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Quantum algorithms — a new topic in both informatics and physics has be-
come a central theme of one of the most challenging areas of interdisciplinary
research of modern science. This seemingly esoteric area of research which has
been stimulated by Feynman in 1980 and Benioff, who was the first to suggest
quantum-mechanical evolution for computation in 1982, has become a serious
challenge after Shor’s publication of the “Algorithms for quantum computation:
Discrete logarithms and factoring” in 1994. This breakthrough in theoretical
computer science has stimulated a new field of physics, especially on the exper-
imental side, namely the investigation of controlled quantum systems which is
motivated by the promise that algorithmic processing of quantum information
may provide an exponential gain in speed and space over classical computers. As
a consequence of this joint research there has been a surprising progress during
the last years towards new algorithms and especially complexity bounds for cer-
tain problems. However, up to today there are no exact theorems available on the
relation between quantum complexity classes and classical complexity classes.
Quantum algorithms rely on three effects:

e superposition,
e entanglement,
e interference.

If several qubits are combined in a quantum register by the laws of quantum
mechanics, the state space of such a processor allows the handling of exponen-
tially many data by superposition of entangled states. Owing to the linearity
of quantum mechanics each operation of so-called quantum gates will act on all
states simultaneously which have non-zero population in the superposition. This
phenomenon is the basis for quantum parallelism which leads to a completely new
model of computation: While a classical probabilistic algorithm can be well de-
scribed through the tree of all possible computations weighed with the respective
probabilities, the sum of probabilities of all positive results are added to give the
total probability of a successful computation, the use of quantum states based on
complex amplitudes instead of probabilistic weights will allow the enhancement



or deletion of amplitudes. This, in a nutshell, is the essential advantage of quan-
tum algorithms. Each desirable computational path can be designed to “absorbe”
the probability amplitude on the account of the amplitudes of other paths. This
principle is known from physics as constructive and destructive interference.
Physical realizations of quantum computers are envisaged as hybrid systems con-
sisting of a classical computer and a quantum register controlled by classical
electromagnetic fields, see e.g. the figure. The control of this system at runtime
especially and the design of program loops are performed by classical computers
on the basis of measurements carried out on the quantum register. For obvious
physical reasons such programming languages are rather restricted even though
it has been proved by Deutsch in 1985 that the class of quantum Turing ma-
chines encompasses the class of classical Turing machines, following a proposal
by Benioff who was the first to think that computation can be done entirely in a
quantum mechanical unitary manner.
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The Dagstuhl seminar 98191 has brought together scientists from computer sci-
ence, mathematics, theoretical physics, and experimental physics to discuss the
most recent developments of this very new and possibly revolutionizing concept
of modern computing.

As opposed to most “classical” computer science conferences, the unusual con-
cept of this conference can be described by the fact that the theoretical aspects



of algorithm design are, at least at the present state of the field, not to be seen
device-independent: In other words, in contrast to classical computer science
approaches to algorithms and their application, where the actual physical real-
ization on the bit level is not taken into account, it is the feature of this field that
in quantum algorithms the physical realization is intrinsically connected with the
design of algorithms: Thus, everyone working in the area has to be relatively well
acquainted with both, the computer science sides and the physics sides where
the modeling of both physics and computer science on the basis of quantum the-
ory and their applications relies on rather strong mathematical foundations such
as Hilbert space theory, group theory, combinatorics, information theory, coding
theory, and signal processing.

The organizers have judiciously combined the topics to be addressed at this con-
ference to bring together those experts in the fields which can contribute to each
of the questions from the mentioned side, ranging from pure theory to actual
experiment. Owing to the relative youth of the field and the demanding require-
ments for a successful work in this area, this Dagstuhl seminar did not only bring
together a considerable set of the world experts in the area but also a relatively
dominating majority of young scientists which have been attracted by this area.
The success of this workshop was not only noted by the computer scientists who
have been able to learn from fundamental physical developments of the last years,
but also especially physicists have been attracted by the methods of algorithm
design and theoretical computer science to be applied to design new physical
processes.

