
Tiling for Optimal Resource Utilization

Abstract

A Dagstuhl Seminar (no. 98341) on Tiling was held 24–28 August
1998 with thirty six participants from seven countries. During the meet-
ing there were twenty five lectures, a panel session, and several informal
discussions. The outcomes of the meeting include

• Fruitful and ongoing discussion on all aspects of tiling (through the
creation of a web site1 and a mailing list, tiling@irisa.fr).

• A collection of abstracts (this report) of all of the lectures, made
publicly available at the web site (As usual the abstracts are also
being printed in booklet form for distribution to the participants
and for availability on request from the Dagstuhl office).

• A panel discussion and followup activities on the creation of a com-
mon set of benchmarks for researchers in the community.

1 Organizers

• J. Ferrante, University of California, San Diego

• W. Giloi, GMD First, Berlin

• S. Rajopadhye, IRISA, Rennes

• L. Thiele ETH-Zentrum, Zurich

2 Motivation

The following statement, written by the organizers was included with the invi-

tations to the particiants. Its scope was deliberately somewhat narrow, and had

the useful effect of forcing the participants to view a large number of compiler

optimizations through “tiling colored” glasses.

Tiling is a regular partitioning of a uniform index space representing either

computations (e.g., the iteration space of a loop program), or data (e.g., arrays

distributed over the processors of a parallel machine). Tiling can be used to

1http://www.irisa.fr/api/Rajopadhye/tiling



achieve many different performance goals, such as exploiting data locality in

hierarchical memory machines, communication optimization by message aggre-

gation, communication-computation overlap, and latency avoidance.

Being such a common paradigm, tiling is used by many different commu-

nities in computer science, each with slightly different perspectives. Appli-

cation writers tune a given program for performance by hand using multiple

instances of tiling, some times sacrificing portability and ease of programming

and debugging. Compiler writers have the same performance goals, but apply

tiling automatically to a wide class of programs. Hence their considerations

include feasibility of an automatic solution, reasonable computation times, and

efficiency and ease of automatic code generation. VLSI processor array and

embedded system designers have other constraints in the global context of the

application (real-time throughputs, power consumption), but are willing to ac-

cept slow compilers (or design assistant tools). And certain problems may be

best resolved at run time, since all parameters may not be available at compile

time.

Underlying all of these applications of tiling is the issue of optimality in the

presence of limited resources, embodied as a non-linear discrete optimization

question.

• Is it possible to accurately model the machine behavior with a few cost

parameters for a wide variety of machines?

• Is it possible to use such a model to predict the cost of a given program?

• How tractable is the resulting optimization problem (is it preferable to

retain a less accurate model in the interests of tractability)?

• What are the consequences of separating multiple applications of tiling

into separate optimization problems?

• Is a more global approach needed?

This seminar will bring together researchers from these diverse groups to

foster cross fertilization between them. We will examine the differences in the

problems, the models, and techniques they use, and the quality of their solutions,

and how they interact with ultimate performance of an ENTIRE system.

3 Participants

• Bowen Alpern, San Diego, USA
• Corinne Ancourt, Fontainbleu, France
• Rumen Andonov, Valenciennes, France
• Scott Baden, San Diego, USA
• Hannah Bast, Saarbrucken, Germany

