
Test Automation for Reactive
Systems

Theory and Practice

organized by

Prof. Dr. E. Brinksma (University of Twente, The Netherlands)

Prof. Dr. J. Peleska (University of Bremen, Germany)

Dr. M. Siegel (University of Kiel, Germany)

1

Preface

The design and implementation of correct reactive systems is one of the
major challenges of information technology. More than ever before modern
society has become critically dependent upon applications of such systems.
Important application areas include telematic systems, such as communica-
tion protocols and services, process control systems, and embedded-software
systems, ranging from aircraft control to consumer products like television
sets. Most applications are critical in one or more aspects, e.g. in the context
of safety, economy, ecology etc.

Testing is an indispensable technique for the validation of reactive sys-
tems. Although other tool supported methods, such as simulation, model
checking and verification by theorem proving, are increasingly being applied
to assess the correctness of system designs, testing remains the practically
most widely used validation technique. Although testing is generally too
weak to guarantee correctness, its advantages are that it is more readily ap-
plicable to large industrial systems, and that it is in fact the only validation
technique that can link the functionality of a (physical) realization and its
formal specification.

On the one hand, the great growth of reactive system applications and
with that the growing need to assess their correctness, has brought about a
considerable practical interest in the improvement of their testing procedures.
On the other hand, academic researchers, who formerly regarded testing as
an inferior and superfluous validation method, have begun to investigate the
use of formal methods and tools to specify, generate and implement tests.
This is of great practical interest, as most test suites for reactive systems are
still being produced on the basis of ill-understood ad hoc procedures. As a
result the production and maintenance of test suites have become very ex-
pensive activities, presenting a considerable practical bottleneck. Even minor
improvements on existing working procedures are economically attractive.
Major improvements are expected from algorithms for the (semi-)automated
derivation and selection of test suites from formal specifications of the im-
plementations under test, as well as the machine-assisted evaluation of test
results.

In spite of these bright prospects for the application of testing theory and
related tools, still much work is needed to turn the existing theories and tools
into an effective testing workbench fit for industrial application.

2

The Dagstuhl workshop on test automation for reactive systems was the
first of its kind, and was very well attended (more than 40 participants). It
brought together people from different backgrounds with a strong interest
in testing, such as protocol testing, real-time testing, performance testing,
statistical testing, etc., to present and discuss the state-of-the-art in testing
and test automation. There was a strong representation from the formal
methods community, but here again a wide range of models and formalisms
was represented: Mealy automata, labeled transition systems, abstract data
types, I/O automata, timed automata, Z etc.

The presentations and discussions made clear that although there are
quite a few research groups active in the area now, we are only at the begin-
ning of things and major contributions to the (semi-)automation of practical
software testing are still to come. A bottleneck is the limited availability of
formal system specifications that can be used to derive tests from. In cer-
tain areas, however, such as e.g. safety-critical and embedded systems, the
willingness of industry to go more formal is growing, which is among others
motivated by the potential gains for testing implementations.

A discussion session that was held to talk about future research themes in
test automation suggested at least the following topics: relating test methods
to common design and implementation methodologies (e.g. objected oriented
design), the issue of design for testability, which has been very successful in
the area of hardware testing, and measures to quantify the coverage of tests.
The general opinion was that the seminar was a success and it is planned to
organize another Dagstuhl meeting on testing in the future.

The support of the TMR Program of the European Community is grate-
fully acknowledged.

The organizers Ed Brinksma
Jan Peleska
Michael Siegel

3

Contents

Testing Real-Time Systems
Rachel Cardell-Oliver . 6

Testing Timed Automata
Frits Vaandrager . 6

Conformance Testing with Formal Methods
Jan Tretmans . 7

Test Automation for Hybrid Reactive Systems
Peter Amthor . 8

Structured Test Case Design on the Basis of Z Specifications
Harbhajan Singh . 9

Testing Algebraic Data Types and Processes: A Unifying Theory
Marie-Claude Gaudel . 9

TGV: Principles, Tool Architecture and Algorithms
Thierry Jeron . 10

Specification-based Testing of Concurrent Systems
Andreas Ulrich . 11

Structured Reasoning About Z Specifications of Embedded Systems
Thomas Santen . 11