So, all in all, we had a successful workshop of mostly three sessions a day lasting
late into the night. The interruption of the intensive discussions were only due to
the fine food during the day and the expectancy of good spirits at night. This was
made possible by the wonderful surroundings of Schlof§ Dagstuhl accompanied by
an exceptionally good weather and the hospitality of the Dagstuhl staff.
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1 The Quantum Communication Complexity of
Sampling

U. Vazirani

Sampling is an important primitive in quantum algorithms. We consider the
following sampling problem in a communication complexity setting: Alice has
a subset A C {1,2,...,n} of cardinality y/n and Bob must pick a uniformly
random subset of cardinality /n and disjoint from A. We shall allow Bob a
probability ¢ of error, by requiring that the distribution of the subset he chooses
is 1 — ¢ close to the uniform distribution. We show that there is a constant ¢ such
that the minimum number of bits that Alice and Bob must exchange to carry
out this task in a classical setting is €2(y/n). By contrast the number of qubits
exchanged by our quantum protocol to solve this problem is O(logn). Therefore
this provides the first example of an exponential separation between classical and
quantum communication complexity in the bounded urd model.

2 Simulating Quantum Operations with Mixed
Environments

B. Terhal

One of the possible applications of a future quantum computer is the study of the
behavior of open quantum systems and the nature of decoherence. For these tasks
the quantum computer must be prepared to perform quantum operations that
in general will involve an “environment”, i.e., a quantum system is discarded at
some point in the calculation. We study the space-efficiency of the implementa-
tion of such quantum operations in terms of the dimension of the environment. In
particular, we study a class of quantum operations on a qubit input, the general-
ized depolarizing channel, for which we show that qutrit environment is sufficient
to implement any channel in this class, whereas not all of these channels can
be implemented using a qubit environment. The “2 Pauli” channel is one such
channel that cannot be implemented with a qubit-environment and an explicit
proof using the Grobner-basis technique is given for this case.



3 Quantum Lower Bounds by Polynomials

R. de Wolf

In the black-box model of computation, we want to compute a Boolean function
f of a vector X of N Boolean variables. We can only access the variables in X by
making queries to a black-box or oracle. Many significant quantum algorithms,
like Deutsch-Jozsa’s, Simon’s, and Grover’s work in this model. We examine
the number of black-box queries required by a quantum algorithm to compute
f in exact, zero-error and bounded-error model. We show that the acceptance
probability of a quantum gate network that contains T' black-box queries can be
written as a polynomial of X of degree at most 27". Using this fact, we derive
lower bounds on the number of queries in terms of the degree of polynomials
that represent or approximate f and in terms of the block sensitivity of f. In
particular we tightly characterize the query complexity of all symmetric f in the
three error models. Furthermore we show that computing PARITY takes N/2
queries in each model, and that OR and AND take N queries in the exact and
zero-error model and ©(v/N) for bounded-error. The latter result is an easy way
to the well known /N lower bound on database search.

4 D QF
H. Buhrman

We study the speedup that a quantum bounded error algorithm can have with
respect to a deterministic classical one in the black-box model. We show that
for arbitrary total functions f, the gain cannot be more than a polynomial. In
particular we show that if a quantum algorithm queries T queries, there is a
deterministic strategy that makes at most 7% queries and computes the same
function.

5 What is Needed to Build a Quantum
Computer?

D. DiVincenzo

The criteria which a physics experiment must satisfy for the construction of a
quantum computer are summarized in five points: 1) control over the Hilbert
space; 2) initialization (cooling) of the quantum state; 3) minimal decoherence;



4) ability to perform quantum states; 5) ability to perform strong quantum mea-
surements. Experiments in nuclear magnetic resonance cavity quantum electro-
dynamic, and superconducting circuits are contemplated. Details were presented
of my proposal for quantum-dot quantum computer, and of a brand-new proposal
for a nuclear-spin silicon quantum computer.

