
Contents

Ilham Alloui
Peace++: A Modal Logic-based Language for Specifying Cooperating
Software Processes . 3

Egidio Astesiano
Feature Interaction: Prevention or Detection? . 4

Egon Börger
On the integration of formal and semi-formal techniques using
ASMs . 6

Christine Choppy
Concurrency and Data Types: A Specification Method. An Example
with LOTOS . 8

J. H. M. Dassen
The Formalisation of SOCCA using Z . 9

Jörg Desel
Petri Nets as an Interlingua for Semi-formal and Formal Specification
and Analysis . 10

Klaus Diderich
Compiler Support for the Specification and Verification of
Software Systems .12

Gregor Engels
Modelling of Collaboration with UML and SOCCA .13

Martin Grosse-Rhode
Temporal Ordering of Actions vs. Rule Based Specifications
(An Application of Algebra Transformation Systems) 14

Maritta Heisel
From Informal Requirements to Formal Specifications: A Systematic
Transition . 15

Rolf Hennicker
Observational Logic . 15

i

Heinrich Hußmann
Towards an Integration of UML/OCL and Algebraic Specification 16

Piotr Kosiuczenko
Towards an Integration of Message Sequence Charts and Timed
Maude . 17

Bernd J. Krämer
Synchronization Constraints in Object Interfaces . 18

Bernd Krieg-Brückner
Combination of Methods and Tools in the UniForM Workbench 19

Stephan Merz
A Case Study on Self-Stabilization Revisited or: A Case Made
for Visual Proofs in System Verification . 20

Fernando Orejas
Integration and Classification of Data Type and Process Specification
Techniques . 22

Panel Discussion:
Integration of Formal Specification Methods . 22

Panel Discussion:
Formalization of UML!? — A Challenge for Theoreticians
as well as Practitioners in Computer Science? . 23

Francesco Parisi-Presicce
Formal Semantics of UML State Diagrams Using Graph
Transformations . 25

Alfonso Pierantonio
Montages — Towards a Popular Semantics . 26

Gianna Reggio
CASL-CHARTS: An Initial Proposal for Integrating
CASL and Statecharts .29

Bernhard Rumpe
Graphic Formalisms .31

ii

Gunter Saake
Evolving Specifications in Information Systems Design32

Wilhelm Schäfer
A Dedicated Software Process Design Language . 33

L. J. Steggles
A Formal Model for SDL Specifications based on Timed Rewriting
Logic .34

Harald Störrle
Analysing Designs .34

Andrzej Tarlecki
Moving Specifications Between Logical Systems . 35

Roel Wieringa
A Toolkit for Requirements and Design Engineering . 36

Uwe Wolter
Algebraic Models of CCS-Specifications . 37

iii

Preface

Participants meeting at Dagstuhl

Considered the weather as too cool!

The idea of a pool

Would attract just a fool;

A firm rule is: wear things of good wool!

Bernd Krieg-Brückner

During the last 20 years several different formal and semi-formal specification
techniques have been successfully developed and used. Applications comprise
the specification of simple programs, data types and processes as well as com-
plex hardware and software systems. The variety of specification techniques
ranges from formal set theoretical, algebraic, and logic approaches for spec-
ifying sequential systems and from Petri-nets, process algebras, automata,
and graph grammars for specifying concurrent and distributed behaviors to
semi-formal software engineering methods for developing complex systems.

Formal and semi-formal approaches have their advantages and disadvantages:
the informal diagrammatic methods are easier to understand and to apply
but they can be ambiguous. Due to the different nature of the employed
diagrams and descriptions it is often difficult to get a comprehensive view
of all functional and dynamic properties. On the other hand, the formal
approaches are more difficult to learn and require mathematical training.
But they provide mathematical rigor for analysis and prototyping of designs.
Verification is possible only with formal techniques.

Since a few years many researchers and research groups are putting more
and more effort in closing this gap by integrating semi-formal and formal
specification techniques. Their studies and experiences show the added value
of combining semi-formal and formal techniques and at the same time open
a whole range of new problems and questions which cannot be asked when
studying formalisms in isolation.

In this seminar more than 40 scientists came together in 28 talks and two
panel discussions to study possibilities and solutions for integrating and vali-
dating different formal and semi-formal specification techniques. Similarities

1

and differences of formal and semi-formal specification formalisms as well as
possibilities for combining such techniques were discussed. Most talks of this
seminar analysed, compared, or integrated at least two such methods.

On behalf of all participants the organizers would like to thank the staff of
Schloß Dagstuhl for providing an excellent environment to the conference.
The support of the TMR programme of the European Community is grate-
fully acknowledged. Due to this programme it was possible to fund the
participation of several young researchers and of three key note speakers.

The Organizers

Hartmut Ehrig Gregor Engels Fernando Orejas Martin Wirsing

2

Peace++: A Modal Logic-based
Language for Specifying

Cooperating Software Processes

Ilham Alloui

Université de Savoie, Annecy

Both semi-formal and formal languages are needed for respectively analyzing,
specifying, enacting and evolving cooperating software processes (i.e. soft-
ware engineering processes, workflow processes, etc.). To analyze processes,
we propose a graphical language that allows to capture organisational, func-
tional as well as dynamic aspects of a process. The resulting specification is
to be validated by the user before going further into details as in the specifi-
cation phase. For this latter, a second language which is formal is proposed
in order to model cooperation (communication, coordination, goal sharing,
etc.), based on a modal logic with operators for expressing goals, belief, time
(past and future actions), possibility and necessity. The logic used is itself
a combination of several logics into the so called “theory of rational action”
of Cohen and Levesque. The aim on behalf this is to give an intentional
semantics to cooperation of processes. The language proposes cooperation
constructs founded on the concept of “communication act”, i.e., sending or
receiving a message during an interaction is controlled by a precondition, mo-
tivated by an intention and has an effect on the process (a postcondition). As
software processes need not only to be analyzed and specified but also to be
enacted and evolved, we adopted an object oriented reification technique for
both process models and process instances with their enactment state. This
concrete representation is executable and evolvable “on the fly”. The conclu-
sion is that in the software process domain, we need to use both semi-formal
and formal specification techniques according to the process life-cycle.

3

Feature Interaction:
Prevention or Detection?