Automated Test of a Power and Thermal Controller of a Satellite
Oliver Meyer . 12

Refusal Testing for Multi I/O Transition Systems
Lex Heerink . 13

4

Testing Partially Defined, Nondeterministic and Embedded FSMs
Alexandre Petrenko . 14

A First Step for Integration Testing of Distributed Systems
Pascale Le Gall . 15

Test Data Selection for Reactive Synchronous Software
Bruno Marre . 16

Testing of Real-Time and Performance Requirements
Ina Schieferdecker . 17

Test Re-use in an OO Setting
Ruurd Kuiper . 17

Systematic Derivation of Fault-Sensitive Test Cases
Monika Muellerburg . 18

Testing Techniques for Synchronous Software
Farid Ouabdesselam . 19

On Coverage Measures for Partial Validation
Ed Brinksma . 20

Towards Automatic Distribution of Testers for Conformance Testing
Claude Jard . 20

Statistical Testing Based on Structural and Functional Criteria
Pascale Thevenod-Fosse . 21

Exploiting Symmetry in Protocol Testing
Judi Romijn . 21

Using static analysis to improve test generation
Jean-Claude Fernandez . 22

5

Testing Real-Time Systems
Rachel Cardell-Oliver

http://cswww.essex.ac.uk/Research/FSS/projects/test.html

In this talk I discuss some solutions to problems in test generation for
real-time systems: in formal terms, what can be claimed if an implemen-
tation passes all its specification tests? under what assumptions can these
claims be made? and which types of specification yield manageable test sets?
The correctness relation used is trace equivalence of specification and imple-
mentation graphs. The graphs are generated from timed transition system
specifications E‖S where environment E produces inputs and system S re-
sponds with outputs. The implementation to be tested will be checked in
this same environment. I distinguish between the assumptions necessary to
prove the test correctness theorem and those needed in order to generate
and run tests. For real-time systems the size of graph generated for a given
S‖E is especially sensitive to minor changes in the specification. I propose
transformation rules to reduce the graph size and thus the number of tests
generated whilst maintaining real-world acceptable specifications. In partic-
ular, rules are proposed for ”just sufficient” environments, for time grids over
non-deterministic time bounds on actions and rules for the modular test of
individual system components.

Testing Timed Automata
Frits Vaandrager

http://www.cs.kun.nl/˜fvaan/

We present a generalization of the classical theory of testing for Mealy
machines to a setting of dense real-time systems. A model of timed I/O
automata is introduced, inspired by the timed automaton model of Alur
and Dill, together with a notion of test sequence for this model. Our main
contribution is a test generation algorithm for black-box conformance testing
of timed I/O automata. Although it is highly exponential and cannot be
claimed to be of practical value, it is the first algorithm that yields a finite
and complete set of tests for dense real-time systems. In a next step we
identify a subclass of timed I/O automata, the class of bounded response
automata, which is sufficiently expressive to model many interesting real-
time systems, but allows for much smaller test sets.

6

Conformance Testing with Formal Methods
Jan Tretmans

Conformance testing concerns checking the functional correctness of an
implementation with respect to its specification by means of executing exper-
iments on the implementation. These experiments, referred to as test cases,
should be derived systematically and algorithmically from the specification.
Test cases should be such that correct implementations are not rejected, while
maximizing the chance of rejecting erroneous implementations.

The first part of the talk presents the ingredients which are needed for
conformance testing based on formal methods: what is conformance in a
formal setting; what is testing; what is test execution; what is test generation;
and what are the requirements they should satisfy.

The second part of the talk elaborates these formal testing concepts for
specifications which can be expressed as labeled transition systems. Transi-
tion systems form a mathematical model for many formal specification lan-
guages, especially in the area of reactive systems. A brief, more or less
historical overview of testing theories will be given, concentrating on the
ingredients explained in the first part of the talk. Testing equivalence and
preorder, refusal testing, canonical testers, asynchronous testing via queues,
input/output testing, testing with inputs, outputs and repetitive quiescence,
and testing with input and output channels are discussed. It is shown that
testing with inputs, outputs and repetitive quiescence yields an interesting
testing theory, which, on the one hand, has a firm basis in the theories of
testing equivalence and refusal testing, and on the other hand, leads to prac-
tically applicable test generation algorithms, which provide the theoretical
basis for test generation tools like TVEDA (developed at France Telecom
CNET) and TGV (developed at IRISA, France).