6 Enlargement of CSS Codes and Requirements
for Reliable Quantum Computing

A. Steane

First a new class of error correcting codes is obtained, drawing on the stabilizer
group formalism which greatly simplifies the task of finding codes. The new codes
take a classical code C' = [n, k,d], C+ C C, which can be enlarged to C' = [n, k' >
k4 1,d'], and by combining produce a quantum code of parameters [[n, k + k' —
n,min(d, [3d'/s])]]. Next, requirements on space, time, parallelism, and noise
are discussed with the aim of realizing large-scale quantum computing in a fault-
tolerant manner. The scale-up in computer size must be considered in conjunction
with other parameters such as gate noise and memory noise in order to say
anything meaningful. The most successful fault-tolerant recovery method is based
on prepared ancillary blocks of qubits. An estimate of the noise requirements to
permit reliable computing is made by counting error opportunities and paths.
It is then found that [[n, 1, d]] block codes permit reliable computing with fewer
resources and less stringent noise requirements than 7%-bit concatenated codes,
even for large computations such as factorization of thousand-digit (3000 bits)
numbers.

7 Quantum Repeaters for Communication

H. Briegel, W. Diir, I. Cirac, P. Zoller

In quantum communication via noisy channels, the error probability scales ex-
ponentially with the length of the channel. We present a scheme of a quantum
repeater that overcomes this limitation. The central idea is to connect a string of
(imperfect) entangled pairs of particles by using a novel nested purification pro-



tocol, thereby creating a single distant pair of high fidelity. The scheme operates
with imperfect means (i. e. gates and measurements) and tolerates general errors
on the percent level.

8 Security of Quantum Key Distribution

H.-K. Lo, H. F. Chau

We construct a new quantum key distribution scheme and prove its security
against the most general type of attacks and the most type of noises allowed
by quantum physics. The novel technique we use is reduction from a quantum
scheme to a classical scheme. We first show that, rather surprisingly, the proof of
security of our quantum key distribution in the error-free case can be reduced to
that of a classical verification scheme. In other words, the quantum verification
procedure employed by us has a classical interpretation by proving the security of
the classical scheme, the security of our quantum key distribution scheme in the
error-free case follows immediately. The security against the most general types
of noises (channel noises, storage errors, and computational errors) is then proven
by using fault-tolerant quantum computation.Our result implies that, given quan-
tum computers, quantum key distribution over an arbitrarily long distance of a
realistic noisy channel can be made unconditionally secure.

9 Pauli Cloning Machines and N-dimensional
Extensions

N. J. Cerf

A family of asymmetric cloning machines for quantum bits and N-dimensional
quantum states is introduced. These machines produce two approximate copies
of a single quantum state that emerge from two distinct channels. In particular,
an asymmetric Pauli cloning machine is defined that makes two imperfect copies
of a quantum bit, while the overall input-to-output operation for each copy is a
Pauli channel. A no-cloning inequality is derived, characterizing the impossibility
of copying imposed by quantum mechanics. If p and p’ are the probabilities of the
depolarizing channels associated with the two outputs, the domain in (,/p, v/7')-



space located inside a particular ellipse representing close-to-perfect cloning is
forbidden. This ellipse tends to a circle when copying an N-dimensional state
with N — oo, which has a simple semi-classical interpretation. The symmetric
Pauli cloning machines are then used to provide an upper bound on the quan-
tum capacity of the Pauli channel of probabilities p,, p,, and p.. The capacity is
proven to be vanishing if (y/pz, /Py, /P-) lies outside an ellipsoid whose pole coin-
cides with the depolarizing channel that underlies the universal cloning machine.
Finally, the tradeoff between the quality of the two copies is shown to result in
general from a complementarity akin to Heisenberg uncertainty principle.

10 Quantum Error Correction:
Stabilizer /GF(4) Codes

D. Gottesman

Quantum error correction solves the problem of the corruption of quantum data
by encoding qubits as part of a quantum error-correcting code. For many codes,
it is very helpful to look at the stabilizer, a group of operators which leave all
codewords invariant. Stabilizer codes are equivalent to additive codes over GF(4)
which are weakly self-dual under a symplectic inner product.