Egidio Astesiano

Universitá di Genova

The general problem we address is “evolution in the sw development pro-
cess”, which is recognized to be challenging and of major importance nowa-
days. Here we deal with a particular aspect of that problem, namely the
so-called “feature interaction” problem. That problem arose historically in
the area of telephone systems, where it is typical to add a new user facilty
(like the automatic repetition of busy numbers, the warning for another cur-
rent call, etc.); at a recent meeting of the IFIP WG 2.2, G. Holzmann, of
AT&T, reported that the number of such facilities may exceed 700. In simple
words, a feature is a unit of update within a system (process); the problem is
that the update could result in some perturbation of the system beyond the
intention. A lot of related work has been done in very recent years; there is
even an annual specially devoted international workshop. The dominant ap-
proach is aimed at the detection of feature interactions,namely at providing
techniques for discovering bad interactions, usually via some model check-
ing and/or verification tools. We see the value, but also the limits of such
“a posteriori” approach and advocate a more preventive approach (slogan:
prevention first), best expressed by Pamela Zave who calls for “an approach
based on modular specifications and separation of concerns . . . (allowing)
to organize the specification so that it is easy to add without destroying its
structure or desirable properties”.

The approach we present is at two metalevels: methodological and technical.
Indeed we propose a number of ideas, coherently embedded in a method,
that can be reified in various formalisms. But we illustrate concretely the
methodological aspects by means of a technical formalism, which has its own
technical peculiarities. The formalism is based on on ideas developed by the
authors in the years and now embedded in the CoFI/CASL method.

In order to separate the concerns and modularize the development, we dis-
tinguish some steps.

1. Single feature level. Here a feature is considered as an isolatad entity;

4

in our formalism it is modelled by a generalized labelled transition sys-
tem and presented as a pre-feature specification (first-order conditional
partial specification). Two significant technical aspects are: the states
as collections of attribute values (a typical OO assumption) and the
new concept of “transition type”, which will allow later to put together
partial activities of different features related to the same event.

2. Putting pre-features together. We give a notion of pre-feature compo-
sition F1 + F2, which is partial, associative and commutative.

3. Defining interactions. Comparing F1 + F2 with, say, F1, allows us to
define ”interaction” as a discrepancy of the composition wrt F1. It can
be shown that a variety of kinds of interaction are definable, eg atomic
or behavioural and each one with a wealth of different interesting vari-
ations. Note that interactions are in principle neutral, ie neither good
nor bad, as it can be shown; thus we have to single out which are really
unwanted.

4. The concept of feature specification. The complete notion of feature
specification comes out as a pair: pre-feature + interaction require-
ments where the requirements are constraints about the interaction
with other features, in some appropriate logic. A feature specifica-
tion has two kinds of semantics: basic and complete. While basic
semantics is just the generalized labelled transition system obtained by
logical deduction, complete semantics is a class of systems which sat-
isfy the specification under an antiframe assumption: roughly, what is
not forbidden may happen (ie variation of attributes and moves). The
complete semantics gives a basic insight of what could really happen
when adding other features and the interaction requirements should
constrain the complete semantics to exhibit only sensible behaviours.

5. Handling interactions. In order to guide the specification of interac-
tion requirements, we introduce the concept of ”discipline” for kinds
of interactions: a kind of interaction can be disciplined by some logical
formulae whenever those formulae are able to prevent interactions of
that kind. For example, what we call atomic interactions can be dis-
ciplined by some appropriate safety and liveness onditions. Thus, on
the basis of complete semantics, we are guided to prevent unwanted
interactions by expressing appropriate interaction requirements. When

5

trying to compose two features, the composition is defined only if the
interaction requirements of both are satisfied; here is where the tech-
niques of verification and model checking come at hand, but only after
a careful modularization and prevention.

As a last remark, notice that our approach is compositional, since the com-
position of two (pre-) fatures is again a (pre-) feature. Please contact the
authors for copies of related papers and/or criticism/enquiries at the follow-
ing addresses {reggio,astes}@disi.unige.it

On the integration of
formal and semi-formal techniques

using ASMs

Egon Börger

Universitá di Pisa

We explain how Abstract State Machines (ASMs) allow one to integrate so
called formal and semi-formal techniques into a practical framework for the
development of complex systems.

ASMs offer possibilities for both horizontal and vertical integration. On the
one side, through the ASM classification of functions (into basic and derived,
static and dynamic and into monitored, controlled and shared functions) dif-
ferent methods to specify parts of the system can be incorporated at any
point into the rigorous description of the overall system. On the other side
different ASMs can be linked to a hierarchy of stepwise refined models for
the specification, design and analysis phase of software development. In
both cases the fundamental mechanism is the determination of the appro-
priate level of abstraction for the system description. A special case of this
fine tuning is the distinction of so called formal and semi-formal description
techniques.

A particularly important example of this formal versus semi-formal descrip-
tion problem is offered by the ground model problem of software engineering,

6

namely the problem to define in a sufficiently rigorous way the informally
given requirements of a software system to be designed. We show that the
most general abstraction principle which is built into ASMs allows one to
solve this problem in a satisfactory way, namely by building models which
are formulated in the application domain language and which can be in-
spected (and possibly falsified) by the customer (who may have no software
or computer expertise).

We illustrate our arguments by two sorts of example for details of which we
point to the literature: the definition of a programming language and of its
(provably correct) implementation on a (virtual) machine - the case of the
ISO Prolog standard,of Occam and of Java and of their implementation on
the WAM, the Transputer and the Java Virtual Machine respectively — and
the development of control software starting from appropriate ground models
for the informally given requirements — the steam boiler and the production
cell case studies.

References

[1] E. Boerger: Why use of evolving algebras for hardware and software
engineering. in: M. Bartosek, J. Staudek, J. Wiedermann (Eds), SOF-
SEM’95 22nd Seminar on Current Trends in Theory and Practice of
Informatics. Springer Lecture Notes In Computer Science, vol. 1012,
1995, pp.236–271.

[2] E. Boerger and D. Rosenzweig: A Mathematical Definition of Full Pro-
log. in: Science of Computer Programming 24 (1995) 249–286.

[3] E. Boerger and D. Rosenzweig: The WAM - Definition and Compiler
Correctness. In: Logic Programming: Formal Methods and Practical Ap-
plications (C. Beierle, L. Plümer, Eds.), Elsevier Science B.V./North-
Holland, Series in Computer Science and Artificial Intelligence, 1995,
pp. 20–90 (chapter 2).

[4] E. Boerger and I. Durdanovic: Correctness of Compiling Occam to
Transputer Code. in: The Computer Journal, Vol. 39, No.1, pp.52-92,
1996.

7

[5] C. Beierle, E. Boerger, I. Durdanovic, U. Glaesser, E. Riccobene Refin-
ing abstract machine specifications of the steam boiler control to well
documented executable code. in: J.-R. Abrial, E.Boerger, H. Langmaack
(Eds.): Formal Methods for Industrial Applications. Specifying and Pro-
gramming the Steam-Boiler Control. Springer LNCS State–of–the–Art
Survey, vol. 1165, 1996, 52-78.