7

Test Automation for Hybrid Reactive
Systems
Peter Amthor

http://www.informatik.uni-bremen.de/˜amthor/

This contribution aims to establish a development queue for hybrid sys-
tems, starting with specification and verification, proceeding with transfor-
mation, animation and implementation, ending with the test of the developed
system.

A hybrid system usually includes continuous activities of analog variables
as well as discrete events. They are also reactive, i.e. the system’s compo-
nents interact continuously with each other. Very often they are safety-
critical, too, so certain safety requirements have to be observed to prevent
the system from catastrophic behaviour.

Here, the specification of hybrid systems is done by the use of hybrid
automata. They offer constructs to deal with the continuous evolution of
variables’ values as well as with discrete events. Additionally, the HyTech
tool provides support for the verification of hybrid systems described as the
parallel composition of hybrid automata. The whole specification process
follows the physical/hazard/controller-model which has been developed to
design safety-critical systems.

Further, one has to transform the specification into an executable model
to support its animation, implementation and test. Doing this, usually the
system has to be decomposed into several components to cope with its com-
plexity or to support distributed architectures.

The received executable model, e.g. a transition graph which can be
traversed, can then be integrated into a so-called safety software architecture
(SSA), where the model is executed relating one or more concrete events
(program functions) to its abstract events (transition annotations).

Finally, SSA can be used to animate and implement the hybrid system,
but in particular to build up a test configuration to test the correct behaviour
of the controller components of the system, e.g. a temperature controller,
using the other system components as the test environment.

8

Structured Test Case Design on the Basis of
Z Specifications

Harbhajan Singh

Software testing often consumes up to 50 percent of the overall software
costs. A large amount of time and money within the test process is spent due
to incomplete, inconsistent or ambiguous informal specifications of the test
objects. A more formal approach to the early phases of software develop-
ment can reduce the error rate drastically and, in addition, can significantly
improve the central testing activities like test case design and test evaluation.

This paper presents an approach for generating test cases from formal
specifications written in Z by combining the classification-tree method for
partition testing with the disjunctive normal form approach. Firstly, a clas-
sification tree describing high level test cases is constructed from the formal
specification of the test object. Then the high level test cases are further
refined by generating a disjunctive normal form for them. The refined test
cases obtained this way cover all specified aspects of the system explicitly
and also contain all information necessary to evaluate the test results. The
proposed combination of the classification-tree method with the disjunctive
normal form approach preserves advantages of both methods, overcomes most
of their limitations, and can be supported by tools.

Testing Algebraic Data Types and Processes:
A Unifying Theory

Marie-Claude Gaudel

This talk is based on a generic framework for test selection based on
formal specifications which have been developed for several years at LRI.
A notion of exhaustive test set is derived from the semantics of the formal
notation and from the definition of correct implementation. Then a finite
test set is selected via some selection hypotheses which are chosen depending
on:

• some knowledge of the program,

• some characteristics of the specification,

• and ultimately cost considerations.

9

First, it is recalled how this framework is instantiated for algebraic data
types. Then, it is generalized to full LOTOS specifications. This leads to a
new integrated test selection strategy for full LOTOS, which improves the
existing ones by exploiting at the same time the data type part and the
behavior part of the specification.

TGV: Principles, Tool Architecture and
Algorithms

Thierry Jeron
http://www.irisa.fr/pampa

The first part of the talk presents the main principles of TGV, a proto-
type tool developed by IRISA Rennes and Verimag Grenoble. Its aim is to
automatically generate test cases from formal specifications in the context
of conformance testing of protocols. TGV is based on testing theories which
consider models of transitions systems with a distinction between inputs and
outputs and a conformance relation relating implementations to specifica-
tions. In TGV, test selection is achieved by a test purpose specified by
an abstract automaton. TGV is based on on-the-fly verification techniques
which allow to produce a test case in a lazy way by the construction of parts
of the state graph of the specification.

