
Dagstuhl Seminar 98231

Programs: Improvements,
Complexity, and Meanings

Schloß Dagstuhl, 8–12 June 1998

Organizers:

Neil D. Jones, University of Copenhagen

Oege de Moor, Oxford University

James S. Royer, Syracuse University

1



Introduction

The general topic of this seminar was the interface between Programming
Languages and Complexity Theory. A model question for this area is:

Are functional or logic programs necessarily less efficient than
equivalent imperative programs?

This has been the subject of endless hallway debates which have generated
“much heat, but little light.” Such questions need to be made more precise
in order to be answered and solution can be tricky indeed. A model answer
to the above question was given by Nick Pippenger (POPL 1996):

“Pure LISP” is provably less efficient, by a logarithic time factor,
than “impure LISP” with list-modifying assignments, when ap-
plied to solve a problem involving a series of online permutations.

This result together with a result relating the efficiency of “pointers versus
addresses” (Ben-Amram and Galil) and a proof that “constant time factors
do matter” (Jones) have inspired considerable interest in this topic. However,
the area is still in a nascent stage.

The intent of this workshop was bring together:

Semanticists interested in operational models of programming languages, ex-
pressiveness, intensional properties, etc.

Program transformers and analysts interested in program execution speed,
limits to implementation efficiency, etc.

Complexity theorists interested in precisely stated problems about compu-
tation time and space, language expressiveness, etc.

The goal was to promote fruitful interactions, leading to formulation and
perhaps addressing new questions of both theoretical and practical interest.

As one can see from the following abstracts, there was a great breadth to
the topics discussed and areas represented. A considerable amount of bridge
building took place, but there were clearly some chasms no one yet knows how
to cross (e.g., how to deal with all the issues involved in rigorous complex-
ity analyses of nontrivial lazy programs). The discussions were lively, wide
ranging, and stimulating. The organizers wish to thank all the participants,
as well has the Dagstuhl staff, for making this a successful meeting.

2



The Interface Between Complexity and
Programming Languages

Neil D. Jones
DIKU, University of Copenhagen

Comparisons are made between research in complexity theory and research
in programming languages, with an eye to gaining the good features of both
on subjects of common interest.

Complexity is an extensional theory, focusing on what is to be computed
rather than how. High points include the existence of complexity classes
PTIME, etc., that are robust with respect to machine model and choice of
problem representation; and notions of problem equivalence via reductions,
leading to complete problems. Low points: a tendency to ignore constants
and to concentrate only on asymptotic factors; messy and sometimes cryptic
algorithm descriptions.

Language research is intensional, focusing on algorithms more than prob-
lems. High points include elegance, generality, giving a basis for correctness
proofs and program synthesis and transformation. Low points: imprecise
cost measures, lack of robustness, few common assumptions.

A discussion was made of the lack of pen problems in programming lang-
uages—the tendency to set up new frameworks rather than work on already-
existing problems.

The talk ended with an overview of the contributions by the speaker to
the interface. Results include complexity bounds on program analysis, char-
acterizations of LOGSPACE and PTIME by simple programming languages,
a theorem that for a natural language I and a constant b, TIME(abn) %

TIME(an) for all a ≥ 1, and an analysis of Levin’s Theorem, that r.e. search
problems all have near-optimal search programs. Both of the last two re-
sults depend critically on the existence of “efficient” self-interpreters, whose
overhead is independent of the program being interpreted.

3



Some Remarks on Higher-Type
Computational Complexity

James S. Royer
Syracuse University

We sketch some of the key ideas of current work on the computational com-
plexity of higher-type functionals and operators. In particular, we discuss
the Kapron-Cook machine model for “type-2 polynomial time” and the dif-
ficulties that occur when one tries to lift this model to type-3.

Some Remarks on Pippenger’s
Separation of Pure and Impure LISP

Amir M. Ben-Amram
Academic College, Tel-Aviv

A question which intrigued programmers for a long time was: Is LISP with
side-effects actually stronger than the pure-functional language? Pippenger
gave, in ’96, the first proof of such a separation. The talk consists of a
presentation of his work followed by several comments on possible extensions
and remaining (or ensuing) open problems.

More Haste, Less Speed:
Lazy vs. Eager Evaluation

Oege de Moor
Oxford University

(This is joint work with Richard Bird and Geraint Jones.)

We prove that there exists no complexity-preserving transformation from
lazy functional programming to eager functional programming. The proof
consists of a Haskell program for Pippenger’s problem.

