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This seminar was the third one on number theoretical algorithms at Dagstuhl over
the past 7 years. A major goal was always to bring together number theorists who
develop the theory for efficient algorithms and people writing the corresponding
software for applications. This year we had 42 participants from 13 countries.
In the last few years number theoretical applications to Coding Theory and Cryp-
tography have become more and more important. Hence, it was no surprise that
the majority of talks was on topics related to these applications. We would like
to mention:

e computations with elliptic curves over finite fields; several new and efficient
methods were presented; elliptic curve methods are currently under conside-
ration for becoming part of the new standard for public key cryptosystems;

e primality testing and proving, large primes being of importance for quite a
few cryptosystems;

e finite field algorithms, factorization of polynomials over finite fields; the
ability to do efficient computations in and with finite fields is a basis for
almost all algorithms applied in practice in the areas mentioned; factoring
methods for polynomials over finite fields were tremendously improved over
the last years;

e class group computations in global fields; since the usefulness of class groups
of quadratic number fields for cryptographical applications was demonstra-
ted, this has become a new area of research on a class of basic objects from
pure mathematics; as for now the constructive approach is still limited to
global fields of small degree.

In the other talks given a large variety of problems in algorithmic (algebraic)
number theory was treated as the reader will notice from the subsequent ab-
stracts.

For the organizers it was not easy to squeeze the large number of talks into one
week’s schedule. Fortunately, most of the talks were short, so that there was
still ample time for stimulating discussions. Of course, the special atmosphere of
Schlof3 Dagstuhl also contributed to a very productive meeting.
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1 Arithmetic of modular curves and applicati-
ons

Gerhard Frey, Institute for Experimental Mathematics, University
of Essen, Germany

The lecture gave a report on algorithms used to determine the space of cusp forms
with respect to the congruence subgroups I'g(/N) as Hecke-ring module with Ga-
lois action. The relation with geometric-arithmetic objects like modular curves
Xo(N), their Jacobians Jy(/V) and corresponding L—series was explained.

The main algorithm uses Manin’s theory of modular symbols. It can be used
to determine simple factors of Jy(N) and to compute Fourier expansions of cusp
forms. Applications to modular elliptic curves are the computation of the mo-
dular degree which is closely related to the ABC—conjecture and the finding of
elliptic curves with Galois-isomorphic torsion structures.

The period matrix of Jo(N) resp. of its factors can be computed with high preci-
sion and so (using results of Weber, Mumford, Poor and Mestre) the equation of
hyperelliptic curves defined over () with real multiplication can be determined.
Finally we presented results of Ch. Hahne who used Arakelov intersection theory
to compute the Néron-Tate height on the Jacobian of these hyperelliptic curves
and, by using the conditional algorithm of Manin, is able to compute a base of
their Mordell-Weil group .

(For more details cf. G.Frey, M. Miiller: Arithmetic of modular Curves and ap-
plications, preprint No. 20 (1998) IEM.,Essen.)

2 Primality proving and modular curves

Francois Morain, LIX - Palaiseau Ecole Polytechnique, France

One of the problems encoutnered in implementing the Elliptic Curve Primality
Proving algorithm is that of building the reduction of an elliptic curve £ defined
over the Hilbert Class Field Ky of the imaginary quadratic field Q(v/—D), D > 0.
More precisely, if p is a rational prime that splits in Ky (which is equivalent to
4p = U? + DV? in rational integers U and V'), there exists a curve E/F, such
that #F = p+ 1 — U. There is a sign ambiguity on U, that can be solved using



a variety of methods: Here we show how to solve the problem when 3|D, using
the class invariant (n(z/3)/n(z))'? which is connected to X(3). Similar resulsts
on class invariants are also given for each N for which Xy(/N) has genus 0.

3 On JMx-representations of integers

Attila Pethd, Debrecen, Hungary

The talk is based on a joint paper with J. Demetrovics and L. Rényai, which is
submitted for publication to Acta Cybernetica.
Let n be a non-zero integer. The representations

ll
n=> d2, di=-1,01i=1,....03 d =1,
=0

are called +1-representation of n. This representation is not at all unique. Con-
sider for example n = (1100)*1. Then replacing ¢ (0 < ¢ < k) blocks of form 1100
with the block (—1)010 we obtain 2% different 4-1-representations of the same
length of n.

We call a +1-representation optimal, if I' + Y\, |d;| is minimal among the #1-
representations of n. The aim of our talk was to prove the following theorem:

Theorem There exists an algorithm which computes an optimal +1-represen-
tation of the integer n in O(log|n|) additions and comparisons.

In order to prove our theorem we associate to the integer n an infinite, bipartite,
directed, acyclic graph G(n) such that the +1-representations of n correspond to
suitable directed paths in G(n). Next we establish that to find an optimal +1-
representation it suffices to consider a subgraph of G(n) having at most 2log, n+
5 nodes. Our problem is actually equivalent to a single source shortest paths
problem in this graph, which can be solved fast using a variant of the well known
Dijkstra algorithm.