The on-the-fly generation induces a particular tool architecture composed
of a stack of modules each of them providing an API for the construction
of parts of intermediate state graphs. TGV can be connected to the API
of the SDL simulator ObjectGeode and the API of the LOTOS simulator of
the CADP tool-box. Using this API, the different modules perform a syn-
chronous product of the specification test graph and the test purpose, hiding
and renaming, τ

∗-reduction and determinization, and finally test generation.
The second part of the talk presents this test generation algorithm (com-

mon work with Pierre Morel). The algorithm is adapted from the Tarjan’s
algorithm which computes maximal strongly connected components. The
principle here is to build a subgraph of sequences leading to acceptor states
of the test purpose. It is quite similar with the model-checking algorithm for
reachability properties with adaptations for subgraph synthesis and elimina-
tion of controllability conflicts. This algorithm produces correct test cases
having loops and minimal INCONCLUSIVE verdicts.

10

We conclude with a small example which additionally advocates for the
use of static analysis on source specifications in order to avoid unnecessary
unfoldings and improve test generation.

Specification-based Testing of Concurrent
Systems

Andreas Ulrich
http://ivs.cs.uni-magdeburg.de/˜ulrich/Papers/forte97e.ps.gz

The presentation addresses the problem of test suite derivation from a for-
mal specification of a distributed concurrent software system by presenting a
concurrency model, called behavior machine, and its construction algorithm
from a collection of labeled transition systems. It then outlines how test
derivation can now be based on the new concurrency model to derive test
suites that still exhibit concurrency between test events. A toolset is pre-
sented to support the generation of concurrent test suites from specifications
given in the formal description technique LOTOS. Finally, some comments
on requirements for the design of a distributed test architecture are given.

The full paper was presented at the FORTE/PSTV 1997 Conference in
Osaka, Japan.

Structured Reasoning About Z Specifications
of Embedded Systems

Thomas Santen

I present an approach to work with Z specifications in a validation and
verification context. The approach relies on the fact that specifiers structure
specifications according to the importance of concepts and their relations.
Exploiting the structure of a specification helps to identify theorems that are
relevant to a practical verification task such as test case generation. It also
drastically reduces the effort needed to derive theorems using an automated
theorem prover.

The principal means to modularize Z specifications are schemas. They
can be used in different roles, in particular to define states and operations
of systems, and to define predicates on the system states. For schemas used
as states, schema-views such as a disjunctive normal form of a schema’s

11

predicate, or deriving the precondition of an operation are useful. Schema
views are thus equations between schemas. For schemas used as predicates,
relations between them are needed to validate a specification and to avoid
referring to their definition in other proofs.

The tool HOL-Z based on the theorem prover Isabelle provides support for
proof about Z. Special tactics allow one to derive schema views. Applications
of these tactics to several specifications of non-trivial complexity showed that
only exploiting the structure of specifications in the reasoning process makes
automated deduction feasible.

I concluded my talk with the question of testing componentware. By way
of the example of a traffic light safety controller, I illustrated that nowadays
software in embedded systems is increasingly based on generic components
that are parameterized in the configuration of a concrete application. The
safety controller is parameterized not only with the configuration of a traf-
fic junction, but also with evaluation functions judging the safety of traffic
situations. How to test such a component to work for any (admissible) in-
stantiation of the parameters is not at all obvious.

Automated Test of a Power and Thermal
Controller of a Satellite

Oliver Meyer

The test system VVT-RT has been employed for an automated hardware-
in-the-loop test of the power and thermal controller (PTC) of the ABRIXAS
satellite, which is built by OHB, Bremen. The most critical tasks of the PTC
are the charge and discharge control of the satellite battery, the temperature
control of all satellite components, and the generation of status reports for
the tracking station. VVT-RT is developed by JP Software Consulting in
cooperation with the Bremen Institute of Safe Systems (BISS) for the au-
tomated black-box conformance test of reactive systems. Test generation,
test execution and test evaluation are based on (possibly combined) CSP
specifications of the target system behaviour and its environment. The envi-
ronment specification is used to generate input events for the system under
test (SUT) while its outputs are checked on-the-fly against the behaviour
specification with respect to the previous inputs: the behaviour specification
is used as a test oracle which adapts its verdicts to the preceding inputs and