2



• Pierre-Yves Calland, Valenciennes, France
• Larry Carter, San Diego, USA
• Siddhartha Chatterjee, Chapel Hill, USA
• Alain Darte, Lyon, France
• Peter Drakenberg, Stockholm, Sweden
• Reinhardt Euler, Brest, France
• Jeanne Ferrante, San Diego, USA
• Susan Flynn Hummel, New York, USA
• Vladimir Getov, Harrow, UK
• Wolfgang K. Giloi, Berlin, Germany
• Martin Griebl, Passau, Germany
• Tony Hey, Southampton, UK
• Karin Hogstedt, San Diego, USA
• Francois Irigoin, Fontainbleu, France
• Paul H. J. Kelly, London, UK
• Jens Knoop, Dortmund, Germany
• Christian Lengauer, Passau, Germany
• Margaret Martonosi, Princeton, USA
• Keshav Pingali, Ithaca, USA
• Oscar Plata, Malaga, Spain
• Hans-Werner Pohl, Berlin, Germany
• Gudula Rnger, Leipzig, Germany
• Sanjay Rajopadhye, Rennes, France
• Fabrice Rastello, Lyon, France
• Thomas Rauber, Halle-Wittenberg, Germany
• Tanguy Risset, Rennes, France
• P. Sadayappan, Columbus, USA
• Robert Schreiber, Palo Alto, USA
• Jrgen Teich, Zurich, Switzerland
• Lothar Thiele, Zurich, Switzerland
• Chau-Wen Tseng, College Park, USA

4 Benchmarks Panel

A discussion session was held on the topic of establishing a collection of bench-

marks for researchers in the field. Positions statements were presented by F.

Irigoin, K. Pingali (presented by J. Ferrante in absentia), . . . The ongoing dis-

cussion is carried out through a mailing list and recorded at the workshop web

site.

5 Lectures

The abstracts of the twenty five lectures are given below.

3



Tiling and Scheduling with Architectural and Applicative Constraints

Corrine Ancourt

This talk presents a technique to map automatically a complete digital signal

processing (DSP) application onto a parallel machine with distributed memory.

Unlike other applications where coarse or medium grain scheduling techniques

can be used, DSP applications integrate several thousand of tasks and hence

necessitate fine grain considerations. Moreover finding an effective mapping im-

peratively require to take into account both architectural resources constraints

and real time constraints. The main contribution of this paper is to show how

it is possible to handle and to solve data partitioning, and fine-grain schedul-

ing under the above operational constraints using Concurrent Constraints Logic

Programming languages (CCLP). Our concurrent resolution technique under-

taking linear and non linear constraints takes advantage of the special features

of signal processing applications and provides a solution equivalent to a manual

solution for the representative ”BROAD BAND SURVEILLANCE” application.

Optimal Orhtogonal Tiling

Rumen Andonov

Iteration space tiling is a common strategy used by parallelizing compilers

and in performance tuning of parallel codes. We address the problem of de-

termining the tile size that minimizes the total execution time. We restrict

our attention to orthogonal tiling—uniform dependency programs with (hyper)

parallelepiped shaped iteration domains which can be tiled with hyperplanes

parallel to the domain boundaries. Our formulation includes many machine and

program models used in the literature, notably the bsp programming model. We

resolve the optimization problem analytically, yielding a closed form solution.

Keywords: coarse grain pipelining, SPMD programs, loop blocking, nonlin-

ear optimization, communication-computation overlap, supernode partitioning,

automatic parallelization, macro-systolic arrays.

This is joint work with S. Rajopadhye and N. Yanev.

KeLPN (exp (N ln KeLP))

Scott B. Baden

Hierarchically organized parallel multicomputers present opportunities for

delivering high performance, but also many obstacles. Historically, parallel

programming models assume a non-hierarchical view of system organization,

4



which is the basis for most general-purpose commercial multicomputers. As

a result, programmers are forced to navigate a cluttered terrain of processes,

threads, messages, shared memory, and so on. Instead, I propose a more orderly

programming model, KeLPN, which supports hierarchical control flow, data de-

composition, and data motion. These mechanisms are parameterized according

to the level of the machine at which they are applied, and thus present a uni-

form programmer interface. The run time system hides most of the details,

executing anonymous parameterized instruction sequences that carry out the

desired behavior at each level of the hierarchy. I present results for a 2-level

prototype of KeLPN running on a dedicated SMP cluster. A variety of hierar-

chically organized computations were implemented, that generally outperform

their non-hierarchical counterparts. In particular, these applications are able

to effectively overlap communication on a system which does not support such

overlap via non-blocking communication. KeLP supports overlap by ascribing

communication at the node rather than the processor level. Communication

executes as a separate concurrent task, and how it is implemented on the node

cannot be exploited by the programmer. I conclude by generalizing the 2-level

model to the general case of N levels, and sketch the details of an overlapped

version of an iterative finite difference solver, running on a 3-level multicomputer

with symmetric multiprocessor nodes. Overlap in this computation is expressed

at 2 distinct levels.