4 Computation of Galois groups

Katharina Geif}ler, TU-Berlin, Germany



We present an extended version of the method of Stauduhar, which in particular
allows us to compute more efficiently Galois groups of higher degrees, e.g. Galois
groups of univariate polynomials f over the rationals up to degree 15. This algo-
rithm combines the relative resolvent method with the computation of subfields
of algebraic number fields Q(«), with f(a) = 0. The extension of Stauduhar’s
method can be realized for imprimitive transitive permutation groups:

(i) By Krasner’s and Kaloujnine’s theorem a transitive imprimitive permuta-
tion group with a block system, which consists of m blocks of length [,
can be embedded in a wreath product of the form S;15,,. We arrive at
this information in the algorithm by computing subfields Q(«) of degree
m, which are in bijection with the blocks B of length [ of Gal(f, Q) which
contain a.

(ii) Let g be the minimal polynomial generating a subfield of Q(«a) of degree
m. The operation of Gal(f, Q) on the Blocks B of length [ which contain
« is equivalent to the operation of Gal(g, Q) on the roots of g.

That means Gal(f,Q) < S;1Gal(g,Q) < S; 1S

With this additional information we can change the starting point in Stauduhar’s
algorithm to get as close as possible to the actual Galois group. This tends to be
very time saving, because we can always skip the first step (or even all steps) of the
algorithm. Moreover we describe our implementation and give some experimental
results for irreducible polynomials of degree 14 and 15.

5 Constructive Classfield Theory

Claus Fieker, TU-Berlin, Germany

Essentially based on the proof of the existence theorem of Class Field theory (e.g.
as in Serge Lang’s Number Theory) and using explicit versions of the Artin map,
we demonstrate how to compute (defining equations for) Class Fields.

More precisely: Given k/Q) a numberfield, a module m and an ideal group P, <
H < H™ we will compute K/k s.t. Gal(K/k) = I"™/H. This is done in two
steps: First, construct £ = k({) with a suitable root of unity (. Then, using
Kummer theory and S-units, build a large field G known to contain F' the Class
Field corresponding to N E}k(H )E*. Using explicit representations for Gal(G/E)
and the Artin map a +— (a, G/FE) we obtain a Kummer generator for F'/E.



In a second step we start by computing Gal(F'/k). Since this is an abelian group,
we can again use the Artin map to find Fix(K) < Gal(F/k), the group fixing K.
Using elementary Galois theory it is now an easy task to construct a primitive
element [ for K/k.

6 The Class Numer One Problem for some Non-
Abelian Normal CM-Fields

Michel Olivier, Universite Bordeaux I, France

Joint work with S. Louboutin and R. Okazaki.

After the work of K. Uchida, H. M. Stark, A. M. Odlyzko, J. Hoffstein and al.
we know that there exist only finitely many normal CM-fields with class number
one. K. Yamamura (1994) have computed all the imaginary abelian number fields
with class number one.

In the first part of the talk, we give a survey of the known results for the class
number one problem for the non-abelian normal CM-fields. This problem is now
solved for degree 8, 12, 16, 20 (partial result), 24 (partial result) (the only possible
degrees up to 26).

In the second part, we deal as an example with the degree 12 case. We prove
that there are exactly 16 non-abelian normal CM-fields of degree 12 with relative
class number one (all are dihedral) ; exactly 9 out of them have class number
one.

For details, see Trans. Am. Soc., 349, 1997, p. 3657-3678.

7 Power Integral Bases in Algebraic Number
Fields

Istvan Gaal, Debrecen, Hungary

Let K be an algebraic number field of degree n with ring of integers Zy. It is
a classical problem in algebraic number theory to decide if K admits a power
integer basis, that is an integer basis of the form {1,a,...,a" 1}
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If {1,ws,...,wy} is any integer basis of K, then Dy q(Xows + ... + Xpw,) =
(I(Xs,...,X,))?Dg where I(X,,...,X,) is the index form corresponding to
the above integer basis and Dy is the discriminant of K. The element a@ =
1+ weko + ... + wnx, € Zk generates a power integral basis if and only if

I(zg,...,x,) = £1.

Hence the problem of determining power integral bases can be reduced to the
resolution of the above index form equation.

The talks gives a survey of the algorithms for solving index form equations in
different types of number fields, including also some recent developments.

There are efficient algorithms for lower degree number fields (cubic, quartic).
Using the enumeration method of Wildanger it became now possible to solve
index form equations in any quintic fields (I.Gadl and K.Gyéry, 1998).

In the case of sextic fields, the problem is solved for fields with a quadratic subfield
(I.Gadl and M.Pohst 1997).

Recently we succeded to solve index form equations in octic fields with a quadratic
subfield (I.Gaél and M.Pohst 1998). In this case an essential role was played by
a new algorithm for solving relative Thue equations (I.Gaédl and M.Pohst 1998)
based also on Wildanger’s method.

We also obtained results for some higher degree fields which are composits of
subfields, for example for fields of degree nine with cubic subfields (I.Gadl 1998).

8 Efficient elliptic curve exponentiation

Henri Cohen, Universite Bordeaux I, France

joint work together with A. Miyaji and T. Ono

We give several new ideas for improving the efficiency of elliptic curve exponen-
tiation @) < N - P over a large prime field.

e The use of modified Jacobian coordinates (x, vy, z, az*) where the affine equation
of the curve is y*> = 2% + ax + b and the point is (z/2%,y/2%). This is the fastest
possible method for doubling on the curve.

e The use of a mixed coordinate strategy: use modified Jacobian for repeated
doublings (most of the time), but use Jacobian mixed with affine for additions
(fastest possible), with initial precomputed points in affine coordinates.

e The use of Montgomery’s trick for the precomputed points in affine coordina-
tes. For example to compute P, 3P, 5P,....15P we compute in parallel using
Mongomery’s trick 2P, (3P,4P), (5P,7P,8P), (9P,11P,13P,15P).