12

outputs. If it is possible to make reasonable assumptions about the after-
state of the SUT after a “fail” verdict has been issued, the test execution has
not necessarily to be stopped. This is especially essential for long term tests
where the continuation might reveal errors which occur periodically. In order
to perform the tests of the hybrid PTC, the test system has been extended
to deal not only with discrete events but also with continuous values. The
analogue readings of the PTC sensors are redirected to the test system and
captured and influenced in real time. In this way it is possible to simulate
component faults and sensor inaccuracies. The tests revealed more than 20
errors which can be grouped into the four categories “Incomplete or ambigu-
ous specifications”, “Configuration table inconsistencies”, “Coding errors”
and “Incompatibilities between Hardware and Software”. The errors of the
first category were detected during the formalization of the PTC specifica-
tions, while the others occurred during the functional and long term tests.
Especially the errors of the fourth category demonstrate the importance of
hardware-in-the-loop testing: even if the software works correctly, the com-
munication between hardware and software might introduce new problems.

Refusal Testing for Multi I/O Transition
Systems
Lex Heerink

Recent developments show that testing theories for transition systems are
becoming more practical. One of these developments is the explicit distinc-
tion between input actions and output actions: input actions are initiated
and controlled by the tester and can be consumed by the implementation un-
der test (IUT), whereas output actions are initiated by the IUT. Under the
assumption that implementations can never refuse input (i.e. input actions
are continuously enabled) it turns out that applying the traditional testing
theory of [1,2] gives a testing theory that lies closer to common testing prac-
tice (e.g. see the theory described in [3]). In this talk the testing theory
of [3] is refined even further by not only distinguishing between inputs and
outputs, but also by distinguishing between the locations (or: PCO, Points
of Control and Observation) where these actions can occur. In that way
the distribution of the interface of implementations in explicitly taken into
account. By weakening the assumption on the enabling of input actions and

13

applying ideas from [2,3] a testing theory is obtained that is parameterized
by the PCOs of implementations. For specific instantiations of the PCOs
this theory collapses to the theory of [2] or [3]. A practically interesting
class of correctness criteria has been defined that is also parameterized by
the PCOs. Furthermore, a test generation algorithm that is parameterized
by the PCOs is presented. This algorithm can generate sound tests from
transition system specifications: any correct implementation will never fail
any test that can be generated. The set of all test cases is complete: for any
incorrect implementation a test can generated that will detect it.

[1] R.De Nicola and M. Hennesy. Testing equivalences for pro-
cesses, TCS, 34:83-133,1987.

[2] I. Phillips, Refusal Testing. TCS 50(2):241-284,1987.
[3] J. Tretmans, Test generation with inputs, outputs, and repet-

itive quiescence. Software – Concepts and Tool, 17:103-
120,1996

Testing Partially Defined, Nondeterministic
and Embedded FSMs

Alexandre Petrenko

We consider the problem of test derivation from a specification modeled
by an input/output finite state machine (FSM). The development of test gen-
eration methods based on this model has initially been driven by problems
arising from functional testing of sequential circuits, see e.g. work of Hen-
nie who pioneered the so-called state identification approach. This approach
has yielded many test derivation methods, all of them require the FSM be
minimal, deterministic, and completely defined. We demonstrate that these
methods fail when applied to machines which do not fit to the above cate-
gory and discuss our recent research that is concentrated on more complex
models such as partially defined and nondeterministic machines. A specific
feature of a partially specified FSM is that it has undefined or ”don’t care”
transitions. There are a number of conventions that may be used to give a
formal meaning to ”undefined”. For partial deterministic FSMs, the so-called
quasi-equivalence relation replaces equivalence used a conformance relation
for complete machines. Test derivation from a partial FSM is impeded by the
fact that the FSM at hand may not have a unique minimal form, opposed to

14

any completely specified FSM, as a result, not all states are distinguishable.
A new approach for deriving complete test suites from partial machines has
been elaborated and later generalized to cover nondeterministic machines.
A so-called ”state-counting” approach includes the traditional state iden-
tification approach developed by Hennie as a special case and treats more
realistic specifications. We also demonstrate that this approach can easily
be adapted to solve the problem of test derivation for FSMs embedded into
a given context machine.