Dynamic Scheduling with Incomplete Information

Hannah Bast

We consider the following scheduling problem: Our goal is to execute a given

amount of arbitrarily decomposable work on a distributed machine as quickly

as possible. The work is maintained by a central scheduler that can assign

chunks of work of an arbitrary size to idle processors. The difficulty is that the

processing time required for a chunk is not exactly predictable—usually the less,

the larger the chunk—and that processors suffer a delay for each assignment.

Our objective is to minimize the total wasted time of the schedule, that is, the

sum of all delays plus the idle times of processors waiting for the last processor

to finish. We introduce a new deterministic model for this setting, based on

estimated ranges [a(w),b(w)] for processing times of chunks of size w. Depending

on a, b and a measure for the overall deviation from these estimates, we can

prove matching upper and lower bounds on the wasted time, the former being

achieved by our new balancing strategy. This is in sharp contrast with previous

work that, even under the strong assumption of independent, approximately

normally distributed chunk processing times, proposed only heuristic scheduling

5



schemes supported merely by empirical evidence. Our model naturally subsumes

this stochastic setting, and our generic analysis is valid for most of the existing

schemes too, proving them to be non-optimal.

Tiling, the Universal Optimization

Larry Carter

Tiling is a method of improving performance of a program by partitioning the

program’s ISG (Iteration Space Graph) into similar pieces for atomic execution

on a computer with a hierarchy of processors and memory.

In this talk, I visit each of the italicized phrases twice. The first pass gives

a limited meaning to each term, and is intended to be non-controversial. The

second pass expands the definitions and makes the argument that a broad range

of optimization techniques are, in essence, tiling. We argue that tiling should

consider storage mapping, scheduling, and communication pipelining decisions;

that it encompasses inspector/executor methods; that it can facilitate register

allocation, storage compaction, instruction cache optimization, fault tolerance,

and adaptive computing on heterogeneous platforms; and so on.

This is joint work with everyone who has ever improved the performance of

a program, and in particular with Bowen Alpern, Jeanne Ferrante, Susan Flynn

Hummel, Kang Su Gatlin, Karin Hogstedt, and Nick Mitchell.

TUNE: System Support for Memory-Friendly Programming

Siddhartha Chatterjee

The pervasive use of multi-level memory hierarchies in microprocessor-based

machines makes the performance of an application primarily determined by, and

extremely sensitive to, its memory hierarchy mapping. Good performance there-

fore requires ”memory-friendly programming”: careful layout of data structures,

and restructuring of code and/or data use patterns to improve locality. The lack

of automatic tools for enhancing locality currently forces many application pro-

grammers to manually restructure their codes. Unfortunately, the sophisticated

algorithms seen in modern scientific computing require equally sophisticated

restructuring techniques, beyond the loop tiling transformations that some re-

search compilers can perform automatically for dense iterative affine loop codes.

Such restructuring techniques require expertise in computer architecture, bur-

den the application programmer with tedious machine-specific details unrelated

to program correctness, and reduce the readability, maintainability, and porta-

bility of the restructured code. The goal of the TUNE project is to improve

our understanding of locality for a wide class of ”hierarchical” problems and

6



to develop a toolkit to aid the programmer in developing memory-friendly pro-

grams for such problems. Our ultimate goal is to demonstrate that the TUNE

toolkit can be used to improve the performance of a naive implementation of

an application to a level comparable to that of an implementation with exten-

sive manual restructuring, but at a small fraction of effort on the part of the

programmer.