8



e The use of special techniques for the initial Horner evaluation. For example,
instead of computing 64P in 6 doublings, we compute 4(15P + P) using 2 doub-
lings and one addition. This is efficient because the analysis shows that the initial
digit in Horner’s scheme is equal to 1 or to a small digit with high probability.
e We give a detailed analysis of the flexible window method. If the width is e bits
and N has n bits, the average number of doublings is n —e(e—1)/(2(e+ 1)), the
average number of addition/subtractions is n/(e+1)—(e—1)(e+2)/(2(e+1)?) (in
addition to the initial computations which are done differently), and the average
gain obtained from the clever initial Horner evaluation is (e + 3e — 6)/(2¢ + 2)
doublings minus e/(e + 1) addition/subtractions.

All together, on a cryptographic range application (n = 256, e = 5, 256 bit prime
field) the gain is around 20%.

9 On some recent computations

Franz Lemmermeyer, Universitat des Saarlandes, Germany

1. In order to make the well known connection between Selmer groups of elliptic
curves and 2-class groups of cubic number fields more explicit, we started studying
connections between the rank of the elliptic curve and the 2-rank of cubic number
fields. Combining proofs of Billing and Cassels, we can show that the ranks ry
of By, : y* = 28 — k, k 2 £1mod 9 cubefree and odd, satisfy the inequality
T + 17— < 2R+ 1, where R denotes the rank of the 2-class group of Q( W)

2. We reported on progress concerning the classification of complex quadratic
number fields whose 2-class fields have 2-class groups of rank 2.

3. Finally we presented results on the computation of totally real cubic fields
that are norm-Euclidean (in the range 0 < disc X' < 13,000) or Euclidean with
respect to some weighted norm (with 0 < disc K < 8,000).

10 Isomorphisms between Artin-Schreier Towers

Jean-Marc Couveignes, Université de Toulouse II, France

Let F, be a finite field with ¢ = p? elements. Let L, be an extension of degree
p" of F,, given as a tower



L,D>L,1D>..D2L DLy=F, (1)

of non-trivial Artin-Schreier extensions each defined by

Liy1 = Ly(2p41) with 2}, | — 2541 — ax = 0 and ax € Ly,

Artin-Schreier towers naturally arise in computational algebraic geometry. In
particular, let G = Gal(F,/F,) be the absolute Galois group of F,. Morphisms
between abelian varieties A and B defined over F, induce G-morphisms between
the Tate modules 7,(A) and 7,(B). Assume the p-torsion of A and B is defined
over F,. One can easily show that the definition field Ly of the p**!-torsion of
A is an extension of Ly = F, with degree dividing p*. Similarly the definition
field Mj, of the p**!-torsion of B is an extension of My = Ly = F, with degree
dividing p*.

Assuming the existence of an isogeny between A and B with prime to p degree,
the fields L; and M) are isomorphic. These fields can be constructed by taking
successive preimages of a p-torsion point by separable isogenies of degree p. Thus
they naturally come as Artin-Schreier towers. In the case of non-supersingular
elliptic curves, such isogenies are described in terms of Hasse functions. If we
are looking for an isogeny with a given prime to p degree between A and B, we
can compute it by interpolation at enough p*-torsion points. This reduces to
computing an isomorphism between the Artin-Schreier towers we have on each
side. This method is of special interest for computing the cardinality of ordinary
elliptic curves with the Schoof-Elkies-Atkin algorithm. In a previous work, the
fastest known algorithm for this purpose is given, assuming the characteristic p
is fixed.

We prove that an isomorphism between two Artin-Schreier towers of degree p"
can be computed in time essentially linear in p".

Our algorithm relies on an iterative approximation process with respect to the
following “distance”. If «, § € L,, we define the écart d(a, ) to be the logarithm
(with base p) of the degree of the extension F,(a—3)/F,. The triangle inequality
is easily checked. Note that d is not a distance since d(«, 3) = 0 if and only if
a—Fisin F,.

11 Elliptic Curves and Discrete Logarithms

Hans-Georg Riick, Institut fur Experimentelle Mathematik, Univer-
sitait GH Essen, Germany

joint work together with G. Frey and M. Miiller
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In each group G the “exponentiation” Q = n-P (n € N, P € G) can be performed
in O(logn) steps. Groups are useful for cryptographic reasons, if the inverse
operation, the “discrete logarithm” n = logp @ (P,Q € G), is not a polynomial
time or subexponential time algorithm.

In this talk we considered the group G = E(F}),,, the m-torsion group of F-
rational points on an elliptic curve £ over the finite field Fj,. We explained that
the discrete logarithm in E(F}),, can be reduced in O(logm) steps to the discrete
logarithm in £} or Fy (which can be solved in subexponential or polynomial time)
by the Tate pairing in the cases that ¢ = 1 mod m or m = char(F,). Hence these
two cases should be avoided at the design of a cryptosystem.

12 A Sequentiell Implementation of the Black-
Box Niederreiter Algorithm for Factoring Po-
lynomials over the Binary Field

Markus Holder, Institut fiir Experimentelle Mathematik, Univer-
sitdt GH Essen, Germany

joint work together with P. Fleischmann, Peter Roelse

We describe an implementation of Niederreiter’s polynomial factorization algo-
rithm using Wiedemann’s method to solve linear equations.

