. It has been contributed to
CGAL by Lutz Kettner (ETH Ziirich). A circulator is a variation of the iterator
concept, for circular sequences. Circular sequences arise frequently in geometry.
CGAL data types provide access to such circular sequences through circulators.
Circulators turned out to be very useful in CGAL.

30