11 Scalable NMR Quantum Computation

U. Vagzirani, L. J. Schulman

Nuclear magnetic resonance offers an appealing prospect for implementation of
quantum computers, because of the long coherence times associated with nuclear
spins, and extensive laboratory experience in manipulating the spins with radio
frequency pulses. Existing proposals, however, suffer from a signal-to-noise ratio
that decays exponentially in the number of qubits in the quantum computer.
This places a severe limit on the size of the computations that can be performed
by such a computer; estimates of that limit are well within the range in which a
conventional computer taking exponentially more steps would still be practical.
We give an NMR implementation in which the signal-to-noise ratio depends only
on features of NMR technology, not the size of the computer. This provides a
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means for NMR computation techniques to scale to sizes at which the exponential
speedup enables quantum computation to solve problems beyond the capabilities
of classical computers.

12 Testing Quantum Networks:
Pattern Formation and Invariants

G. Mahler

It is now widely accepted that the implementation of large-scale quantum net-
works will pose a “physically hard” problem as a result of the isolation-, wiring-,
and measurement-bottlenecks. One special variant of the measurement prob-
lem is testing: Rather than measuring a state or state features, testing aims at
verifying the intended dynamical structure of the whole network without being
forced to check the complete network state from time step to time step. For
this purpose we propose to run the given network as a periodic quantum Turing
machine and analyze the motion of the reduced density matrix (Bloch vector) of
the Turing head over an extended period of time (a Hilbert-space version of the
classical Poincare cut). The resulting pattern depend sensitively on the control
parameters and the type and size of the Turing machine. We restrict ourselves to
small networks of up to NV =5 pseudo spins. Even then a remarkable variety of
pattern results, which can be understood to result from a superposition of certain
“primitive” Turing machines associated with Floquet-states. In particular, higher
order invariants show up with an intuitive geometric meaning. This should pave
the way to a better understanding of quantum parallelism, which is believed to
underly the non-classical efficiency of quantum computation.

13 Josephson Junction Qubits

G. Schon, A. Shnirman

Low-capacitance Josephson junction arrays in the parameter range where single
charges can be controlled are suggested as possible physical realizations of qubits
[1]. The coherent tunneling of Cooper pairs mixes different charge states. By con-
trolling the gate voltages we can control the strength of the mixing and perform
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the manipulation of the quantum states required for 1-bit and 2-bit operations.
We estimate that the phase coherence time of the super conducting junction sys-
tem, which is limited by the fluctuations of the electrodynamic environment, is
sufficiently long for the experimental demonstration of the principles of quantum
computation.

In addition, the quantum mechanical state of the system has to be read out. We
suggest to measure it by coupling a single-electron transistor to the qubit [2].
As long as no transport voltage is applied, the transistor influences the quantum
dynamics of the qubit only weakly. We have analyzed the time evolution of the
density matrix of the transistor and qubit when a voltage is turned on. We show
that the process is characterized by three different time scales: (i) the dephasing
time, which is short when the SET transistor carries a dissipative current; (ii)
the measurement time, after which the measured current allows the distinction
between the different quantum states; (iii) the mixing time, after which all the
information about the initial quantum state is lost due to the transitions induced
by the measurement.

We estimate the values of the capacitances and temperatures required to perform
a good quantum measurement and conclude that they can be realized by modern
nano-techniques.