The requirement for the application of Wiedemann’s method is a fast perfor-
mance of the product matrix - vector. For the Niederreiter matrix this can be
accomplished using fast polynomial arithmetic.

The main advantage of the algorithm is the low memory requirement (only O(n)).
Therefore with our sequentiell implementation we are able to factor high degree
polynomials over F, on a single workstation. Of course, this implementation
doesn’t beat existing parallel implementations as for instance the one of Peter
Roelse.

An important future direction will be the parallelization of the algorithm using
Block-Wiedemann or Block-Lanczos ideas.

11



13 Average—case Analyses of a class of Eucli-
dean algorithms. Dynamical mehods and
functional analysis

Brigitte Vallée, Université de Caen, France

We provide here a complete average—case analysis of seven Euclidean algorithms;
some of thencan be used for computing the Jacobi symbol. We analyse the
average number of steps used for each ofthe algorithms on integers less than N.
We exhibit two different kinds of behaviour: some of these algorithms are “fast”,
and the average number of steps is shown to be asymptotic to Alog N, whereas
others algorithms are “slow”, and the average number of steps is shown to be
asymptotic to Blog? N.

Some of these results are well-known, whereas the analysis of the Binary GCD
[Vallée98] or the analyses of three algorithms for the Jacobi symbol [Vallée,
Lemée98] are new. However, we present a general method which unifies all the
analyses. This method uses quite varied tools: generating functions, Ruelle ope-
rators , Tauberian methods, functional analysis. First, we use classical tools in
the average—case analysis of algorithms: we introduce the generating functions re-
lated to the parameters to be analyzed; as is usual in the context of computational
number theory, these generating functions are Dirichlet series. Second, we prove
that these generating functions are closely linked to some operators associated to
the algorithms. These operators contain all the information on the dynamics of
the algorithm. In the context of dynamical systems, they are called the Ruelle
operators relative to the system. More precisely, the generating functions involve
the quasi-inverse operator (I — H,)™!, and the expectations to be studied are
partial sums of coefficients of these Dirichlet series, so the main results of the
paper will come from the application of Tauberian Theorems, provided that they
can be applied. This will be the case as soon as the operator H, when acting in
a suitable Banach space has a “spectral gap”, i.e., a unique dominant eigenvalue
separated from the remainder of the spectrum by a gap. When acting on suitable
spaces of holomorphic functions, the operator Hy is proven to be compact and
positive (in the sense of Krasnoselsky) for real values of parameter s, and then
it has a spectral gap. Since Tauberian theorems link the asymptotics of coeffi-
cients to the dominant singularity of the function, the constants A; involve the
dominant singularity of the quasi-inverse (I — H,)™!, i.e. the dominant spectral
objects of the Ruelle operator H,. These dominant spectral objects are explicit
in some cases, but, for other algorithms, they do not seem be related to other
classical constants.
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14 An LLL algorithm for totally positive latti-
ces over number fields

Alexander Schiemann, Universitat des Saarlandes, Germany

Let F' be a totally real number field, ' a quadratic extension and V an n-dim-
ensional E-space with totally positive hermitian form h, i.e. T := trg;goh
is positive definite. An Og-lattice L in V has a representation L = Y }' ajz;
with fractional ideals a; which is called a pseudo-base. Starting with such a base
we want to find another one with small T'(x;, z;) and ideals that are reduced in
some sense. It turns out that the conditions given below can be matched by
an algorithm very similar to the LLL for Z-lattices and that they imply similar
bounds for the quality of the result. This is an advantage compared to LLL-
versions suggested by Fieker in a more general context.

For L = 7", ayx; let p; denote the orthogonal projection on (Zf;% Ex))*, xl
pi(x;). Let Ly = 1_, ayz; and for a discrete set L' let pp(L') := min{T(z, z)
x e L'\ {0}}.

The pseudo-base is called (k, g, ¢1)-reduced (for constants ¢, ¢; subject to 0 < ¢ <
1,0 < ¢ <1 and “blocksize” k € {2,...,n}) iff

1.Vi=1,....n: a; 2O
2. Vi=1,...,n with b(i) :=min(n,i+k—1):
q T(x7, 27) < pr(pi(Lip)))
3.V1i<j<i<n:
¢ T(ps(wi) , pj() < pr(p;({wi + az; | a € ai'a;})).
By translating everything back to Z-lattices we can prove:

_ m/2
o Npjglai) < (22)"7 | dgl'?,
where m = [E : Q)] and 7, is Hermite’s constant.

o T(af,a7) < CyT(xjyy, 27y,) with Oy = (W—M)Q | dg[*m.

R qam
o T(wy,m1) <q tCY ' ur(L).

e There is a positive constant Cy(i) not depending on L or T such that
T(zi,x;) < Co(i) T'(xf, ).

777

An implementation of this algorithm for complex quadratic fields showed much
better results than any other method we tried.
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15 Numerical verification of the conjecture of
Ankeny, Artin, and Chowla for the primes
11
< XU

Herman te Riele, CWI Amsterdam, Netherlands

joint work together with Hugh Williams

Let p = 1mod 4 be a prime. The Ankeny-Artin-Chowla (AAC) Conjecture
asserts that if the fundamental unit € of Q(/p) is given by (x + y,/p)/2, then
pAy.