4



Abstract State Machines and
Linear Time Hierarchies

Yuri Gurevich

University of Michigan
(This is joint work with Andreas Blass.)

We generalize Neil Jones’ Linear Time Hierarchy Theorem to Random Access
Machines and (which is harder) to Abstract State Machines.

Normalization by Evaluation

Helmut Schwichtenberg
Universität München

(This is joint work with Ulrick Berger and Matthias Eberl.)

We extend normalization by evaluation (first presented in LICS ’91) from
pure, typed λ-calculus to general higher-type rewriting systems.

Improvement Theory and Its Applications

David Sands
Chalmers University

Improvement theory is a variant of the standard theories of observational
approximation (or equivalence) in which the basic observations made of a
program’s execution include some intensional information about, for exam-
ple, the program’s computational cost. One program is an improvement of
another if its execution is no less costly in any program context. In this talk
we give an overview of our work on the improvement theory and its appli-
cations. Applications include reasoning about time properties of functional
programs, and proving the correctness of program transformation methods.

5



Computer Programming as Mathematics

Paul J. Voda
Comenius University

This is basically the philosophy of the programming language and proof
system CL (pairing, Clausal Language, Proof system) that has a precise
mathematical characterization of what the functions definable in CL (unary
primitive recursive functions) are and the kind of theorems about them that
can be proved in the formal system, i.e., what the strength of the formal
system is. This turns out to be the IΣ1-fragment of Peano arithmetic. The
language and proof system CL is extremely simple to justify. On the other
hand, the characterization is quite involved and difficult because there is an
inherent trade-off between computer programming and proving properties of
programs. For efficient programming one needs quite a fine way of controlling
the execution speed of programs (i.e., functions) by means of rich recursive
and other control instructions. It turns out that the more efficient the func-
tion is, the harder it is to prove its properties. This is because the proofs
call for quite a rich set of induction and other proof rules. To show that all
such rules are admissible in the IΣ1-fragment of Peano arithmetic requires
advanced proof and recursion-theoretical techniques. Basically, this involves
the theorem of R. Peter on simple (i.e., 1-fold) nested recursive definitions
and the theorem of Parsons on admissibility of Π2-rules in IΣ1 arithmetic.

Ramified Recurrence and Alternation

Daniel Leivant
Indiana University

(No abstract submitted.)

6



A Survey of Efficiency-Increasing
Transformation Techniques

Bernhard Möller
Universität Augsburg

Program transformations serve a dual purpose:

1. Constructing first correct implementations from formal specifications

2. Improving the efficiency of such implementations concerning

• asymptotic time complexity (A)

• constant factors (C)

• space complexity (S)

In this talk we sketch the most important strategies for the latter aspect using
some simple examples. The most important techniques, with an indication
of their main improvement potentials, are:

I. Control fusion, both parallel (tupling (C)) and sequentially (deforesta-
tion (C,S))

II. Hornering and strength reduction (formal differentiation, Delta-optimi-
zation) (A,C)

III. Memoization and pre-computation (A)

IV. Change of data structure (A,S)

V. Re-use of variables (S)

7



Complexity Analysis of Logic Programs
Based on Ordered Resolution

David Basin
Universität Freiburg

We provide a new method for classifying the time complexity of decision
problems that are presented as sets of clauses.

We define order locality to be a property of clauses relative to a term
ordering. This property is a kind of generalization of the subformula prop-
erty for proofs where terms arising in proofs are bounded, under the given
ordering, by terms appearing in the goal clause. We show that when a clause
set is order local, then the complexity of its ground entailment problem is
a function of its structure (e.g., full versus Horn clauses), and the ordering
used. We prove that, in many cases, order locality is equivalent to a clause
set being saturated under ordered resolution. This provides a means of using
standard resolution theorem provers for testing order locality and transform-
ing non-local clause sets into local ones. We have used the Saturate system
to automatically establish complexity bounds for a number of nontrivial en-
tailment problems relative to complexity classes which include polynomial
and exponential time and co-NP.

Semantics, Complexity, and Optimization
in Query Languages

Val Tannen
University of Pennsylvania

I surveyed work by several people in the design and analysis of query lan-
guages for complex values. The approach is based on the type structure of
complex values. The base language, the NRA (Nested Relational Algebra,
not National Rifle Association!) is a well-behaved conservative extension of
first-order logic. Extended with forms of structural recursion over sets, it
captures the classes PTIME and NC over ordered sets. I also survey some
negative results, in particular some EXPSPACE lower-bounds that follow
from natural conditions on the operational semantics of the languages.