14 Ion Strings for Quantum Gates

F. Schmidt-Kahler, H. C. Nagerl, D. Leibfried, W. Bechter,
G. Thalhammer, H. Rohde, J. Eschner, R. Blatt

Ion traps have been shown to provide an ideal environment for isolated quan-
tum systems such as a single, trapped and laser cooled atom. Ion storage has
long been applied to ultra-high precision spectroscopy and the development of
frequency standards. More recently, single trapped ions have been used to demon-
strate and test some of the intriguing internal electronic state and the motional
state of a trapped ion can be modified using laser light. Decoherence of internal
superposition states is nearly negligible even for very long interaction times. A
very exciting proposal is the application of linear ion traps and the collective
quantum motion of a trapped string of ions for the realization of a quantum
gate. Crystal structures of Calcium ions have been prepared in a linear Paul
trap and their collective motion excited with resonant RF-fields. The trapped
ions are laser-cooled and images of the fluorescing ions are obtained with a CCD
camera and show high spatial resolution. Crystals with up to 15 ions arrange
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in a linear string and their eigenmodes can subsequently be selectively excited.
The collective motion of the string can then be observed via the CCD images.
In experiments with the Be and Ca ions it is found that the excitation of the
modes of relative ion motion is substantially suppressed relative to that of the
center-of-mass modes, suggesting the use of these modes for future experiments
towards quantum computation.

15 Optimal Eavesdropping in Quantum
Cryptography with Six States

D. Bruf

A generalization of the quantum cryptographic protocol by Bennett and Brassard
is discussed, using three conjugate bases, i.e., six states. By calculating the
optimal mutual information between sender and eavesdropper it is shown that
this scheme is safer against eavesdropping on single qubits than the one based on
two conjugate bases. We also address the question for a connection between the
maximal classical correlation in a generalized Bell inequality and the intersection
of mutual informations between sender/receiver and sender/eavesdropper.

16 Implementing the Quantum Baker’s Map on
a Quantum Computer

R. Schack, T. Brun, M. Mosca

The quantum Baker’s map, a prototypical map invented for theoretical studies
of quantum chaos, is defined in terms of discrete Fourier transforms and therefor
has an efficient realization in terms of quantum gates. We show that, in a qubit
representation, the quantum Baker’s map is equivalent to a shift map, which leads
to a much simplified approach to the chaotic properties of the map. The quantum
Baker’s map can be implemented with present-day technology on a 3-qubit NMR
quantum computer. In order to investigate the feasibility of quantum chaos
experiments using this system, we have solved numerically the master equation
for a specific NMR machine, including the Hamiltonian time evolution, the RF
pulses, and phase noise due to the environment. We find that the quantum
Baker’s map displays interesting behaviour even for the small Hilbert space of
three qubits.
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17 Threshold for Fault-Tolerant Quantum
Computation

D. Gottesman

To perform long quantum computations in the presence of noise, both during
storage of qubits and during quantum gates, it is necessary to encode the quantum
data using a quantum error-correcting code. Computational protocols must also
restrict error propagation so that errors do not overwhelm the code’s abilities to
correct them. Using concatenated codes, one can show that there exists an error
threshold below which arbitrarily long fault-tolerant computations are possible.
A calculation including only lowest order effects shows this threshold is at least
5x 1074, although higher-order effects may reduce this by approximately an order
of magnitude.

18 Quantum Information Primitives and
Nonlocality without Entanglement

C. H. Bennett, D. P. DiVincenzo

Quantum information theory has provided a variety of primitive acts and con-
sumable resources, such as the sending of a classical bit or qubit, the sharing of an
EPR pair (or ebit), and the performance of an elementary gate operation such as
XOR (controlled-NOT). Another resource, of a negative sort, is waste entropy that
must be disposed of, for example the two unwanted bits left over at the end of tele-
portation. The remote-XOR (RXOR) is a positive resource consisting of the ability
to perform a single XOR between a qubit of Alice’s and a qubit of Bob’s. (Imagine
Bob and Alice are in love, but married to two other people. Then the ability to
have an elementary private interaction would be valuable to them). Some cir-
cuits recently discovered by D. Gottesman relate the RXOR to other resources, for
example a RXOR can be synthesized from an ebit plus a classical bit transmission
in each direction. Generalizing the parardigm of communication complexity we
ask “what combinations of resources suffice to perform a specified initial-state
to final-state transformation of a multipartite quantum system?” In particular
with Fuchs, Mor, Rains, Shor, Smolin, and Wootters (quant-ph/9804053), we
have found a set of nine orthogonal product states of two 3-state particles that
cannot be reliably distinguished by any sequence of local operations and classi-
cal communication. The states can, of course, be prepared locally from classical
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directions, but this preparation is necessarily irreversible, generating waste en-
tropy. The proof of immeasurability of the nine states involves first showing that
any bilocal processing can be made to occur continuously, i.e., as a sequence of
arbitrarily small steps, and then showing that when, during such processing, one
of the nine states’ posterior probabilities rises significantly above 1/9 but still far
from 1, then the nine residual states must be significantly non-orthogonal.