If k € N is such that (p,k) =1 and if € = (X +Y/p)/2, X,Y € Z, then
plY < ply. Our strategy is to estimate a value log, €" where h is the class number
of Q(,/p) and use this to determine a value n € Z (defined in the paper) which
has the property that p|n < p|Y. For this estimate, we make use of the analytic
class number formula: 2hloge = /pL(1,x,); let R :=log,e.

Global algorithm

1. Find an estimate of hR by estimating L(1, x,);

2. from this, find the value of AR which is accurate to within machine accuracy,
by using Shanks’ baby-giant step algorithm, and check that hR < 8p (which
ensures that ged(p, h) = 1);

3. compute n = n(hR) and verify n(hR) # 0 mod p.

So far, the AAC conjecture was verified for all the primes = 1 mod 4 less than 10°
by Stephens and Williams (Math. Comp. 50(1988)619-632). We have confirmed
now the truth of the AAC conjecture for all the primes = 1 mod 4 between 10°
and 10'. The above algorithm was implemented in Fortran 77 and tested and
run on a workstation supporting 64-bit arithmetic, which was very helpful in
view of the size of the primes for which we wanted to verify the AAC conjecture.
Computing times were 250 and 700 CPU hours on an SGI O2 workstation and
on one processor of an SGI Origin 2000, respectively, for intervals of primes of
length 8 x 10° and 91 x 10%, respectively.
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16 Zeroes of Eisenstein series

Ernst-Ulrich Gekeler, Universitat des Saarlandes, Saarbriicken, Ger-
many

Let Ej(z) = const. —
a%;Z (az + b)k

k, normalized such that its Fourier expansion has constant term 1: E, =1 + Z anq".
n>1

Then the a,, are rational, and Ej can be calculated as Ey, = Ay (Ey, Fg) with some

isobaric polynomial Ay € Q[X,Y] of weight k. A, may be determined through

a complicated recursion that comes from the functional equation of Weierstrafl

p-functions.

Fix a prime p > 5 and put

pp(X) = II(X —j) € QX],
where j runs through the j-values # 0,1728 of zeroes of E, ;. It is known
(Rankin, Swinnerton-Dyer) that these are real and satisfy 0 < j < 1728. The
polynomial ¢, is a one-variable dehomogenized version of A,_1(X,Y), deprived
from its “trivial” zeroes. It has p-integral coefficients, and
P(X) = II € Fp[X],

J€Fp
j supersingular, #0,1728

(k > 4 even) be the Eisenstein series of weight

denoting reduction (mod p) by ( ~ ). Hence the j-zeroes of E,_; provide “cano-
nical” lifts of supersingular invariants to characteristic zero.

Based on numerical evidence for small primes p (p < 107) and from the analogous
function field setting (where a part of the following may be proved: joint work
with G. Cornelissen), we conjecture:

(i) ¢, is always irreducible

(ii) the Galois group of ¢, is always the full symmetric group.

We further observe a very strong divisibility pattern of the discriminant disc(¢,)
by the primes [ < p%l, for which we presently have no explanation.

17 The Mordell-Weil group of elliptic curves over
number fields

Susanne Schmitt, Universitat Saarbriicken, Germany

15



The Mordell-Weil group of an elliptic curve over a number field forms a finitely
generated abelian group. I described an algorithm with which in theory one can
determine this group.

The computation of the torsion group is done by first estimating the number
of torsion points and then computing the torsion points by means of division
polynomials.

For computing the rank of elliptic curves, there are two methods: descent methods
and the conjecture of Birch and Swinnerton-Dyer. These methods led to several
implementations of algorithms for elliptic curves over the rational numbers. Up
to now, there was only one general algorithm which determines the rank of elliptic
curves over number fields. This was done by Pascale Serf. She implemented 2-
descent for real quadratic number fields with class number one. Since it doesn’t
seem possible to extend her methods any further, my aim was to give an algorithm
which is based on the conjecture of Birch and Swinnerton-Dyer. I developed a
conditional algorithm which computes the rank of elliptic curves over number
fields. If one assumes that one has enough time and space, this algorithm has no
restriction on the number field.

For the computation of a basis of an elliptic curve over number fields, I first
search for a subgroup of full rank. Then I use a theorem of S. Siksek to estimate
the index of this group in the whole group. With this estimate, it is possible to
compute a basis.

I am working on the implementation of this algorithm for elliptic curves over
quadratic number fields in the computer algebra system SIMATH.

18 Bases of Cyclotomic Units

Marc Conrad, Universitat Saarbriicken, Germany

For n € N let ¢, = e =" with (a,n) = 1 a primitive n-th root of unity and
D™ the multiplicative group generated by elements of the form 1 — €& with
k # 0 mod n modulo unit roots. The group of cyclotomic units is defined as
C™ = (Z]e,]*/(£e,)) N D™, Our aim is to construct a basis of C™.

Let M be a free module with an involution o and M, = M/ kery/(1+ o). For an
ordered indexing set A we introduce a system of triples (Mg, 4, n4)4en, Where
M, is a module, &; C M, and ng : &4 — @4 M; is a mapping for each d € A.
Such a system defines a module

L= (P M)/ > (r+mnar); r € &)

deA deA

16



which we call the combination of the system. We show how to construct a basis
of £, using special bases, the so called weak o-bases of the modules My/(E,).
For well chosen input parameters A, My, £; and ng; we obtain as combination
a module £(n) for which an isomorphism £(n); = D® holds. This leads to
a basis for D™ which can be easily modified to a basis for C™. Moreover we
obtain a basis B,, for C™ such that B; C B,, whenever d|n. This leads obviously
to a basis of UyenC@. Finally some other applications of these methods are
discussed: The explicit construction of relations in C™ and similar results for
the Stickelberger ideal as for the group of cyclotomic units.