A comprehensive solution to the problem of improving locality in hierarchi-

cal codes requires interactions among several sub-disciplines of computer sci-

ence: scientific computing, numerical analysis, programming languages, compil-

ers, performance modeling, and computer architecture. This project therefore

targets all aspects of the locality problem: developing the relevant mathematical

techniques for representing and manipulating locality; characterizations of the

relationship between program transformations and numerical accuracy; imple-

menting interactive and automatic locality management tools; and proposing

and evaluating innovative memory architectures for future-generation systems.

The talk will discuss these various aspects of the TUNE project.

Code generation for the juggling technique

Alain Darte

This talk follows Rob Schreiber’s explanations on “how to juggle”. Starting

from a set of perfectly nested loops, the juggling technique builds a closed-form

formula for the mapping and the scheduling of computations that achieves a

Locally Sequential Globally Parallel partitioning of the loops.

In this talk, we show how we can generate the code for such a partitioning.

Our first approach was to use classical non unimodular loop transformations,

but this resulted in a very inefficient solution where the cost of the hardware

that carries out the original code was completely overwhelmed by housekeeping

computations. The reason of this overhead was due to complex operators, such

as div and mod, and expensive loop bounds evaluations. We present another

solution based on a decision-tree of depth (n-1) where n is the number of nested

loops, for which only a few adds and conditionals are needed. This solution ex-

ploits the mathematical properties of juggling. The reduction of cost, compared

with the first approach, is typically an order of magnitude.

Multi-level Tiling Interactions

Jeanne Ferrante

Optimizations, including tiling, often target a single level of memory or par-

allelism, such as cache. These optimizations usually operate on a level-by-level

7



basis, guided by a cost function parameterized by features of that single level.

The benefits of optimizations guided by these one-level cost functions decreases

as architectures tend towards a hierarchy of memory and of parallelism. We have

identified three common architectural scenarios where a single tiling choice could

be improved by using information from multiple levels in concert. For each sce-

nario, we derive multi-level cost functions which guide the optimal choice of tile

size and shape, and quantify the improvement gained. We give both analysis

and simulation results to support our points.

This is joint work with Nicholas Mitchell, Karin Hogstedt, Larry Carter.

Specialized Tools for Performance Tuning

Vladimir Getov

The fast Fourier transform (FFT) is the cornerstone of many supercom-

puter applications and therefore needs careful performance tuning. Most often,

however, the real performance of the FFT implementations is far below the

acceptable figures. Within the frame of the hierarchical tiling approach, we

explore several strategies for performance optimisations of the FFT computa-

tion, such as enhancing instruction-level parallelism, loop fusion, and reducing

the memory loads and stores by using a special-purpose source code generator.

Our approach is based on the principle of complete unrolling which we apply to

modify the FT kernel of the NAS Parallel Benchmarks. In experiments on two

different IBM SP2 platforms, we show performance improvements between 40%

and 53% in comparison with the original code. Further, our 3-D FFT mega-step

of the whole benchmark is faster than the corresponding FFT library call from

the vendor-optimised PESSL numerical library. Finally, our approach for auto-

matic generation of moderately optimised but specialised codes requires only a

modest amount of programming effort.

Fortran Futures

Tony Hey

Abstract This paper discusses the economics of program optimisation and

some of the challenges facing the parallel FORTRAN community. Industry takes

a much broader view of cost optimisation than just speeding up a FORTRAN

application code. Two examples of industrial ”Fortran” projects undertaken by

the Parallel Applications Centre at Southampton are used to illustrate these

industrial concerns. The PROMENVIR project demonstrated the cost-effective

use of a Europe-wide metacomputer, composed of idle workstations and paral-

lel systems connected by a WAN, to explore the design space of an industrial

8



application. By contrast, the TOOLSHED project was concerned with the inte-

gration of the design phase and grid generation phase with the simulation phase

of the industrial design cycle. Use of the STEP data interchange format enabled

the whole of the design cycle—design, simulation and visualisation—to be opti-

mized. The paper concludes with a discussion of three important challenges for

the continued health of parallel FORTRAN community. These are: the multi-

plicity of versions of parallel FORTRAN; competition from high-level scientific

packages such as MATLAB and Mathematica;and finally, the inexorable rise in

popularity of Java-based, network-centric computing.