19 Nested Quantum Search

N. J. Cerf

A quantum algorithm is known that solves an unstructured search problem in a
number of iterations of order v/d, where d is the dimension of the search space,
whereas any classical algorithm necessarily scales as O(d). It is shown here that
an improved quantum search algorithm can be devised that exploits the structure
of a search problem by nesting this standard search algorithm. The number of
iterations required to find the solution of an average instance of a tree search
problem scales as v/d®, with a constant = < 1 depending on the problem consid-
ered. For a problem with constraints of size 2 such as the graph coloring problem,
this constant x is estimated to be around 0.6 for average instances of maximum
difficulty. This corresponds to a square-root speedup over a classical nested search
algorithm, of which our presented algorithm is the quantum counterpart.

20 On the Power of One Bit of Quantum
Information

E. Knill, R. Laflamme

In standard quantum computation, the initial state is pure and the answer is
determined by making a measurement of some of the bits in the computational
basis. What can be accomplished if the initial state is a highly mixed state and
the answer is determined by measuring the expectation of o, on the first bit
with bounded sensitivity? This is the situation in high temperature ensemble
quantum computation. We explore the above question by introducing the model
of quantum computing with one bit (DQC1). An arbitrary number of additional
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bits in a completely mixed state are available. DQC1 computations are easily
implemented using nuclear magnetic resonance, at least for small numbers of
qubits. In DQCI it is possible to perform interesting physics simulations which
have no known efficient classical algorithms. However the model is less powerful
then standard quantum computing (DQCp) in the presence of oracles, and is
not robust against noise. We define two different types of problems for which
the power of solving them is polynomially equivalent to the ability of predicting
DQC1 and DQCp outputs. The first type involves estimating the coefficients of
operator expansions of unitary operators in a given basis. The second is a class
of sums over binary linear codes closely related to weight enumerators.

21 Ensemble Quantum Computing by NMR
Spectroscopy: Product Operators,
Pseudo-Pure States, and an Implementation
of Quantum Error Correction

T. F. Havel, S. S. Somaroo, D. G. Cory

Quantum computers are able to operate on coherent superpositions of states,
and to isolate a single gobal property of the set of computed quantities via inter-
ference. In principle, this permits them to solve certain problems exponentially
faster than a classical computer, but no one has yet succeeded in implementing
a true quantum computer on more than two quantum bits. Recently, however, it
has been found that an ensemble of independent and identical quantum comput-
ers can perform most of the same feats that a single quantum computer could,
while at the same time bringing massive classical parallelism to bear on its compu-
tations. Such an ensemble quantum computer can be realized, to a limit extend,
by nuclear magnetic resonance (NMR) spectroscopy on ordinary liquids at room
temperature and pressure. This simple implementation depends on special kinds
of mixed states, called pseudo-pure states, whose preparation entails a loss of
signal that is exponential in the number of spins. While this would appear to
limit such an implementation to ca. 8-10 spins in the foreseeable future, NMR
spectroscopy has now permitted the first experimental demonstration of all the
basic features of quantum computing. We claim, moreover, that the product op-
erator formalism, on which the theory of NMR spectroscopy is based, provides an
efficient framework within which to analyze algorithms and decoherence effects in
quantum computing more generally. This is illustrated by presenting our recent
experimental implementation of a quantum error correcting code.
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22 Algorithms for Encoding and Decoding
Quantum Error-Correcting Codes

M. Grassl

Systems using quantum error-correcting codes can be divided into three subsys-
tems:

e The encoder to map K qubit states to N qubit states (N > K).
e The decoder, consisting of

— syndrome calculation
— mapping syndromes to errors (the very hard part!)

— error correction
e The inverse encoder.