19 Numerical Construction of Class Fields by
Elliptic Functions

Reinhard Scherz, Institut fiir Mathematik der Universitat Augs-
burg, Germany

From complex multiplication we know that the Hilbert class field H of an imagi-
nary quadratic number field K can be generated by the modular invariant j(O)
of its ring of integers O. However these generators are not very suitable for nume-
rical purposes because the coefficients of their minimal polynomials are extremly
high.

By Kronecker’s limit formula it is suggested to consider units of the form
.— _A(d)A(a)
€(a) = xEaior
where A denotes the discriminant from the theory of elliptic functions and a an

ideal of O. It has been shown that apart from trivial exceptions the Hilbert class
field can always be generated by a 24-th root of a suitable number €(a) and it
turns out that their minimal polynomials have rather small coefficients.

A similar result is obtained for ray class fields using values of the type

S0£f<|56\lol>>’ (EK
where ¢ is a suitably normalized o-function.
Literatur
Reinhard Schertz, Construction of Ray Class Fields by Elliptic Units, Journal de
Théorie des Nombres de Bordeaux 9 (1977), 383-394.

Reinhard Schertz, Lower Powers of Elliptic Units, preprint.
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20 Actual Computation of Units by the Cyclo-
Elliptic Method (CEM)

Ken Nakamula, Tokyo Metropolitan University, Japan

Review of the CEM:

For the quadratic field of discriminant 229, we explain the process of computation
by the CEM that the class number is 3 and the minimal polynomial of the
fundamental unit is X2 — 15X — 1.

Data by the CEM:

Existing printed tables by the CEM are listed. It is noticed that the table for
quintic cyclic fields appeared only recently in 1998. We restarted a project to
make an electronical database by the CEM, which will be put in

ftp://ftp.math.metro-u.ac.jp/tnt/cem/*

from now on. The cases done are computed by PARI/GP. The cases to be done
are also announced.
Problems:

1. In PARI/GP, does the program, which computes the class group and the
unit by McCurley’s subexponential algorithm, applies to the case of non-
fundamental discriminant?

2. We encountered to solove the diopantine equation a? — b*d = n for a very
small d < —10° and exceedingly large n > 100,

3. In the elliptic case, we should find out a good algorithm to determine the
conductors of subgroups of a class group of an imaginary quadratic field.
This task is theoretically possible, but still several technical problems should
be solved.

4. Special investigation is necessary for each case to obtain sharp upper bounds
of the unit indices occuring in the class number formula. In particular, we
must study the case of cyclic quintic extensions of an imaginary quadratic

field.

21 Efficient exponentiation in finite fields

Joachim von zur Gathen, Universitat-GH Paderborn, Germany
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Interest in the problem of the title comes from cryptography. Recent progress is
based on choosing appropriate data structures for an extension of a finite field
such as F5.

The basic tool for one type of algorithms are Gauf3 periods. We show that
one can combine this with fast polynomial arithmetic, and generalize these Gaufl
periods to extend their range of application.

22 Distribution of residues of exponential func-
tions and algorithms

Igor Shparlinski, School of Mathematics, Physics, Computing and
Electronics, Macquarie University, Australia

joint work together with Sergei Konyagin

In this talk we consider various questions related to the distribution of integer
powers g of some integer g > 1 modulo a prime number p with ged(g,p) = 1.
Possible algorithmic applications where such results play a central role include
but are not limited to linear congruential pseudo-random number generators, al-
gebraic number theory, finite fields, sorting algorithms, cryptography, and coding
theory.

23 Divisors in Residue Classes, Constructively

Don Coppersmith, IBM Research, Yorktown Heights, NY, USA
joint work together with N. Howgrave-Graham

Let r, s,n be integers satisfying 0 <r < s <mn, s >n% a > 1/4, and ged(r, s) =
1. Hendrik Lenstra showed that the number of integer divisors of n equivalent

tor (mod s) is upper bounded by O((ar — 1/4)72). We show how to construct
all such divisors in polynomial time, and incidentally we improve the bound to

19



O((a — 1/4)7%2).  We do this by formulating a related polynomial problem,
linearizing, and using lattice basis reduction techniques.

24 Efficient Computation of Minimal Polynomi-
als of Extensions of Finite Fields

Victor Shoup, IBM Research Laboratory, Ruschlikon, Switzerland

New algorithms are presented for computing the minimal polynomial over a finite
field K of a given element in an algebraic extension of K of the form Kla] or
K[a][B]. The new algorithms are explicit and can be implemented rather easily
in terms of polynomial multiplication, and are much more efficient than other
algorithms in the literature.