[6] E. Boerger and L. Mearelli: Integrating ASMs into the Software Devel-
opment Life Cycle. in: Journal of Universal Computer Science, Special
ASM Issue, 3.5 (1997), 603-665.

[7] E. Boerger and W. Schulte: Programmer friendly modular definition
of the semantics of Java. in: J. Alves-Foss (Ed.): Formal Syntax and
Semantics of Java, Springer LNCS 1998 (to appear).

[8] E. Boerger and W. Schulte: Defining the JavaVirtual Machine as Plat-
form for Provably Correct Java Compilation. in: J. Gruska, J. Zlatuska
(Eds.): Proc. MFCS’98. Springer LNCS 1998 (to appear)

Concurrency and Data Types:
A Specification Method.

An Example with LOTOS

Christine Choppy

Université de Nantes
(Joint work with Pascal Poizat and Jean-Claude Royer,

Université de Nantes)

This work is motivated by the fact that methods are needed to help using
formal specifications in a practical way. It aims at providing some help in
establishing specifications that involve both concurrency and data types, and
it is here developed for LOTOS specifications (but it could be adapted to
other formalisms).

8

Among the few existing methods for LOTOS specification, some follow the
“constraint-oriented” approach (where the emphasis is put on identifying
components that can run in parallel) and others follow the “state-oriented”
approach (where processes are modelled using automata and data types are
associated to processes).

Our method is using both approaches: the constraint-oriented one is used
to decompose processes into sequential sub-processes, and the state-oriented
one is used for the sequential sub-processes specification.

Our method adds:

• guidelines for how to apply these in a given order,

• a systematic and semi-automatic construction of the sequential com-
ponents automata,

• the automatic derivation of the LOTOS behaviour specification from
the automata, and

• assistance for the algebraic specification of the static part provided
through the automatic processing of the information gathered in the
previous steps.

This method is illustrated through a simple example, a hospital.

The Formalisation of SOCCA using Z

J. H. M. Dassen

Universiteit Leiden

The semi-formal object-oriented visual specification language part of SOCCA1

is described in a high-level fashion. Its eclecticism (careful composition of

http://www.wi.LeidenUniv.nl/CS/SEIS/socca.html

9

selected other techniques (class diagrams, State Transition Diagrams and the
subprocess and trap extensions thereof that facilitate description of commu-
nication)) is illustrated and is advocated as a way to successfully integrate
(semi-)formal specification languages and notations.

The primary goal of the ongoing work to formalise SOCCA using Z is dis-
cussed: improving understanding of how object orientation and precise de-
scriptions of communication can be combined.

The approach is compared to one based on developing a meta-class diagram.

Three examples of the benefits the process of formalisation is bringing (clearly
identifying the commonality between attributes and methods; the necessity
of addressing the inheritance of relationships; three conceptual levels in de-
scribing SOCCA) are briefly discussed.

It is argued that the process of formalisation is perhaps as important as its
product.

Petri Nets as an Interlingua for
Semi-formal and Formal

Specification and Analysis

Jörg Desel

Universität Karlsruhe

There is an apparent gap between existing semi-formal techniques for spec-
ification and modeling of processes (application layer) and precise workflow
and process languages (implementation layer). Petri nets constitute an ap-
propriate candidate for a linking model on the logical layer. Arguments
include:

• mathematical foundation,

• expressive power,

10

• possible integration with data / roles / organization / . . . ,

• analysis and verification techniques,

• existing tools,

• Petri net based techniques frequently used on the application layer,

• Petri net based techniques often suggested for the implementation layer.

Vicinity respecting net morphisms support design and transformation of net
models and respect elementary relations between net elements. Token trans-
formation techniques relate different high-level net models that support anal-
ysis, simulation, and compilation, respectively.

Finally, concepts developped in the project VIP (supported by DFG) are
presented:

• marked Petri nets as a specification of possible concurrent runs (pro-
cesses),

• a graphical language for the formulation of requirements,

• generation of processes,

• validation via visualization of processes and browsing options,

• efficient analysis techniques of processes w.r.t. requirements, employing
the representation as occurrence nets and graph algorithms.

11

Compiler Support for the
Specification and Verification of

Software Systems

Klaus Diderich

Technische Universität Berlin

We propose to extend the compiler of a programming language with sup-
port for specification and verification. This integrative approach allows to
keep related information together during software engineering. Verification
is supported by the inclusion of proofs which can be checked by the compiler.
Such an environment allows the programmer to use formal and semi-formal
specifications and verifications as is appropriate. Several styles of software
development are supported: quick-and-dirty programming (for upwards com-
patibility), formal treatment of “hot spots”, and finally full-fledged formal
development. Development of secure programs is supported by the possibility
of an independent proof check. Algebraic context conditions which usually
must be ensured by the user, can now be checked by the compiler.

Some of the problem areas in this approach are language design, handling of
(semi-)formal specifications and handling of (semi-)formal verifications. The
language designer has to reconcile specification, programming and verifica-
tion aspects. Inclusion of semi-formal specifications is only possible for linear
textual representations and must be supported by appropriate justification
methods. Different verification and justification methods are related to dif-
ferent stages in the compilation process which makes inclusion complicated.

12

Modelling of Collaboration
with UML and SOCCA

Gregor Engels

Universität Paderborn
(Joint work with Luuk Groenewegen, Rijksuniversiteit Leiden)

In contrast to the well-understood techniques for modelling structured as-
pects, the modelling of dynamic aspects is still a weak point in current object-
oriented modelling approaches. In particular, generally accepted techniques
for the modelling of coordinated colloboration within a society of objects do
not exist yet. The talk discusses and compares two exciting approaches for
collaboration modelling. These are the so-called collaboration diagrams of
the OMG standardized language UML and the object-oriented specification
language SOCCA, which have been developped during the last 5 years at
Leiden University. The comparison is based on a classification of interaction
patterns, where a distinction is made between synchronous, asynchronous,
future synchronous and restricted asynchronous behaviour at the start and
the end of an interaction between a sender and a receiver. The two main re-
sults of the discussion and comparison are as follows. First, due to a missing
clear semantics of collaboration diagrams, the comparison has to be based
on assumptions have to interpret UML notations. Second, the encoding of
synchronisation constraints in textual constraints on execution orders is less
expressive and understandable than the graphical representation of synchro-
nisation constraints in the language SOCCA. In addition, the only usage of
state transition diagram notation for the dynamic model of classes, the func-
tional models of operations and the synchronisation of operations supports
a uniform, but modular specification approach.