Determining the idle time of a k-dimensional tiling

Karin Hogstedt

For a compiler to yield high-performance code we need to exploit the ar-

chitectural features of the target machine. Tiling is used to improve both the

locality and the utilization of the available parallelism, but with the more com-

plicated memory hierarchies of today’s computers tiling also needs to be applied

at (possibly) all levels of the memory hierarchy. The goal of tiling is to minimize

the execution time. Not to maximize the locality or available parallelism, which

has been the optimization goal of many researchers in the past. Tiling should

therefore be applied using a multi-level cost-function taking all memory levels,

locality and parallelism into account.

We model the execution time by a recursive formula where the execution time

of the iteration space at a certain level in the memory hierarchy depends on,

among other things, the execution time of a tile, the idle time, loop overhead etc.

We intend to model all these different parts with closed-form formulae, which

combined give us the total execution time of the iteration space. Our work has

been concentrated on deriving a formula for the idle time due to parallelism,

i.e., the time a memory module spends waiting either for data computed on a

different processor or at a synchronization point.

We define a sub-class of convex iteration spaces, so called rectilinear iteration

spaces, for which we can derive a closed-form formula for the idle time due to

parallelism, even though in the general case this problem only can be solved

using linear programming. The main parameter of this formula is the rise, which

intuitively is a measure of the difference between the shape of the iteration space

and the shape of the tiles.

This is joint work with Larry Carter and Jeanne Ferrante.

Prospects for Effective Tiling in Java

Bowen Alpern & Susan Flynn-Hummel

9



To those habituated to the norms of optimizing Fortran programs, the land

of Java optimizations is apt to be terra incognita. We will present a preliminary

report on our initial forays into this strange country. Its exotic character is

felt along two orthogonal dimensions (neither of them linguistic): its regulatory

environment and its optimization terrain.

The regulatory environment of Fortran is quite laissez-faire: if there is agree-

ment among a community that a particular program transformation preserves

a program’s (socially constructed) meaning, then one is free to apply the it. In

Java, such transformations are expressly forbidden: a program must appear to

have been executed in program order.

Fortran’s optimization terrain is painfully dull: either the programmer tiles

explicitly or the compiler tiles implicitly. Java’s optimization terrain is exquisitely

Baroque: implicit tiling might be attempted by a byte-code compiler, a byte-

code optimizer, a Just-In-Time compiler, a dynamic compiler, a static compiler,

a preprocessor, or even a garbage collector. In addition, native libraries might

be consulted or local dialects (heavily persecuted) spoken.

Our talk is completely void of technical content. Being, rather, a travel-

ogue, beginning with a summary of Java restrictions that tend to inhibit tiling,

continuing with our (largely possitive) experience with explicit tiling in Java,

moving on we present a taxonomy of implicit optimization strategies in Java.

Finally, we conclude with our predictions as to whether Java will take over the

world.

On-line automatic data placement in a parallel matrix library

Paul Kelly

Suppose we want to hide all the complexity of parallel programming inside a

library of parallel operations. For example, we want to call it from languages for

which building a parallelising compiler is unattractive. But we want to minimise

data redistribution between library calls—but we can’t do dataflow analysis of

the calling program (in Visual Basic etc).

The problem: you can’t tell how each routine’s results are going to be used,

so you miss the opportunity to select operand distributions and operator imple-

mentations which would avoid communication later.

To solve this we use delayed evaluation to capture the control-flow of user

programs at runtime. Now we know the context in which values are used, we

can propagate data placement constraints backwards. To make this work, we

have to optimise really fast, so we have formulated the problem carefully using

affine functions to represent data placement and constraints.