A First Step for Integration Testing of
Distributed Systems

Pascale Le Gall

Traditionally, we all learned that the integration testing of large systems
must proceed in incremental steps. For modular systems with hierarchical
structure, top-down vs. bottom-up are two well-known alternative strategies
and in practice, mixed strategies are used according to the cost of stubs and
drivers (that simulate resp. called and calling modules).

Classical approaches for integration testing of large systems no longer
fit the needs for testing and analyzing modern complex systems, that are
made of many components (each, likely, a complex system itself), variously
distributed and interacting concurrently on networks which do not follow
classical hierarchical structure. New strategies for arbitrary software archi-
tecture need to be identified.

Integration test strategies should allow testers to decompose a dynamic,
heterogeneous system not only on the basis of the static structure, as earlier
cited approaches did, but also considering the dynamic behaviour, as well
as the specific test objectives. Indeed, test objectives vary as the system is
looked at from different viewpoints for the analysis of the system architec-
ture. Each view captures a specific problem domain, and requires a specific
decomposition and specific test cases.

We propose an approach to distributed system decomposition for analysis
and testing purposes. We introduce Information Space which consists of an
architecture (the system topology) and of the flow of information between
the components of the architecture. For each relevant information piece on
the information space, we derive a sensible architectural decomposition into

15

three categories: the components from which the test inputs are launched;
the components that process those inputs (the subsystem under test); and the
components acting as test oracles (allowing interpretation of test outputs).

Such an approach allows to identify the sensible information pieces ac-
cording to a given test objective and the notions of ”launchers” and ”oracle”
components may advantageously replace the classical notions of stubs and
drivers. It provides a great flexibility for the choice of test objectives ac-
cording to different viewpoints. In practice, it is meant to be applied in
the early stages of system development, over a high level description of the
architecture, to identify a suitable test integration plan.

Test Data Selection for Reactive Synchronous
Software
Bruno Marre

We present a test data selection tool, GATeL, from Lustre descriptions.
Lustre is a declarative specification/programming language for reactive syn-
chronous systems. It is used for control command systems in french nuclear
power plants. Despite the fact that there exists verification tools for Lus-
tre, there is a strong demand of testing techniques devoted to Lustre. The
LRI has proposed a theory and a tool, LOFT, for test data selection from
algebraic specifications. They have been applied to Lustre descriptions us-
ing a translation of Lustre into algebraic specifications. Experimentations
on industrial case studies have shown the interest of the approach, but also
some limitations on its scalability. These limitations came essentially from
the selection tool which was not originally designed for Lustre descriptions.
This led us to implement a selection tool taking into account the specifici-
ties of the Lustre lanmguage (data flow computations, temporal operators
...) This tool can be used for unit testing and integration testing. Future
improvements will make it usable for the test of safety properties.

16

Testing of Real-Time and Performance
Requirements

Ina Schieferdecker

This talk discusses the need of an integrated test method for functional,
real-time and performance requirements from the perspective of current and
emerging network technologies such as ATM (asynchronous transfer mode)
networks and the integrated and differentiated service architecture in the
next generation Internet.

Such a test method has to be based on an appropriate notation with a
well-defined semantics in order to support the sound description, analysis
and implementation of functional, real-time and performance (load/stress)
tests with the benefit to make test results comparable.

It is argued that an unifying notation for the description of the three
types of tests allows for an incremental test case development process and
for the re-use and enhanced maintenance of test cases.

Such a notation can be defined as an extension of TTCN 04 04(the Tree
and Tabular Combined Notation, ISO/IEC Standard 9646 Part 3), which
is the standardized test notation for the description of OSI (Open Systems
Interconnection) conformance tests.

The talk analysis related work on time-extended versions of TTCN with
respect to their language features and semantics definition. In particular,
Real Time TTCN with means to express hard timing requirements and Per-
formance TTCN with means to express performance test configurations, traf-
fic models, measurements, performance constraints and performance verdicts
are considered.

Finally, on the basis of both approaches a combined and extended nota-
tion is proposed for the description of functional, real-time and performance
tests of telecommunication protocols, services, and applications.

Test Re-use in an OO Setting
Ruurd Kuiper

Short presentation of preliminary ideas on test re-use in an OO setting,
exemplified on a Java class.