13

Temporal Ordering of Actions
vs. Rule Based Specifications
(An Application of Algebra
Transformation Systems)

Martin Grosse-Rhode

Technische Universität Berlin

Temporal ordering of actions and rule based state changes are two funda-
mental approaches to the specification of reactive systems. Algebra transfor-
mation systems are two layered formal models that can be used for a formal
comparison of specifications that belong to the different approaches. This
comparison allows e.g. consistency checks in multiple viewpoint modelling,
where the specification of different aspects of a system in different notations
or different types of formal models is supported. In this talk I persent a
translation of two specifications of the alternating bit protocol to algebra
transformation systems. The first one is a CCS specification from Milner’s
book, exemplifying the temporal ordering of actions approach, the second
one is a UNITY specification (program) taken from the book of Chandy and
Misra as a representative of the rule based approach. Then different kinds
of operations on algebra transformation systems can be used to compare
the specifications via the translations. It turns out that the specifications
show relevant differences, due to the different approaches. In particular,
using shared variables as communication means instead of message passing
supports a different distribution of the behaviour to the components of the
protocol. On the other hand the translation yields some “added value”, such
as making explicit different roles of features as e.g. input/output in CCS,
the possiblity to make explicit data states in process specifications, and, vice
versa, adding control flow information to rule based specifications.

14

From Informal Requirements
to Formal Specifications:
A Systematic Transition

Maritta Heisel

Universität Magdeburg
(Joint work with Jeanine Souquieres, LORIA and Université de Nancy 2)

We propose a method for the elicitation and the expression of requirements.
The requirements can then be transformed in a systematic way into a for-
mal specification that is a suitable basis for design and implementation of a
software system. The approach — which distinguishes between requirements
and specifications — gives methodological support for requirements elicita-
tion and specification development. It does not introduce a new language
but builds on known techniques.

Observational Logic

Rolf Hennicker

Universität München
(Joint work with Michel Bidoit, CNRS and

Ecole Normale Supérieur de Cachan)

We propose a uniform logical framework for specifying observational proper-
ties of state based systems, in particular of object-oriented programs.

Formally we introduce the institution of ”‘observational logic”’ which is based
on the idea that an observational signature contains a distinguished set of
”‘observers”’ which determine an indistinguishability relation (called ”‘ob-
servational equality”’) between the elements of an algebra.

Based on the institution of observational logic we define structured observa-
tional specifications by using the institution independent specification build-
ing operations of Sannella and Tarlecki.

15

For proving (first-order) observational properties of specifications we first
construct a sound and complete proof system for observational logic. Then
we use this proof system to obtain a sound and complete proof system for
structured observational specifications by applying a general institution in-
dependent result of Borzyszkowski.

Towards an Integration of
UML/OCL and Algebraic Specification

Heinrich Hußmann

Technische Universität Dresden

This talk claims that algebraic specification technology can provide signifi-
cant contributions to the further development of the standard software en-
gineering notation UML and its formal extension OCL. It is argued that a
major future challenge will come from a seamless integration between semi-
formal software engineering notations and enhanced formal notations. This
integration has to be achieved in such a way that it becomes easy to switch
towards a more formal specification only for those parts and at those stages
of a development project where this is required.

One important precondition for such an integration effort has been fulfilled
now by the standardisation of the object-oriented modelling notation UML.
UML is more precisely defined than most of its predecessors and seems to gain
acceptance in industry rapidly. As a formal extension of UML (and officially
a part of it), the Object Constraint Language (OCL) has been introduced.
According to the claims made by its inventors, OCL can be used to write
unambiguous specifications like a formal specification language, but is more
usable by the ’average business or system modeler’, since it does not require
mathematical background.

In order to investigate this claim, an alternative notation for object con-
straints is suggested which is called Algebraic Object Constraints (AOC).
AOC is based on the language and calculus of predicate (and temporal) logic
but is used for the enhancement of UML specifications by precise annotations.

16

A comparison of both notations shows that AOC is at least as easy to compre-
hend as OCL. Moreover, AOC enables the formulation of object-independent
invariants (but also, of course, object-local constraints). It is easier to apply
deductive tools to AOC since there are already powerful calculi and tools
available.

The conclusion is that UML and OCL are to be taken serious by the formal
methods community, and can be seen as a chance for a transition towards
’industry-proof’ formal development support. OCL is particularly interest-
ing, since it claims to be superior to pure formal methods, but there is no
clear evidence for this advantage. So more reserach is needed for alternative
complementary formal notations to UML, for experiments on usability and
teachability, and for experiments in the application of deductive tools.

Towards an Integration of
Message Sequence Charts and

Timed Maude

Piotr Kosiuczenko

Universität München
(Joint work with Martin Wirsing, Universität München)

The topic of the talk was an integration of a graphical and a formal method
and building a unifying specification formalism which can support different
software views: functional, data, process, and time; in particular integration
of Timed Maude and Message Sequence Charts (MSC). Maude is a formal
object-oriented specification language which combines algebraic specification
techniques for describing complex data structures with term rewriting to deal
with dynamic behaviour. MSC is a graphical trace language for describing
and specifying the communication behaviour of distributed systems by means
of message interchange. We showed that MSC and Timed Maude fit well to-
gether: on one hand, we expanded MSC-96 with primitives like multicast,
synchronous communication, and multicast, which are available in Maude.
Those new features will probably appear in MSC-2000. On the other hand,

17

MSC provided high-level composition mechanisms and a graphical notation
for Maude. We expanded Timed Simple Maude by two composition opera-
tors for sequential and parallel composition. Both operators are formalized
using a syntactic substitution operator which is derived from a pushout con-
struction.

Synchronization Constraints
in Object Interfaces

Bernd J. Krämer

Fernuniversität Hagen

In distributed computing environments no assumptions can be made about
the order in which the operations visible at a server object interface are in-
voked. In critical applications, unsynchronized accesses to shared resources,
illegal execution orders or violations of capacity constraints need to be de-
tected and ruled out to guarantee the consistency of a server’s state. However,
interface definition languages (IDLs) of current middleware platforms such
as CORBA, DCE or DCOM - which play an increasing role to distributed
application developers - offer no means to formally document synchronisation
constraints or other types of qualitative requirements. They merely capture
type and operation signatures.

Based on a partial order model of computation, we propose a concise nota-
tion for specifying synchronization constraints at object interfaces. To ensure
compatibility with the CORBA standard, these annotations are included as
comments in IDL interfaces. They are ignored by standard IDL compilers,
while a separate compilation framework generates C++ code from a given
set of synchronization constraints. This code provides special synchronization
methods that can be wrapped around the application developer’s operation
implementation to guard the execution of operation invocations depending
on the object’s invocation history. Different solutions how the synchroniza-
tion code can be transparently combined with the skeleton code produced
by the IDL compiler at hand and the developer’s method implementation

18

classes are sketched. We are currently investigating the potential of these
soluations to act as design patterns for specification supplements defining
operation semantics in terms of pre-/post-conditions, timing constraints or
other quality properties.