Methods to construct quantum circuits for encoding and syndrome computation
are presented. The networks can be derived in a canonical way from the gener-
ating matrix of the special case of cyclic codes, it is shown how to reduce the
complexity of the circuit correcting the error given the syndrome.

23 Quantum Counting

A. Tapp, G. Brassard, P. Hoyer

Shor’s algorithm for factorization and Grover’s algorithm for table lookup are
no doubt among the most important results in quantum algorithms. In this
presentation, we will show how to use ideas coming from these two algorithms
to perform a completely novel task. Suppose a function F' is given as a black-
box, one can find an x for which F'(z) = 1 much more efficiently with Grover’s
algorithm than with any classical technique. Now suppose one wants to evaluate
the size of {z|F(x) = 1}, that is, to count the number of solutions to F. We
will present an algorithm that can approximate this size with a selected accuracy.
Let P be the number of calls to the function F', N the size of the domain of F', ¢
the size of {z|F(z) = 1} and ¢ our estimate of t. For selected values of P, which
is a good indicator of the time available for computation, we have the following
results.
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o If we take P = ¢V/N then |t —t| < (27/c)V/t + 7%/c?.
e For P = c\/N/t we have (1 +7/c)? <t/t <1/(1+7/c)?.

e Finally with P = ¢V{N we have t = t with bounded probability.

Of course, the algorithm does not need any prior information about ¢. The
number of evaluations of F' needed to obtain the selected precision is quite lower
than the best possible sampling algorithm. This technique is also more efficient
than naive classical uses of Grover’s algorithm.

24 Polynomial Invariants of Quantum Systems

M. Rotteler

Given a group G (which should be thought of as a finite resp. compact group)
consisting of n x n-matrices, a basic object of study is the ring Clx, ..., z,]¢
of polynomial invariants under this group. An important property of this ring
is that it separates the orbits in most cases of interest. We present the concept
of generating functions to tackle the hard problem of finding a finite set of gen-
erators for this invariant ring. In case of the group of local transforms on one
wire, a closed form of the Molien series is given. Also a correspondence between
binary trees and fundamental invariants is given. Finally the case of U(2) x U(2)
operating on density matrices is addressed. Again (using a result of R. Brauer,
1937) a correspondence between invariants and binary trees could be established.

25 Generalized Bell Basis

A. Otte

A generalization of the Bell basis for a system consisting of an arbitrary number
of particles and each particle having an arbitrary number of levels is discussed.
These generalized cat states have some nice properties like evenly spread out
entanglement, taken the von Neumann entropy as a measure of entanglement.
The introduced unitary operator formalism allows one to gain insight into any
quantum network by separating its local, bilocal and characteristic higher order
using a cluster expansion of the density operator in unitary operators.
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26 Some Problems in Quantum Channel
Capacity for Shannon Information

M. Ban, C. A. Fuchs, O. Hirota, M. Osaki, M. Sasaki

Recently, Hausladen et.al, and Holevo proved quantum version of Shannon’s
second theorem by introducing a typical sub-space in addition to random coding
scheme and square root measurement as a quantum decoding. As a result, it
was shown that the zero error channel capacity is von Neumann entropy for
an ensemble of signal states. So it is important to formulate the maximization
problem of the von Neumann entropy with respect to a priori probability of
signals. We show in the case of discrete pure states that the eigenvalue of density
operator is given by eigenvalue of the Gram matrix involving a priori probability.
As a result, one can solve the maximization and minimization problems of the
von Neumann entropy. However, still to give analytical solution for this problem
is difficult. As examples, the binary pure state case is solved, and numerical
analysis for several pure state problems are shown. As the second topics, the
importance of channel capacity without coding is introduced. It is shown that
only binary pure state can be solved analytically. Based on this capacity, we
show that the code words selected by scheme of BCH error correcting code gives
super additiveness.