10



To further reduce the overheads, we detect when an equivalent DAG re-

occurs, and re-use the result of optimising it. We also optimise incrementally,

and perform further optimisation iterations if a potentially sub-optimal execu-

tion plan is re-used repeatedly.

Preliminary performance result were presented and there followed a discus-

sion of extensions and applications of the work.

Distribution Assignment Placement: Cleaning up after (Data) Tiling

Jens Knoop

Data locality and workload balance are key factors for getting high perfor-

mance out of data-parallel programs on multiprocessor architectures. Data-

parallel languages like High Performance Fortran (HPF) thus offer means for

specifying data distributions as well as for changing distributions dynamically

in order to maintain these properties. Redistributions, however, can be quite

expensive and significantly degrade a program’s performance. In this talk, we

report on a novel, aggressive approach for cleaning unnecessary distributions

off a program. It works by eliminating partially dead and partially redundant

distribution changes. Basically, this approach evolves from extending and com-

bining two algorithms for these optimizations achieving each on its own optimal

results. We demonstrate that combining them demands for a refined optimal-

ity investigation. Moreover, we show that the data-parallel setting leads to a

family of algorithms of varying power and efficiency allowing user-customized

solutions. The power and flexibility of the new approach are demonstrated by

several examples ranging from typical HPF fragments to real world programs.

Performance measurements additionally underline its importance and effectiv-

ity.

Keywords: Data-parallel languages, High Performance Fortran (HPF), dy-

namic data redistribution, data-flow analysis, optimization, partially dead and

partially redundant assignment elimination.

This is joint work with Eduard Mehofer (University of Vienna, Austria).

Cache Miss Equations: Precise Miss Analysis for Program Transfor-

mations in Caches with Arbitrary Associativity

Margaret Martonosi

The peak performance of current microprocessors is improving at dramatic

rates, but unfortunately memory performance has not kept pace. While caches

11



are often effective at masking this performance gap, program transformations

are often needed to allow programs to use cache most effectively.

In this talk, I discuss compile-time mechanisms for improving memory sys-

tem behavior using ”Cache Miss Equations” (CMEs). CMEs are a mathemati-

cal framework we have developed that allows the compiler to analyze potential

cache miss points in scientific code by expressing cache conflicts in terms of a

system of linear Diophantine equations. I describe and give performance results

for precise loop transformation algorithms we have developed. These algorithms

improve cache performance by analyzing the number of CME solution points

given a particular memory hierarchy. Thus, they can specialize array positions

and loop constructs to the given hardware structure. In particular, I present a

tiling algorithm that uses CME analysis to eliminate self-interference misses in

blocked linear algebra codes.

Data-centric Program Restructuring

Keshav Pingali

Modern high-performance machines have deep memory hierarchies, and op-

timizing the flow of data through the memory hierarchy usually has a dramatic

impact on program performance. Unfortunately, memory hierarchies complicate

the programming model enormously (for example, arrays cannot be treated as

though they were random-access data structures). Carefully hand-coded li-

braries, such as the LAPACK library for dense numerical linear algebra, are one

solution, but the utility of a library is limited to the particular problem domain

for which it was developed.

In a quest for general-purpose tools, the compiler community has explored

the use of program transformations like tiling (preceded by linear loop transfor-

mations) to optimize programs for memory hierarchies. However, performance

improvements from tiling may be quite limited even for relatively simple codes

like Cholesky factorization.

We have developed a new approach to program transformation called ”data-

centric program restructuring”, one application of which is the optimization of

programs for memory hierarchies. In this talk, we will discuss this technology

and present performance numbers obtained on SGI’s Octane workstations which

show the performance advantages of data-centric restructuring over tiling. A

practical consequence of this work is that our data-centric approach to optimiz-

ing programs for memory hierarchies is being incorporated into SGI’s compiler

product line.