In CapGemini’s ComBAD (Component-based Application Technologies
Development) approach, from Generic Frameworks applications are instan-
tiated for clients. The idea is, to complement a framework with a, similarly

17

generic, set of tests. Such a set parallels the framework’s class hierarchy: for
each class there be a tester-class. This tester-class is build from the methods
that are present in the class under test, together with extra tester-methods
that may target the behaviour of a single method, but also joint behaviour
of several methods (say, a feature) or interactions of these (say, feature in-
teraction). The latter two methods should be build using the single method
tester-methods. All these tester-methods are collected together in a method
testscript, the single entrypoint for all testing.

Instantiations of a class should now be paralleled by instantiations of the
tester-class: in part this will be automatic, like overridden methods in the
class also being used in the tester-class, in part adaptations need to be made,
for example to tester-methods that apply to overridden methods. The idea
is, that over all reasonable instantiations, the structure of the test set ensures
that adaptation can be limited to tester-methods that target single methods,
thus providing the feature and feature interaction tests for free.

In the case of Java, judicious choice of the organization of the testscript
ensures that instantiation decisions are reflected in the API, indicating which
tests should be adapted.

Systematic Derivation of Fault-Sensitive Test
Cases

Monika Muellerburg

The method of systematic testing is introduced and its application in the
validation of reactive systems is illustrated. In systematic testing, test (data
selection) criteria (and respective coverage and testability measures) are used
for assessing the effectiveness of the selected input set. A classification scheme
– relating entities, test criteria, and fault types – supports the choice of a set
of criteria that is appropriate for the considered entity: the specification for
black box test or the program source code for glass box test.

The second part briefly explains the language (and respective tool en-
vironment), synchronousEifel (sE). Developing a reactive system in sE

means defining reactive objects that communicate via signals on a bus with a
special signal, a clock tick. Reactive objects read their input signals, compute
their reaction, and finally emit their output signals between two clock ticks.
A reactive class contains the description of reactive behaviour in addition to
the description of operations and attributes as known from object-oriented

18

construction. It is shown how reactive objects may be used for testing: for
checking system properties (oracle by observers), for checking assumptions
about signals from the environment, and for generating inputs simulating the
environment.

The support for using observers, comes with the synchronous model.
From the viewpoint of systematic testing, however, this is not sufficient.
We therefore experiment with an additional behavioural test specification, an
extended finite-state-machine (EFSM), using it for deriving fault-sensitive
test cases and as an oracle. The EFSM consists of an FSM part (represent-
ing control) and a data part. Events may be grouped into data structures;
labels attached to transitions may be refined in activation and response re-

finements. Thus, the control part is made easier by transferring complexity
from control into some data part.

Testing Techniques for Synchronous Software
Farid Ouabdesselam

Several studies have shown that automated testing is a promising ap-
proach to save significant amounts of time and money in the industry of
reactive software. But automated testing requires a formal framework and
adequate means to generate test data.

In the context of synchronous reactive software, we have built such a
framework and its associated tool -Lutess- to integrate various well-founded
testing techniques. This tool automatically constructs test harnesses for fully
automated test data generation and verdict return. The generation conforms
to different formal descriptions: software environment constraints, functional
and safety-oriented properties to be satisfied by the software, software op-
erational profiles and software behavior patterns. These descriptions are
expressed in an extended executable temporal logic. They correspond to
more and more complex test objectives raised by the first pre-industrial ap-
plications of Lutess.

This talk concentrates on the latest development of the tool and its use in
the validation of standard feature specifications in telephone systems. The
four testing techniques which are coordinated in Lutess uniform framework,
are shown to be well-suited to efficient software testing and specification de-
bugging. The lessons learnt from the use of Lutess in the context of industrial
partnerships are discussed.

19

On Coverage Measures for Partial Validation
Ed Brinksma

http://wwwtios.cs.utwente.nl/˜brinksma/

The validation of implementations is an essential part of the design of
both hardware and software systems in order to establish the correctness of
such systems. As such it has been an important application area for all kinds
of formal methods to support this activity. Many of such methods, however,
aim at a complete proof of correctness, which become unmanageable in the
case of larger, realistic designs. In practice, therefore, attention is limited
to such methods that can be applied partially or in an approximative man-
ner, such as by testing. Albeit more pragmatic, these approaches usually
lack a good measure for the extent to which correctness is established. Such
coverage measures are needed to compare and assess different strategies for
partial validation in the context of a given specification. In this presentation
we propose to follow a measure-theoretic approach in which an exogenous
cost function (quantifying the effect of certain properties in an implementa-
tion) is integrated over a measure that is induced by the probability of error
occurrences in implementations. In this way, in fact, we do not only obtain a
notion of coverage, but a general way of assigning measures to specification
theories in the context of a given class of implementation structures.