Combination of Methods and Tools
in the UniForM Workbench

Bernd Krieg-Brückner

Universität Bremen

Formal notions of translation, embedding, combination and projection are
supported by logic representation in Isabelle/HOL. So far, Z and its Mathe-
matical Toolkit, CSP and its Process Algebra have been encoded and proved
correct; similarly, the static semantics of CASL in-the-small has been repre-
sented including overload resolution. Combinations HOL+CSP, CASL+CSP,
Z+CSP, and extension for real-time are presently being realised; projection to
component languages or sublanguages shall be supported by decomposition
transformations.

Tools communicate in the UniForM Workbench as a network of concurrent
agents. Control and data integration are achieved by the Subsystem Inter-
action Manager and Repository Manager, presentation integration by the
User Interaction Manager (with interfaces to the graph visualisation system
daVinci, Tcl/Tk, etc.), comprising a total of 45k lines of Haskell. Haskell
is the internal integration language, providing a high degree of abstraction,
structuring and type-safety. External tools are wrapped into a Haskell inter-
face of adaptors etc.; we plan an adaptation of CORBA/IDL.

Integration into the development process is under way by tools supporting
the V-model and its tailoring to a company or a particular project. The
V-model will be adapted to Formal Methods; we plan to provide a service
for integrating foreign methods and tools with the UniForM Workbench. De-
velopment steps are formalised by transformation rules; these can be proved

19

correct and applied in a graphical, gesture-oriented way with the verifica-
tion system IsaWin and the transformation application system TAS, both
based on Isabelle. Development scripts can be replayed and abstracted to
new rules; thus reusability of the development process becomes possible.

A Case Study on
Self-Stabilization Revisited

or: A Case Made for Visual Proofs
in System Verification

Stephan Merz

Universität München

We review a case study described by Qadeer and Shankar [2] who use PVS to
verify a self-stabilizing algorithm introduced by Dijkstra [1] in 1974. Their
formalization is based on a mathematical proof that performs an elaborate
sequence of steps including induction over natural numbers, well-founded
induction, and temporal-logic style arguments such as proofs of invariance
and liveness conditions. The formalization as well as the sequence of PVS
interactions was considered nontrivial by the authors.

We contrast this proof with a direct termination proof based on a valuation
function over a well-founded domain. There, it suffices to apply one single,
standard rule, but the resulting proof conditions are quite daunting, and the
proof does not shed much light on the structure of the algorithm. We argue
that the best way to present the proof is in the form of a transition system
whose nodes are labelled with predicates that describe abstract system states,
and whose transitions represent a superset of the actual system transitions.
In order to capture liveness conditions, we allow the user to specify valuation
functions over well-founded domains and to annotate the edges in order to
indicate steps that (strongly or weakly) decrease these valuation functions.
The diagram represents the high-level structure of the proof and gives rise
to two kinds of verification conditions:

20

• non-temporal conditions on state predicates and individual transitions,
which can be verified with the help of an interactive proof assistant,
and

• an abstract interpretation of the diagram as an automaton (enhanced
by liveness conditions generated from the edge annotations) that can
be analyzed using automatic tools such as a model checker.

For this specific example, we have manually extracted the corresponding
verification conditions and have discharged them using Isabelle/HOL and
a PTL decision procedure, respectively. The resulting proof script appears
to be considerably shorter and simpler than the PVS formalization of [2].
We strongly believe that this technique applies widely in the area of system
verification and suggest to build a visual front-end that serves to integrate
automatic and interactive proof methods.

References

[1] E. W. Dijkstra: Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, November 1974.

[2] S. Qadeer and N. Shankar: Verifying a Self-Stabilizing Mutual Exclusion
Algorithm. R. Cleaveland and S. Smolka (eds): Proceedings of the IFIP
Working Conference on Programming Concepts and Methods. Chapman
and Hall, June 1998.

21

Integration and Classification of
Data Type and Process
Specification Techniques

Fernando Orejas

Universitat Politècnica de Catalunya
(Joint work with Hartmut Ehrig, Technische Universität Berlin)

The integration of different kinds of data type and process specification tech-
niques has become an important issue in system specification. Based on sev-
eral well-known examples of integrated specification techniques, we propose
an integration paradigm for system specification which provides a unified ap-
proach on a conceptual level. The key idea is to consider four different layers
which correspond to different kinds of integrated views of system specifica-
tion. This integration paradigm can be considered as an extension of the
concept of dynamic abstract data types which was proposed by the same
authors in 1994. A large variety of data type and process-driven specifica-
tion approaches are briefly discussed as instances of the integration paradigm
leading to a classification of these approaches.

Panel Discussion:
Integration of Formal Specification Methods

Fernando Orejas

Michel Bidoit, Friedrich von Henke,
Bernd Krieg-Brückner, Roel Wieringa

The aim of this panel was to discuss the need and the adequacy to integrate
different specification approaches correponding to different views of a system
description. Two opposite opinions were presented in the panel. On the one
hand, the fact that current specification approaches mainly address some
specific aspect or view of complex systems, was considered to be a reason

22

for the need to study the combination of complementary methods. On the
other hand, it was considered that a formalism integrating very different
specification approaches would surely be a “monster” too complex to use
and to master.

Panel Discussion:
Formalization of UML!?

A Challenge for Theoreticians as well as
Practitioners in Computer Science?

Gregor Engels

Gianna Reggio, Bernhard Rumpe,
Gunter Saake, Wilhelm Schäfer

The Unified Modelling Language (UML) has been accepted by the OMG
(Object Management Group) as standard formalism for object-oriented soft-
ware models. While this standardization effort has been accepted as a very
positive development by most of the people in the oo community, a lot of
discussion arose about the quality of the available UML documentation. In
particular, the description on the semantics of UML caused more questions
than answers. A closer look at this document shows that at the moment only
an informal, sometimes even inconsistent description of the semantics exists.
Thus, the following questions should be discussed:

1. Is UML an informal or semi-formal language?

2. Should UML become a formal language?

3. Is there a chance to formalize UML?

4. Which approach is appropriate to define UML’s semantics?

The four panelists expressed their opinion about these and related questions,
which stimulated the audience to participate in an interesting discussion.