12



Data Parallel Extensions for Maximizing Locality in Numerical Irreg-

ular Problems

Oscar Plata

The efficient programming of intensive numerical applications with irregular

structure on parallel computers is a very complex task. In general, key proper-

ties of the problem that these codes solve are needed in order to obtain a good

parallel code. However, these properties cannot be inferred from the code itself

(at least, easily). Three approaches can be recognized to parallelize this class

of codes, manual, user-annotated (specifically, data parallelism), and automatic

parallelization. Manual parallelization usually involves drastic rewriting of the

original sequential code, requiring a high development effort. However, this ap-

proach can take into account high-level problem properties, resulting in very

efficient parallel codes. The data-parallel approach annotates the sequential

code with directives that explicit the parallelism. Basically the directives spec-

ify data distributions and alignments. The compiler is in charge of the rest, the

most tedious, part of the parallelization process. The efficiency of this approach

depends on the ability of the data-parallel language to express problem proper-

ties, which is a difficult and open question for irregular applications. Finally, in

the third approach, the compiler is completely in charge of the parallelization

process. Currently there is active research in this area, as compiler techniques

to recognize and take advantage of problem properties have to be discovered.

No paralellizing compiler is, at the moment, able to efficiently parallelize com-

plete irregular codes. This work focuses on the data-parallel approach, and

how we can express problem properties using a limited number of user anno-

tations. As simple molecular dynamics simulation code is taken as a running

example. Nowadays, most of the production applications in this area have been

manually parallelized. We present a parallelization strategy that offers: high

efficiency similar to that of manual parallelization; original program structure

is preserved in resulting parallel code; global data structures are decomposed

in smaller local structures with the same organization; initial data decomposi-

tion and further communications are handled by calls to an existing runtime

support. Finally, we analyze the introduction of HPF extensions to provide the

compiler with information enough to guess the role of each data structure in

particle codes.

This is joint work with Guillermo P. Trabado Emilio L. Zapata.

Group-Based Dependence-Free Clustering

Hans-Werner Pohl

13



Dependence-free clustering of data structures with affine dependences can

be regarded as a non-rectangular generalization of alignment. Because affine

dependences (in their infinite extension) are unions of finitely many cosets of

subgroups of Zn, we use group-theoretic techniques to perform the clustering.

All the computations can be done efficiently on basis of the Hermite normal

form.

Loop Partitioning versus Tiling for Cache based Multiprocessors

Fabrice Rastello

In this paper, an efficient algorithm to implement loop partitioning is in-

troduced and evaluated. We improve recent results of Agarwal, Kranz and

Natarajan in several directions. We derive a new formulation of the cumulative

footprint, which enables us to deal with arbitrary parallelepiped-shaped tiles, as

opposed to rectangular tiles. We design an efficient heuristic to determine the

optimal tile shape. We illustrate the superiority of our algorithm on the same

examples as by Agarwal et al. to ensure the fairness of the comparisons.

Key words: compilation technique, hierarchical memory systems, loop

partitioning, tiling, cache, data locality, footprint.

Partitioning and Structures Scheduling for SAREs

Tanguy Risset

We propose a strategy for partitioning systolic arrays expressed in the for-

malismof recurrence equations. This partitioning is realised with multi-dimensionnal

scheduling (to obtain a linear array) and LPGS (or LSGP) partitioning at the

end. One advantage of this approach is the control of the arrays described can

be easily automatically generated. Also, with the help of a flexible schedule tool,

structured scheduling can be added to the method, allowing to re-use hardware

and keep the designer structuring.

Performance Optimization of a Class of Loops

P. Sadayappan

The problem of optimizing a class of parallel loops for parallel execution is

considered. The problem is motivated from examples in computational physics

where multi-dimensional summations of products of arrays are performed. The

overall optimization problem is divided into three sub-problems: operation

14



count optimization, communication optimization, and data locality optimiza-

tion. The operation count optimization problem is found to be NP-complete.

A polynomial time dynamic programming algorithm is developed for the com-

munication optimization problem. The issues arising with the data locality

optimization problem are discussed: loop permutation, tiling, and loop fusion.