Towards Automatic Distribution of Testers
for Conformance Testing

Claude Jard

This talk presented a first step towards automatic generation of dis-
tributed tests for testing distributed systems. This question poses two main
problems. The first problem is now well-known and concerns the taking into
account of the asynchronous nature of the interaction between the testers and
the implementation under testing. The second one is the automatic synthe-
sis of the coordination protocol between the different local testers. We first
define a characterization of the tests for which the property of unbias (con-
formant implementations cannot be rejected) is preserved by the existence of
an asynchronous environment. Then, starting from a centralized test case,
we propose a method to derive automatically a set of local communicating
testers using fifo queues. The method inserts synchronization messages to

20

implement sequentiality and proposes to use a distributed consensus service
to solve the non-local choices. We prove that the generated distributed test
case is not biased, it tests the same behaviors of the implementation and
has the same testing power as the centralized test case. Open questions re-
main still open to optimize the synchronization between the testers by using
some additional causal information deduced from a formal specification or
observed during the testing.

Statistical Testing Based on Structural and
Functional Criteria

Pascale Thevenod-Fosse

Statistical testing is based on a probabilistic generation of test patterns:
structural or functional criteria serve as guides for defining an input profile
and a test size. The method is intended to compensate for the imperfect
connection of criteria with software faults, and should not be confused with
random testing, a blind approach that uses a uniform profile over the input
domain. After a brief description of the approach, the talk focused on ex-
perimental results involving safety-critical software from various application
domains: avionics, civil and military nuclear field. In most of the exper-
iments, mutation analysis was used to assess the error detection power of
various test patterns. First, we gave results related to procedural programs:
they show the best effectiveness of statistical testing in comparison to de-
terministic and random testing. Yet, a limitation of the statistical patterns
experimented on was their lack of adequacy with respect to faults related
to extremal/special cases, thus justifying the use of a mixed test strategy
involving both statistical and deterministic test sets. Such a mixed strategy
has been defined for synchronous data flow programs. It may be applied at
either the unit or integration testing levels and has been experimented with
Lustre programs.

Exploiting Symmetry in Protocol Testing
Judi Romijn

Test generation and execution are often hampered by the large state
spaces of the systems involved. In automata (or transition system) based

21

test algorithms, taking advantage of symmetry in the behavior of specifica-
tion and implementation may substantially reduce the amount of tests. We
present a framework for describing and exploiting symmetries in black box
test derivation methods based on finite state machines (FSMs). An algo-
rithm is presented that, for a given symmetry relation on the traces of an
FSM, computes a sub-automaton that characterizes the FSM up to sym-
metry. This machinery is applied to Chow’s classical W-method for test
derivation. Finally, we focus on symmetries defined in terms of repeating
patterns.

Using static analysis to improve test
generation

Jean-Claude Fernandez

Distributed systems and more particularly telecommunication systems
are more and more complex. Thus formal specifications of such systems
become very hard to manage with automatic test generation tools and model
checkers. The model based approach for test generation suffers from the state
explosion problem. To cope with it, a promising way is to exploit statically
available informations about the specifications before to reason on a low level
model. This is justified by the fact that the control size part of a protocol is
generally very smaller than the data size part.

In this talk, I show how static analysis improves the automatic generation
process. Compiler for Formal Description Techniques (such a Lotos, Sdl)
built a simulator from a formal specification. We introduce in the compiler
chain an intermediate form (extended communicating automate) on which
are performed static analysis. Some of these analysis are implemented in a
tool connected with the verification tool Aldebaran and the test generator
Tgv. We have applied these techniques on a Sdl description of the Sscop
protocol:

• when we tried to generate the low level model, the generation process
was drastically limited to about 50 000 states.

• after automatic analysis of live variables, the model of the Sdl specifi-
cation was divided by more than 200.

22