23

Gunter Saake pointed out that a formalization of UML is mainly interesting
for the developers of UML and supporting tools, but not for the typical
user of the notations. Users are much more interested in a methodological
support and clear guidelines how to deploy UML than in a mathematical
formalization. Besides that, Gunter gave some provocative arguments, why
formalization attempts will fail. For instance, he claimed that UML is too
complex for a single formalism, and the fact that extension is part of the
standard makes any precise formalization impossible.

Gianna Reggio was less pessimistic and proposed a logic-based approach
for formalizing UML. She pointed out that it is important to understand the
interdependencies between the different diagram types. This is a prerequisite
for a consistent mapping of diagrams into an integrating common model. In
addition, she proposed some extensions to UML diagrams as, for instance,
more precise inscriptions on the diagrams.

Wilhelm Schäfer pointed out that he does not believe in the bing-bang ap-
proach of UML. He is not convinced that such a general language as UML
will be successful in industrial applications. He proposed to work on domain-
specific adjustments of UML. In his view, the current version of UML is much
too complex and general and cannot be viewed as a standard due to the in-
consistent and superficial explanation of the language constructs.

Bernhard Rumpe concentrated on a specific part of UML, the Object Con-
straint Language (OCL), to express constraints and integrity conditions in
UML diagrams. He gave a concrete example and made clear that the current
syntax proposal of OCL is not appropriate, and on the other side a precise
semantics is still missing. He gave this as an example for the overall imprecise
and inconsistent description of syntax and semantics of UML.

The discussion by the audience showed that most of the participants agreed
that UML is an important development and a great challenge for practitioners
as well as for theoreticians. The discussion has to be continued which formal
approach is appropriate to define the semantics (of parts) of UML. On the
other side, pragmatic guidelines and methods have to be discussed how to
use (parts of) UML in software development projects.

24

Formal Semantics of UML State Diagrams
Using Graph Transformations

Francesco Parisi-Presicce

Universitá Roma La Sapienza
(Joint work with Martin Gogolla, Universität Bremen)

As an intermediate step between UML diagrams and a general comprehensive
semantical framework, state diagrams are transformed into labelled graphs,
very similar to the original diagrams but forcing an unambiguous interpreta-
tion. Various semantical frameworks (such as streams, temporal logic, graph
transformation systems) are applicable to the resulting graphs (the semantics
of UML state diagrams).

The expansion of nested state diagrams is accomplished via very simple rules
in the double pushout approach to graph transformations by:

1. adding boundary nodes introducing a precise interface for the state to
be expanded

2. replacing the state with its internal structure (expansion)

3. removing the boundary nodes.

The first and last rules are “methodological” while the second one is “appli-
cation dependent” and provided by the designer of the nested state. Similar
sets of rules are used for stubbed transitions and for exit nodes. The approach
gives an intuitive way of achieving a normal form for nested state diagrams
by means of graph transformations and can be used for other forms of UML
diagrams, such as class diagrams and sequence diagrams.

References

[1] M. Gogolla and F. Parisi-Presicce: State Diagrams in UML: a Formal Se-
mantics using Graphs Transformations. Techn.Rep. 97/15, Dip. Scienze
dell’Informazione, Univ. Roma La Sapienza, Dec. 1997. (reduced version
in Proc. PSMT’98 Workshop, TUM-I9803, Apr. 1998)

25

Montages — Towards a Popular Semantics

Alfonso Pierantonio

Universitá di L’Aquila

Over the last years, a number of formalisms have been proposed. They
have been successfully used to investigate fragments of languages and to dis-
cover flaws (in some formal sense) in the design of languages. Unfortunately,
language designers make still little use of formal methods and most of the
languages are specified informally. Although Scott-Stratchey-style denota-
tional semantics introduced 25 years ago the revolutionary idea to extend
BNF to semantics, the mission to provide a semantical analogous to BNF
was never accomplished. It is surprising and disappointing that language
design is nowadays performed by using methods of the 1970s and 1980s. In
other words, there was not the necessary technology transfer from semantics
research to programming language development.

On the other hand, semantics research followed the trend towards higher
levels of specialization, at the expense of computational clarity. As carefully
pointed out in [8], there is a plethoric spread of techniques and formalisms
which generated more experts than general users.

General users would like to use BNF-like techniques to comprehend the mean-
ing of programs. This is due to the quality factors of syntactical formalisms,
such as EBNF, i.e. to the fact that syntax descriptions are writable, modifi-
able, reusable and readable. If semantics descriptions had such qualities as
well, then they could be used for language manuals, to record design deci-
sions which in turn could be conveyed to language implementors, and finally
they could be analyzed and entered in rapid prototyping tools.

These heavy demands advocate the need for a popular semantics, i.e. a frame-
work which has desirable pragmatic qualities that make it an excellent tool
for the language designer. Unfortunately these qualities are not possessed
by the mostly known semantics formalisms such as natural semantics and
denotational semantics [10].

Having as major aim the development of a popular semantics framework,
we designed Montages [5] and its tool companion Gem-Mex [1, 2]. Mon-
tages constitute a specification formalism useful for describing all aspects

26

of programming languages. Syntax, static analysis and semantics, and dy-
namic semantics are given in an unambiguous and coherent way by means
of semi–visual descriptions. The static aspects of Montages resemble control
and data flow graphs, and the overall specifications are similar in structure,
length, and complexity to those found in common language manuals. Mon-
tages are a theoretical basis and tool for a number of activities from initial
language design to language implementation. Experience with specifications
of Oberon [6], Java [9], and SQL (ISO9075) [3] have shown that existing
languages can be easily described and documented. In [7] we report on a
domain specific language that has been designed and prototype from scratch
using Montages in an industrial context.

The mathematical semantics of Montages is given by means of Abstract
State Machines (formally called Evolving Algebras) [4]. In short, ASMs are
a state–based formalism in which a state is updated in discrete time steps.
Unlike most state based systems, the state is given by an algebra, that is, a
collection of functions and universes. The state transitions are given by rules
that update functions pointwise and extend universes with new elements.

Montages engineered the ASM’s approach to programming language seman-
tics showing how to model consistently not only the dynamic semantics, but
the static analysis and semantics as well. In particular, we describe how
to define intensionally the abstract syntax, i.e. the control and data flow,
starting from the concrete one. This mapping between concrete and abstract
syntax is provided by means of graphs which confer to the specification a
great intelligibility.

A language specification is given by a collection of Montages, which is hier-
archically structured according to the rules of the corresponding context-free
grammar given in EBNF. Each Montage is a “BNF-extension-to-semantics”,
that is a self contained description in which all the properties of a given
construct are formally defined.