Partial solutions to the data optimization problem are presented.

How To Juggle

Rob Schreiber

We describe a new, practical, constructive method for solving the well-

known conflict-free scheduling problem for the locally sequential, globally par-

allel (LSGP) case of systolic array synthesis. A loop nest and a linear mapping

to virtual processors is given, as is a clustering of rectangular arrangements of

virtual processors into physical processors. A solution to the scheduling prob-

lem is a linear map of iteration indices to time that satisfies linear inequality

constraints determined by loop carried-dependences. The schedule is conflict-

free if no two iterations are scheduled simultaneously on the same processor. It

is tight if it juggles and, in the steady state, all processors are busy every cycle.

Earlier attempts to solve this problem by Darte and Delosme provided a

solution with an important practical disadvantage, which we discuss below.

Megson and Chen later used Darte’s analytic technique to provide a partial

solution to the problem. Here, we provide a closed form solution that enables

the enumeration of all tight schedules. The new method has been incorporated

into a software system for the automatic synthesis of hardware accelerators

developed by HP Labs.

Regular State Machines

Jrgen Teich

In this talk, we introduce the notion of a model called regular state machines

(RSM) that characterizes a class of state-transition systems with a regular,

repetitive, and (frequently) unbounded number of states and state transitions.

An example of first choice is the state of a fifo queue, as written by a process

and read by another process.

We show that many models of parallel computation, represented ususally by

process graphs, may be effectively and finitely described in the state-space by

an RSM, e.g., Petri nets and subclasses thereof.

Mathematically, a RSM is described by a set of indexed states, defined over

an index domain which is a lattice bounded by a polyhedron.

15



We further show how properties such as state reachability, existence of pe-

riodic schedules, and memory analysis can be done efficiently based on results

obtained in the area of mapping regular algorithms to processor arrays and loop

parallelization...

This is joint work with Lothar Thiele

Eliminating Conflict Misses for Tiled Codes

Chau-Wen Tseng

Tiling is a powerful compiler technique for exploiting data locality in scien-

tific codes. However, previous research has shown conflict misses occurring due

to caches with limited associativity can significantly degrade the performance of

tiled codes. Two approaches for avoiding conflict misses are 1) carefully picking

tile sizes, and 2) copying tiles to contiguous buffers at run time. In this research,

we improve the flexibility and performance of existing approaches through intra-

variable padding, as well as provide extensive experimental evaluation using a

matrix multiply case study.

Previous techniques for avoiding conflict misses include picking the largest

non-conflicting square tile [1] and some rectangular tile generated using the

Euclidean GCD algorithm [2]. By varying the problem size of matrix multiply,

we discover many sizes where both algorithms are forced to select tiles small

relative to the cache size. As a result, the amount of loop overhead degraded the

performance of the tiled code, sometimes by 20% or more on a Sun UltraSparc.

We provide a simple padding algorithm for solving this problem.

Our padding heuristic simply examines tiles selected when the target array

column is padded from 0 to 7 elements. The pad producing the ”best” tile size

is chosen. If possible, array declarations are modified. Otherwise the array is

first precopied to a padded array.

We experimentally evaluate the performance of matrix multiply for problem

sizes between 100 to 400 for different versions of tiling on a Sun UltraSparc, using

both timings and cache simulations. Results show padding can significantly

improve the performance of tiling, avoiding pathological array sizes which force

small tiles. The overhead of precopying the added array is under 3% of the

execution time, particularly for larger problem sizes. Experiments also show

that copying tiles to contiguous buffers is quite effective, and larger tiles should

be selected than proposed in previous papers. Overall, we find padding used in

conjunction with tile size selection to be a useful compiler transformation for

eliminating conflicts in tiled codes.

This is joint work with Gabriel Rivera.

16



References

[1] Lam, Rothberg, Wolf: ASPLOS’91

[2] Coleman, McKinley: PLDI’95

17