Collaborators: P. Buneman, A. Deutsch, K. Lellehi, S. Nequi, L. Popa, D. Su-
cia, L. Wong

8



Soft Branching and Soft Correctness
for Gains in Efficiency

Arnold Schönhage
Universität Bonn

Examples from my implementation work on fast numerical algorithms il-
lustrate the usefulness of “soft branching”; in branching, a program may
continue this (A) or that (B) path of execution on condition of fulfilling α,
or β, respectively, with uncertain outcome in cases with both α and β being
satisfied.

“Soft correctness” is about one attempt to formalize time savings obtained
by relaxing the correctness requirements for subroutine calls.

Expressiveness of DATALOG Circuits (DAC)

Irène Guessarian

Université de Paris VII
(This is joint work with Foto Afrati and Michel de Rougemont.)

We define a new logic query language called DAC, extending DATALOG. We
show that there are queries which are DAC-expressible, but not DATALOG-
expressible. We infer various strict hierarchies of DAC program classes ob-
tained by allowing more rapidly growing functions in the bound parameters
that define these classes.

9



Operational Models for Compiler Verification

Egon Börger
Universita di Pisa

We show how the use of operational models, enhanced by appropriate ab-
straction and refinement mechanisms, helps to bridge the gap between pro-
gram semantics as seen by the programmer and its implementation on (vir-
tual) machines. The approach allows us to break the complexity of compiler
construction by decomposition into horizontal and vertical components and
to support the correctness of the translation by rigorous (mathematical and
machine checkable) reasoning. Our method uses Gurevich’s ASMs (Abstract
State Machines) and is illustrated through our work on proven-to-be-correct
compilation schemes for PROLOG programs to WAM code and the extension
to PROTOS-L and CLP(R) programs and their compilation on the PAM and
the CLAM, respectively, of OCCAM programs to TRANSUTER code, and
of JAVA programs to Java VM code.

Computer Experiments with
Levin’s Search Theorem

Niels H. Christensen
University of Copenhagen

We outline the central construction in the proof of Levin’s Search Theorem.
This theorem asserts, for a wide set of search problems, the existence of
a solving algorithm that is time-optimal up to a constant factor. We also
consider new variants of the construction. In touching upon a practical im-
plementation of Levin’s algorithm, we discuss the behavior of a program that
enumerates the language generated by a given context-free grammar in con-
stant time per expression. Finally, we discuss observations on the behavior
of the implementation of Levin’s algorithm.

10



Type-2 NC Functionals

Peter Clote
Universität München

Using the SIMD (single instruction, multiple data stream) model of parallel
computation, the class NC is defined as the collection of functions computable
in polylogarithmic time

⋃
k
(log n)k with polynomially many

⋃
k
nk active pro-

cessors. We define an oracle extension of the parallel random access machine
to model type-2 parallel computation, and define second-order polynomials,
and so type-2 NC. A function algebra for type-2 functionals is introduced,
and it is proved that λn, f.F (f, x) is in NC if and only if λn, f.F (f, x) belongs
to the function algebra.

Refinement Type Inference
Using Sequential Algorithms

Denis Dancanet
Morgan Stanley & Co.

We present a new application of Berry and Curien’s intensional semantics of
sequential algorithms on concrete data structures and its related program-
ming language, CDS0. We define a typing system based on concrete data
structures and featuring recursive types, subtyping, intersection types, poly-
morphism, and overloading. Then we translate programs written in a high-
level language to CDS0 and use the precise information on the dependence of
pieces of output on pieces of input provided by sequential algorithms to derive
very detailed types that are similar to Freeman and Pfenning’s refinement
types.

11



Safe Recursion with Higher Types,
Lists, and Polymorphism

Martin Hofmann
University of Edinburgh

We introduce a functional programming language with the property that
all definable functions are polynomial-time computable. This is achieved by
imposing a modal-linear typing discipline inspired by Bellantoni and Cook’s
safe-recursion. Our programming language extents safe-recursion, à la Bel-
lantoni and Cook, with data structures such as lists and trees, polymor-
phism, and higher-order result types. The proof that all definable functions
are polynomial-time computable proceeds by constructing a model in which
denotations are PTIME functions.