Such Montage specifications can be fed to the Gem-Mex [1, 2] tool. It is a
complex system which assists the designer in editing and composing specifica-
tions, generating documentation and language implementations, respectively.
It consists of a number of interconnected components

• the Graphical Editor for Montages (Gem) is a sophisticated graphical

27

editor in which Montages can be entered; furthermore documentation
can be generated automatically;

• the Montages executable generator (Mex) which automatically gener-
ates correct and efficient implementations of the language;

• the generic animation and debugger tool visualizes the static and dy-
namic behavior of the specified language at a symbolic level; source
programs written in the specified language can be animated and in-
spected in a visual environment.

The whole development of a programming language can be supported with
an effective impact on the productivity and robustness of the design. The
designer can enter the specification, browse it and especially maintain it.
Specifications may evolve in time and modifications can be localized within
very neat boundaries. By doing so, different experimentation can take place
with different versions of the syntax and semantics of the specified language
in a very short time.

References

[1] M. Anlauff, P. W. Kutter, and A. Pierantonio. Formal Aspects of and
Development Environments for Montages. In M. Sellink, editor, 2nd
International Workshop on the Theory and Practice of Algebraic Speci-
fications, Workshops in Computing, Amsterdam, 1997. Springer.

[2] M. Anlauff, P. W. Kutter, and A. Pierantonio. The Gem-Mex Tool
Homepage. http://www.first.gmd.de/~ma/gem/, 1997.

[3] B. DiFranco. Specification of ISO SQL using Montages. Master’s thesis,
Universita di l’Aquila, 1997.

[4] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger,
editor, Specification and Validation Methods. Oxford University Press,
1995.

[5] P. W. Kutter and A. Pierantonio. Montages: Specifications of Realistic
Programming Languages. JUCS, Springer, 3(5):416–442, 1997.

28

[6] P. W. Kutter and A. Pierantonio. The Formal Specification of Oberon.
JUCS, Springer, 3(5):443–503, 1997.

[7] P. W. Kutter, D. Schweizer, and L. Thiele. Integrating Formal Domain-
Specific Language Design in the Software Life Cycle. to appear in pro-
ceedings of Current Trends in Applied Formal Methods, October 1998,
Boppard Germany.

[8] D. A. Schmidt. On the Need for a Popular Formal Semantics. Sigplan
Notices, 32(1):115–116, 1997.

[9] C. Wallace. The Semantics of the Java Programming Language: Prelim-
inary Version. Technical Report CSE-TR-355-97, University of Michigan
EECS Department Technical Report, 1997.

[10] D. A. Watt. Why don’t Programming Language Designers use Formal
Methods? In R. Barros, editor, Proc. SEMISH’96, pages 1–16, Univer-
sity of Pernambuco, Recife, Brazile, 1996.

CASL-CHARTS:
An Initial Proposal for

Integrating CASL and Statecharts

Gianna Reggio

Universitá di Genova
(Joint work with Lorenzo Repetto)

CASL-CHARTS is a graphic formalism for the specification of reactive sys-
tems defined by combining Statecharts [1] (the variant supported by State-
mate) and CASL [2]. Statecharts are a well-known graphic language for re-
active systems, while CASL is the common algebraic specification language
developed within the CoFI initiative.

29

The idea of the combination is to use CASL for the data part and the graphic
part of Statecharts for the reactivity aspects of a system. Thus a CASL-
CHARTS specification will be a pair consisting of a CASL specification SP
defining some data structures, which will be used by a Statechart CH .

The semantics will be given in two steps:

1. give the semantic to SP (an algebra D)

2. give the semantics to CH using D (as for classic charts).

The proposed formalism improves classic Statecharts, allowing

• more abstract specifications;

• more compact/readable specifications;

• simpler ways to present the charts and to give their semantics.

References

[1] D. Harel, Statecharts: A Visual Formalism for Complex Systems Science
of Computer Programming, 1987, vol. 8.

[2] P. D. Mosses. CoFI: The Common Framework Initiative for Algebraic
Specification and Development. In M. Bidoit and M. Dauchet, editors,
Proc. TAPSOFT ’97 number 1214 in Lecture Notes in Computer Sci-
ence, pages 115–137, Berlin, 1997. Springer Verlag.

30

Graphic Formalisms

Bernhard Rumpe

Technische Universität München

Today there is a widespread belief that graphic notations are informal or
at most semi-formal. This belief especially comes from the area of object-
oriented software engineering methods, which today very much rely on UML.
That it is so widespread is somewhat surprising, given the existence of quite
a number of diagrammatic formalisms such as graph grammars, Petri nets,
finite automata, etc.

In the talk we present work done together with Jan Philipps and other col-
leagues in Munich, in which we not only formalized two graphical notations
— one for behavior automata and one for data flow diagrams —, but also
developed a set of refinement rules for them. Both refinement calculi have
been proven correct with respect to a semantics based on stream processing
functions, such that the diagram shown below commutes.

It is argued that it is not the formalization itself that is of value (except
perhaps for those few who do the formalization), but rather the results gained
from it. Typical results are context conditions for each single notation and
for the integration of several notations, as well as transformation rules for
code generation, refinement and property derivation. We firmly believe that
we must employ a considerable amount of these techniques for UML in the
future to make it an even better success.

Syntax

System Model

Semantics

System Model

Set of rules:
Refinement
Calculus

Satisfaction
relation
(set-inclusion)

⊆

Mapping

31

Evolving Specifications in
Information Systems Design

Gunter Saake

Universität Magdeburg

Information system design differs from program construction as much as
house building differs from maintaining a large city. Information systems
are long-living, evolving software constructs integrating several, partial au-
tonomous subsystems. This talk focusses on the evolution aspect of such
systems and how evolution can be handled during a formalized modelling
phase.

The key idea of integrating evolution aspects into classical information sys-
tem specification is the separation of a fixed ‘rigid’ specification part from an
evolving part containing specification fragments describing the adapted spec-
ification parts. The language Troll which is based on object orientation and
temporal logic can be extended to describe evolving objects without invent-
ing new formalisms. Currently, two temporal logic extensions are developped
to build a logic framework for reasoning about such evolving specifications.
These logics differ in the aspect how to interprete the state-dependent spec-
ification fragmenst: dyOSL [1] interpretes them at run-time, whereas the
second development U2 uses a compilation to a temporal logic without re-
flection but explicit mutation states.

References

[1] S. Conrad and J. Ramos and G. Saake and C. Sernadas: Evolving Log-
ical Specification in Information Systems. J. Chomicki and G. Saake
(eds.): Logics for Databases and Information Systems. Kluwer Academic
Publishers, Boston, 1998, chapter 7, pp. 199–228.