27 On Quantum Algorithms:
Theory and Practice

M. Mosca

Most quantum algorithms known to date have networks of the following form:

e There a two registers: a “control” register and a “target” register.

e A Fourier (or similar) transform is performed on the control register to
prepare a superposition of computational paths.

e An operation U, controlled by the state of the first register is applied to
the second register; when the second register is in an eigenstate of U, this
operation effects a phase factor corresponding to the eigenvalue.

e An inverse Fourier transform is performed on the control register to recom-
bine the computational paths and permit them to interfere.
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e The control register is observed (the interference pattern usually corre-
sponds to an estimate of a phase).

The hidden subgroup problem (e.g. Deutsch’s problem, factoring via order find-
ing, discrete logarithms, Abelian stabilizers etc.) and quantum counting (i.e.
amplitude estimation) can be viewed as such. I will describe these algorithms
and our (i.e. Jones and M.M.) implementations of an algorithm for Deutsch’s
problem and quantum counting. I will briefly describe how quantum searching is
the interference of the two eigenvectors used in quantum counting, and present
our (i.e. Jones, Hansen, M.M.) NMR implementation. Lastly I will describe
how many instances (e.g. factoring, discrete logarithms) of quantum algorithms
can be implemented with one re-usable control bit instead of an entire register of
control bits, which might render the algorithm easier to implement.

28 Non-Distillable Entanglement of
Mixed States

M. Horodecki, P. Horodecki, R. Horodecki

A mixed state of a two-component quantum system is called inseparable (entan-
gled), if it is not a mixture of product states. It is called distillable, if it can be
brought to the singlet form by means of local quantum operations and classical
communication. We provide examples of states which are entangled, but cannot
be distilled. We also provide a characterization of distillable states which indi-
cates that distillable entanglement is in fact two-bit entanglement. The results
are discussed by use of analogy with thermodynamics.

29 Quantum vs Classical Communication and
Computation

R. Cleve, H. Buhrman, A. Wigderson

We present a simple general simulation technique that transforms any black-
box quantum algorithm (a la Grover’s database search algorithm) to a quantum
communication protocol for a related problem, in a way that fully exploits the
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quantum parallelism. This allows us to obtain new positive and negative re-
sults. The positive results are novel quantum communication protocols that are
built from nontrivial quantum algorithms via this simulation. These protocols,
combined with (old and new) classical lower bounds, are shown to provide the
first asymptotic separation results between the quantum and classical (proba-
bilistic) two-party communication complexity models. In particular, we obtain
a quadratic separation for the bounded-error model, and an exponential separa-
tion for the zero-error model. The negative results transform known quantum
communication lower bounds to computational lower bounds in the black-box
model. In particular, we show that the quadratic speed-up achieved by Grover
for the OR function is impossible for the PARITY function or the MAJORITY function
in the bounded-error model, nor is it possible for the OR function in the exact
case. This dichotomy naturally suggests a study of bounded-depth predicates
(i.e. those in the polynomial hierarchy) between OR and MAJORITY. We present
black-box algorithms that achieve near quadratic speed-up for all such predicates.

30 An Ideal Approach to the Invariant Ring of
the Tensor Product

J. Miiller-Quade

The problem of deciding if two quantum states |¢)) and |¢) have the same entan-
glement motivates the study of the group SU, ® ... ® SU,. One is interested in
classifying the orbits of SU, ® ... ® SU, which resemble the equivalence classes
of states with identical entanglement. To classify the orbits of a group G one
can use the generators of the ring C[X]% of invariants of G. This relates to the
old question: “Is there a correspondence between C[X]¢ and C[X]“®%?” We
answer (avoid) this question by looking at what we call the orbit relation of G:
{(z,gx)|z € Vector space ,g € G}. The defining equations of the orbit relation
of G can be computed from the defining equations of G. Furthermore the in-
variant ring can be computed from the defining equations of the orbit relation
(Derksen’s Algorithm). The orbit relation reflects the (direct) product of groups
by the relation product and additionally allows to compute the orbit relation of
G ® 1 from the orbit relation of G. As the tensor product can be written as a
product of direct sums: G, ® G, = (G; ® 1)(1 ® G,) we can conclude that the
orbit relation of G; ® GG, can be computed from the orbit relations of G; and G,.
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