Resource-Bounded Notions of Continuity

Bruce Kapron
University of Victoria

We propose two definitions of poly-bound continuity for type-two (total)
functionals, one based on bounding by second-order polynomials and one
based on bounding by feasible functionals. These two definitions are not

equivalent. We show that the latter class can be given a sequential charac-
terisation (using decision trees), while the former contains functionals which
cannot be computed by bounded-depth decision trees.

12



Characterising Polytime Through
Higher-Type Recursion

Karl-Heinz Niggl

Universität München
(This is joint work with S. Bellantoni and H. Schwichtenberg.)

It is well known that by a single use of higher-type recursion on notation
one can define the Kalmar elementary functions. This is due to a nested
non-linear use of the “previous function” in the step-term of the recursion.

In this talk it is shown how to restrict recursion on notation in all finite
types so as to characterise the polynomial-time computable functions. The
restrictions are obtained by enriching the type structure with !σ for any type
σ, and by adding concepts of linearity to the lambda-calculus.

More precisely, a calculus is presented that supports recursion on notation
in all finite types, and which is closed under reduction. Terms are strongly
normalising with uniquely determined normal forms. In particular, every
closed term of ground-type reduces to a numeral. In that way the system of
“RNA-terms” can be considered a simple functional programming language.
Moreover, it is shown that there is a polynomial-time evaluation strategy to
compute normal forms.

CONS-Free Programs with Tree Input

Holger Petersen

Universität Stuttgart
(This is joint work with Amir M. Ben-Amram.)

We investigate programs operating on LISP-style input data that may not al-
locate additional storage. For programs without a test of pointer equality we
obtain a strict hierarchy of sets accepted by deterministic, non-deterministic,
and recursive programs. We also show that the classes accepted by programs
with the ability to test pointers for equality are closely related to well-known
complexity classes. For these classes, strictness of the hierarchy is an impor-
tant open problem.

13



Complexity Spaces

Michel Schellekens
Universität Siegen

The theory of complexity spaces allows one to use classical semantic tech-
niques, such as fixed-point analysis, to analyse the complexity of algorithms.
We illustrate this for the class of divide-and-conquer algorithms. The theory
is situated in the context of quantitative domain theory.

On Functions Preserving Levels of
Approximation

Dieter Spreen
Universität Siegen

DI-domains are enriched by a family of projections that assign to each point
a sequence of canonical approximations. The morphisms are stable maps
that preserve the levels of approximation generated by the projections. For
the computation of an approximation of a given level of the output of at
most the same level of approximation, it is shown that the category of these
domains and maps is Cartesian-closed. The set of morphisms between such
domains is a domain of the same kind, but turns out not to be an exponent
in the category.

Fishing for Speed

Barry Jay
University of Technology, Sydney

FISh is a new programming language that uses static shape analysis to de-
termine the shape, i.e., the number of dimensions, size of each dimension, of
every array appearing during execution. As well as detecting all shape errors
statically, this analysis supports the construction of polymorphic, higher-
order functions from simple imperative procedures, so that FISh programs
execute at speeds comparable to those of C and Fortran.

Functional = Imperative + Shape
F I Sh

14



Resolutions, Towers, and
Low Degree Type-2 Functionals

J. R. Otto

In our thesis we represented the linear space functions by a category initial
among those with recursion compatible with a 2-comprehension. (There, also
using V- and 3-comprehensions, we similarly characterized the multi-tape
linear time, Ptime, Pspace, and Kalmar elementary functions. In particular,
we provided a semantics for the tiers of S. Bellantoni and D. Leivant.)

More recently, we refined the construction of initial categories by collaps-
ing bicategories of resolutions. These resolutions are in a logic programming
sense.

In work in progress, we use N -comprehensions to study rank-2 linear
space functionals. (For example, with Set the category of small sets, N

the natural numbers, and SetN the functor category, the partially ordered
monoid of eventually fixed actions on N induces an N -comprehension on
SetN .) Following J. Royer, R. Irwin, and B. Kapron, we stratify on the
depth of rank 2 functionals. Not following them, we stratify inputs. (As
we think of numbers as big sums of terminal objects, we would prefer to
stratify inputs rather than outputs.) Thus, so that Y X is below, rather
than above, X and Y in a tower, we abstract by fragments of the local
sections variant of local smallness. (For example, SetN yields a tower of
fibrations. Following T. Streicher, for a fibration to be a 2-comprehension
is the global sections fragment of local smallness. Indeed, fibrations hide 2-
comprehensions. However, the 2-comprehension we used to characterize the
multi-tape linear time functions does not appear to be a fibration.)

15