32

A Dedicated Software Process
Design Language

Wilhelm Schäfer

Universität Paderborn
(Joint work with Gerald Junkermann, Sabine Sachweh and Stefan Wolf)

The work described here was motivated by the fact that commercially avail-
able software configuration management (CM) tools are difficult to adapt
to different companies” needs, i.e. CM processes constitute a major part of
the workflow of a software producing company and differ (sometimes signif-
icantly) between different companies. If at all, available tools only provide
a Shellscript-like language to adjust a tool. This makes the usually complex
CM-process definitions difficult to understand and maintain.

Our approach is to take an object-oriented specification language, namely
a subset of UML (Unified Modeling Language). This subset has been for-
mally defined in terms of its statics and dynamic semantics to enable do-
main specific analysis which includes to check properties like special types
of cycles across different statecharts, deadlocks etc. Those properties indi-
cate errors in the model. Similarly, simulation is used to find out errors.
The dynamic semantics and according simulation is based on mapping the
OO-specification language to PROLOG. Finally, the language includes a par-
ticular non-standard transaction protocol which supports to define synchro-
nisation of concurrent accesses of users to the same version of a document.
This protocol avoids the problems of so-called ”long-term” transactions in
the context of software processes.

33

A Formal Model for SDL Specifications
based on Timed Rewriting Logic

L. J. Steggles

University of Newcastle

SDL (Specification and Description Language) is a standard industrial for-
mal description technique for real–time distributed systems which is based
on communicating finite state machines. Despite its wide spread use and
industrial importance SDL lacks at present a complete and integrated for-
mal semantics. In this talk we address this shortfall by presenting a formal
semantics for SDL using a new algebraic formalism called Timed Rewriting
Logic (TRL). TRL is a specification formalism which extends standard alge-
braic specification techniques by allowing the dynamic behaviour of systems
to be axiomatised using term rewriting rules. The rewrite rules can be la-
belled with time constraints which provide a means of reasoning about time
elapse in real–time systems. The formal semantics we develop captures in an
intuitive way the hierarchical structure of SDL specifications and integrates
within one formalism the static and dynamic aspects of an SDL system. It
also provides a natural basis for analysing, verifying, testing and compos-
ing SDL systems. We demonstrate the approach we develop by considering
modelling an SDL specification for the so called bump game.

Analysing Designs

Harald Störrle

Universität München

The functional evolution (read: maintenance) of large software systems has
been a challenge for computer scientists ever since. Obviously, working on
the code level has not provided sufficient results. Working on the design level,
however, still looks promising. For work on this abstraction level one would

34

need tool support. Among other things, the equivalent of a type-checker —
one might call it a “consistency checker” or such like — is a very interesting
tool.

In my talk I use the Unified Modelling Language (UML) to express designs
syntactically, and high-level Petri-nets to represent them semantically. These
choices are justified pragmatically. I give some examples of errors a designer
might introduce inadvertently and briefly show how the formal semantics
helps to discover these errors.

Moving Specifications
Between Logical Systems

Andrzej Tarlecki

Uniwersytet Warszawski and Polska Akademia Nauk

In the process of systematic development of large software systems from their
formal specifications, it is often most natural to use a number of different
logical systems to specify various aspects of system behaviour, to describe
various modules of the resulting composite heterogeneous system, and to
capture features typical for different stages of system development. An ini-
tial step towards precise foundations for this is to formalize the concept of a
logical system, and then to develop a formal framework for working within
an arbitrary but fixed logical system. Much work in this direction has been
done based on the theory of institutions (the concept introduced by Goguen
and Burstall in the early 80s). Then, a necessary prerequisite for specifica-
tions/developments spanning a number of logical systems is some notion of
a morphism between institutions to allow specifications and developments to
migrate from one institution to another.

In this talk I present rudimentary notions to relate (model components of) in-
stitutions and show how these are sufficient for moving specifications between
the institutions so related. Consequently, given a diagram of institutions re-
lated in such a way, one can build and use specifications that may exploit

35

the logical power of the entire diagram, rather than of any single institution
within it.

I also discuss the behaviour of specifications (also those spanning a number
of institutions) under institution representation in some “universal logic”.
It turns out that adequate translation of specifications along an institution
representation can be done syntactically provided the representation satisfies
some simple model expansion and amalgamation properties. This allows one
to move entire work with specifications over a diagram of institutions to the
“universal institution” in which all of them are represented — provided that
the representations enjoy the model expansion and amalgamation properties
and are mutually compatible with each other.

A Toolkit for
Requirements and Design Engineering

Roel Wieringa

Universiteit Twente

This talks sketches the outcome of research into integrating structured and
object-oriented software design notations with each other and with formal
specification. The result is a conceptual toolkit called TRADE (Toolkit for
Requirements and Design Engineering), which is used for teaching software
design to informatics students in a non-partisan way, that is without en-
trenching the students in a structured or object-oriented ideology. TRADE
assumes a systems engineering framework, that views any system as part of a
systems hierarchy that can be extended upwards or decomposed downwards.
At each level, systems are specified by describing their external functions,
behavior and communication. Structured and object-oriented methods offer
techniques to specify these aspects: Decomposition is specified using class
diagrams, functions are specified by means of event-response lists, behav-
ior by means of state machines and communication by means of sequence
diagrams. It can be shown that data flow diagrams are superfluous once
state machines with local variables are used. Structured and object-oriented

36

methods also offer decomposition heuristics such as function decomposition,
domain-oriented decomposition and others. It can be shown that these can
be combined. Some of these techniques and heuristics are essentially infor-
mal, others can be formalized. We have formalized class diagrams as well
as ways to specify functions and behavior, using order-sorted dynamic logic
with equality. These ideas are illustrated by means of a case study in which
a controller for a compact dynamic bus station is specified.

Algebraic Models of CCS-Specifications

Uwe Wolter

Technische Universität Berlin

Usually CCS is understood as a calculus to specify and reason about pro-
cesses. Thereby the concepts machine, state, and process are considered as
synonyms. We take the viewpoint that all three concepts are different: A
machine has different states and a process has two parameters — the machine
where it takes place and the state where it starts.

The main observation outlined in the talk is that a specification written in the
full value-passing calculus of CCS can be directly seen as a partial algebraic
specification of machines/algebras. In particular it turns out that CCS is
focussed on initial semantics of those specifications.

Based on this observation we present an algebraic semantics of CCS speci-
fications in terms of combined machines/algebras. Then we point out that
from the algebraic viewpoint process expressions provide a sophisticated lan-
guage to speak about computations in machines/algebras and thus about
behavioural equivalence of states in one machine and of different machines,
and we relate this to traditional behavioural algebraic specifications.

37