25 New Permutation Polynomials and Applica-
tions

Hans Dobbertin, BSI Bonn, Germany

We present a new systematic technique to prove that certain polynomials over
GF(2) are permutation polynomials (pp’s) on GF(2"). This method requires
extensive algebraic computations, which can only be made with the help of com-
puter algebra. A key step is the factorization of multivariate polynomials over
GF(2). In this way we find new pp’s and new proof for known pp’s. Two classes
of these new pp’s are important ingredients to confirm long-standing conjectures
of Welch and Niho on exponential sums. There are also various applications on
correlation properties of sequences and on difference sets.
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26 On some elliptic surfaces and elliptic curves
related to discriminants of cubic or quartic
polynomials

Franck, Leprévost, Université Paris 7, France and Technische Uni-
versitat Berlin, Germany

On some elliptic surfaces and elliptic curves related to discriminants of cubic or
quartic polynomials

We associate to each discriminant ¢ # 0 of a polynomial of degree n > 1 an elliptic
curve F;. For each polynomial of degree n = 3,4, we construct a rational point
on F;(Q) which is generically non torsion. For n = 4, we prove that £, ~ C,
where C' is the cubic associated by Gaal, Petho and Pohst to each quartic field.
They also constructed a surface S connected to the cubic C'. We compute the
Kodaira dimension and the dimension of the Albanese variety of S and specify
the class to which S belongs in the classification of algebraic surfaces. We also
answer a question of Petho, and give statistical results, which were obtained in a
joined work with S. Fermigier and C. Fieker.

These results are the subject of the following articles to appear in the Journal of
Number Theory:

Sur certaines surfaces elliptiques et courbes elliptiques de Mordell de rang non-
nul associées a des discriminants de polynomes cubiques ou quartiques.

F. Leprévost.

Appendice : quelques données statistiques.
S. Fermigier, F. Leprévost, Claus Fieker.

27 Ten Topics in computational number theory

Dan J. Bernstein, The University of Illinois at Chicago, USA

1. Fast Fourier Transforms

2. Dividing power series
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3. Exponentiating power series
4. Enumerating primes

5. Bounding smooth integers
Smooth polynomial values
Square products

Pomerance’s conjecture

S

Estimating transition time

10. Estimating factorization time

28 Explicit Galois realization of transitive groups
of degree up to 15

Jiirgen Kliiners, Universitat Heidelberg, Germany

Until now, the inverse problem of Galois theory, i.e., the question whether every
finite group occurs as the Galois group of a field extension of (), has not been
solved. Even less is known in the direction of explicit results. Complete results
for permutation groups of small degree were until now only known in degrees
up to eleven. We encounter two types of problems. First, as mentioned above,
not all the groups in the range were even theoretically known to occur as Galois
groups over (). Secondly, there arises the practical problem how to come from
theoretical existence results to explicit polynomials. An important tool in the
constructions is a Galois group program which also yields the correct ordering of
the roots, as provided by the computer algebra system Kant.

For all transitive groups up to degree 15 we compute a polynomial f € Q[z] with
Gal(f) = G. We present different methods which allows us to realize nearly all
of these groups. The few remaining cases are already studied in the literature or
we give special solutions. Since complete tables are known up to degree 11, we
specially look at transitive groups of degree 12-15. Most of the presented methods
are independent of the ground field, but explicit computations have only been
done for the ground field Q.

For nearly all transitive groups up to degree 15 we give a method to construct a
polynomial over (). These methods are suitable to construct regular extensions
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of Q(t) with prescribed Galois group, too. We discuss the remaining cases and
prove that there exist regular extensions of Q(t) for these groups. Altogether we
prove that for all transitive groups G up to degree 15 there exists a polynomial
f € Q(t)[z] such that Gal(f) = G and the extension is regular.

This result is a joint work with G. Malle.

29 Function fields with a totally ramified prime
at infinity

Sachar Paulus, KOBIL Computer GmbH, Worms, Germany

joint work together with S. D. Galbraith and N. P. Smart

The arithmetical situation in imaginary quadratic number fields is very special;
we can observe there a behaviour which is very useful from a computational point
of view. The most important property is the existence of a reduction theory which
allows to compute for a given ideal a unique equivalent ideal. Thus, the whole
arithmetic in such a field can be controlled. It is a major task to discover similar
cases for other fields to understand the reason for this behaviour.

In the early 20s, Artin showed that exactly the same behaviour can be observed in
imaginary quadratic function fields. More recently, the arithmetical connection
between real and imaginary quadratic function fields was discovered bz Pau-
lus/R”uck. The situation in function fields is very similar to the situation in
number fields, except the fact that the splitting behaviour at infinity has some
"freedom”, i.e. depends on the chosen model. It was conjectured that the exi-
stence of a reduction theory is connected to the infinite prime being totally ra-
mified (a case which, for number fields, does only occur for imaginarey quadratic
fields).

In this talk, we present our results concerning arithmetic in function fields of
arbitrary degree whose infinite prime is totally ramified. Is shows that not only
there exists a unique ideal in every ideal class of smallest degree, but also a
practical polynomial time reduction algorithm which is a natural generalization
of Cantors algorithm in the imaginary qudratic case. Moreover, we present an
analogue of the Number Field Sieve following Adleman, DeMarrais, Huang to
solve problems in the ideal class group in subexponential time.

A further consequence of the infinite prime being totally ramified is that the ideal
class group is a very handy presentation of the divisor class group of the certain
curve. The resulting algorithms are independent of the field of constants and
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thus also interesting for arithmetic algebraic geometry.
A full paper can be found on
http://www.informatik.tu-darmstadt.de/TI/reports

30 Chabauty and Covering Techniques

E. Victor Flynn, Liverpool, Great Britain

Given a curve C' of genus greater than 1, defined over a number field K, we
consider the problem of trying to compute C'(K), the set of K-rational points on
C'. When the Jacobian group J(K') has rank less than the genus of C', then there is
a classical theorem of Chabauty, which guarantees that C'(K) is finite. Recently,
this has been developed as a practical technique, using explicit equations for the
formal logarithm on the Jacobian, and explicit embeddings of C into J. This has
led to the recent solution of several problems which can be rephrased in terms
of finding C'(K) for some curve C'; for example, the recent proof (Flynn, Poonen
and Schaefer) that no quadratics over () have a Q-rational 5-cycle.

The question then arises as to what can be done when J(K) has rank greater
than or equal to the genus of C. Falting’s Theorem still tells us that C(K)
is finite, but the current proofs of Falting’s Theorem give no real hope of a
practical technique. One avenue of attack is to try to find a collection of covering
curves Dy, ..., D, such that D;(K),..., D,(K) cover C(K), and then hope that
Chabauty’s Theorem is applicable to Dy, ..., D,,. One first chooses an Abelian
variety A (defined over K') such that there is an isogeny f (also defined over K)
from A to J. One also tries to choose embeddings C1,...,C,, of C into J such
that Dy, ..., D,, the pullbacks of Cj,...,C, to A under f, give Di(K), ..., D,(K)
as a cover of C'(K). This method of attack can be tried for any C, since there
is always available the choice A = J, with f taken to be a multiplication-by-m
map. In some cases, such as when C' is a bielliptic curve of genus 2, there are
other choices of A available. We describe several situations where this idea has
been developed into a practical technique (joint work with Joe Wetherell), and
several worked examples where this technique has been successfully applied to
specific curves.
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31 A kangaroo approach to function fields

Andreas Stein, Department of C & O, Waterloo, Canada

First, we compare optimized arithmetics in hyperelliptic function fields. Since
every imaginary quadratic function field can be represented as a real quadratic
function field over the same field of constants, it makes sense to consider the
real case as a generalization of the imaginary case. It turns out that the group
operation (multiply and reduce) in the imaginary case and the infrastructure ope-
ration (multiply and reduce) in the real case have precisely the same complexity.
Whereas the increment operation (baby step) is by a factor of approximately 4g
faster in the real case, where g denotes the genus of the hyperelliptic curve. This
means, as soon as baby steps apply effectively, one should use the arithmetic of
real quadratic function fields. For instance, one can easily verify that the baby
step giant step algorithm for computing class numbers and regulators is, asym-
ptotically, by a factor of 4¢ faster in the real case. The main idea of the this
algorithm is to approximate the divisor class number A of the function field via
truncated Euler products to obtain an estimate of the form

\h— E| < L?,

and then search for a multiple of the regulator R in the interval [E — L?, E + L?
by O(L) baby steps and giant steps. One clearly runs into space problems for
larger values of R, since one has to store theoretically O(L) = O(q*9~1/%) redu-
ced ideals. This suggests to apply less space-consuming methods for computing
invariants. Pollard’s lambda method (“the method of catching kangaroos”) fits
perfectly into this context, since one can make use of the techniques to generate
the interval [E — L?, E + L?]. This method generalizes to any algebraic function
field given a way to compute the group operation in its Jacobian. It is possi-
ble to generalize this method to number fields as well. Stein and Teske (1998)
showed how Pollard’s lambda method can be applied to compute invariants of
hyperelliptic function fields. On a computer with a single processor and enough
space, baby step giant step is expected to be the faster method. One advantage
of Pollard’s lambda method is that it is very space-efficient. In addition, van Oor-
schot and Wiener (1994) provided an efficient parallelization of this method with
linear speed-up. This parallelization and the improvements of Pollard (1998) can
be generalized to function fields in a similar way. Thus, if one has access to a
larger amount of computers and processors, these techniques provide us with an
efficient tool to compute larger values of invariants. We provide examples for 25
digits class numbers which could be computed in less than two hours with the

help of 40 SUN SPARC ULTRA 20.
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32 Uniform Distribution of Recurrence Sequences
Modulo Prime Powers

Tamas Herendi, Debrecen, Hungary

Some new results are developed for the examination of linear recurrences. If an
integer prime p and a linear recurrence sequence u, is given, then combining the
new results with old ones, an explicite ¢ is determined, such that if the recurrence
is uniformly distributed modp?, then it is uniformly distributed modp® for any
integer s, too.

33 Polynomial Factorization over (), via the Zas-
senhaus Round Four Algorithm

David Ford, Concordia University, Montreal

The worst case of the round four algorithm leads to a search of potential ex-
ponential length. Strategies are discussed to avoid this search by (i) examining
extended power series representations and (ii) Cantor-Zassenhaus techniques.

34 Polytopes and Polynomials

Shuhong Gao, Clemson University, USA

We study irreducibility and factorization of polynomials via their “shapes.” A
polynomial with n variables is associated with a polytope in the n-dimensional
Euclidean space, called its Newton polytope. When a polynomial factors, its poly-
tope decomposes in the sense of Minkowski sum of integral polytopes. We present
two general constructions of indecomposable polytopes, thus gives many infinite
families of absolutely irreducible polynomials over an arbitrary field. Eisenstein’s
criterion is a special case of our result. We also present a polytope method for
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factoring multivariate polynomials. Our method is most efficient for polynomials
whose Newton polytopes do not have many decompositions. Illustration is given
by an example.
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