Adaptation and Evolution in
Embedded | nfor mation Systems

November 02 - 06, 1998
SchlossDagstuhl, Wader n, Germany

Among the most significant tedhnological developments of the last two decales has
been the proliferation of embedded information systems (EISs). In EISs, functional,
performance and reliability requirements mandate atight integration of information
processing and physicd processes. EISs include awide range of applications, such as
computer-integrated manufaduring (CIM) systems, agospacesystems, computerized
vehicles, appliances, consumer eledronics equipment, and a wide variety of systems
in health care, transportation, defense, communicaion, power generation and
distribution. The rapid evolution of EISs has triggered paradigm shiftsin industry and
exerted a profound impad on engineering processes throughout the system life cycle,
from design through manufacduring, operation and maintenance This trend is clearly
demonstrated by the dramatic increase of the role and size of software in products.
For example, currently, over 60% of the development cost of aeospace systems is
software, but even an eledric shaver has over 16K bytes ftware.

The ultimate driver of this trend is the fad that incorporation of information
processing as an integral part of physical systems increases the potential interadions
among physical components and processes, generates complex dynamics, and
establishes component interdependencies unknown in previous-generation systems.
The tight integration of "physicd" and "information" processes represents major
challenges for the software technology. First of all, using Brook's terminology, the
"conceptual construct” of the software which represents its "essential complexity” is
inextricably combined with the anceptual construct of its "external environment”, i.e.
with the structure of physical processes. Consequently, the overall system behavior
can only be understood if information, material and energy transfer processes are
modeled and analyzed together. It means that software atifads need to be modeled
together "with their context”, using a modeling language - or modeling paradigm -
which is meaningful for the design, analysis and operation of the whole system.
Another well-known challenge in the design and implementation of EIS software
stems from the fact that it serves as a component in a larger, changing, heterogeneous
system. As aresult of this, the EIS software can not be static, it must change, evolve
together with its embedding environment. An additional challenge of EIS software
tedhnology is criticality. EIS software diredly impads the operation of physical
processes and failure may cause unaaceptable social or ecmnomic damage. Thus the
software technology must offer methods and tools for the formal verification and
validation of system level requirements, such as dependabil ity, safety and reliability.
This eminar intends to bring together leading reseachers from acalemia and
indwstry in the aess of embedded information systems, adaptive software
architedures and evolutionary design environments. The goal is to review state-of-
the-art and map future reseach diredions that help to answer challengesin EIS and to

investigate the potential of applying recent advances in the aforementioned fields. The
seminar will include the following topics:

1. Definition and charaderization of adaptive axd evolutionary embedded
systems.
* nedls
* charaderistics
o casestudies

2. Critical technology components
» self-adaptive software achitedure
» architedure-based evolution
* incremental, embeddable generators
* transient management

3. Design environments
» design abstractions, hybrid/heterogeneous modeling
» verification, correctnessby construction
* incremental design
* design optimization

Further information and presentation material are made avail able under
http://www.isis.vanderbilt.edwdagstuhi98

Hubertus Franke, Bernd Kleinjohann, Janos Sztipanovits

Formal Verification of Hybrid Systems
George J Pappas, U.C. Berkdey

One of the most important analysis problems of hybrid systems is the readabil ity
problem. State of the at computational tools perform readability computation for
timed automata, multirate aitomata, and rectangular automata. In this talk, we present
a new decidable class of linea hybrid systems, which are introduced as hybrid
systems with linea vedor fields in each discret locaion. This extension is important
given the agplicability of linear vedor fields in control systems. This result is
achieved by showing that any such hybrid system admits a finite bisimulation, and by
providing an algorithm that computes it using decision methods from mathematical
logic. Thisisjoint work with Gerardo Lafferiere, Shankar Sastry, and Sergio Y ovine

Complex embedded systems have meanwhile migrated into a wide range of
applicaion domains. They have aprofound impad on the performance of the systems
which they are part of because embedded systems control the information flow and
the manipulation of physica processs. The fad that information processing is now
an integral part of material systems rises fundamental problems related to the
interacion of physical components and of software-based system functionality.

My main points of interest in this minar are therefore:

1. Specification and validation methods of embedded system functionality

2. Interadion between system functions implemented in HW and SW

3. Engineaing processes for embedded systems under consideration of standard
components, multiprocessor architedures and operating systems.

M odel-I ntegrated Computing
Hubertus Franke, IBM T.J. Watson Research Center

One of the mos significant developments in the last decade has been the
proliferation of large-scde, complex computer integrated systems. In these systems,
functional, performance and reliability requirements mandate atight integration of
physical and aher processes with information processng. Important examples for
systems where embedded information technology is criticd for the overall system
performance are. manufaduring systems, vehicles from cars to agrospace systems,
patient management systems, transportation systems, weapon defense systems, and
power generation and distribution systems.

The increasing role of information technology in complex systems necesstates a
substantial change in the engineaing approad characterized by a shift from the
conventional “discipline” and “life-cycle” orientation to an integrated “product/domain
orientation”. This ift needs to be facilitated with new theories, methods, and tools to
accderate the progressin this important system category.

The practice of using models in the full lifecycle of computer-based systems has
been increasingly accepted. Multiple-aspect models are extensively used in requirement
speaficaion. Models are aeated and refined during design, and they are used in the
verification of the design. Systems engineeing tools use models for performance,
reliability and safety analysis. It is a genera trend that design-time models are
increasingly used during system operation for model-based monitoring, control and
diagnogtics.

The tight integration of "physical" and "information" processes makes the
application of a @mmon description of these processes not only pradicd but
mandatory. The common description means that software cmponents are modeled as
parts of the overall system, using concepts, relations and model structuring principles
that are meaningful for the design and analysis of the whole system. Since computer-
based systems are very multifarious, and software components play a rapidly increasing
role in their operation, the modeling paradigms offered by conventional programming
environments are not satisfadory. Typical programming environments support
hierarchical dructure and homogeneous decomposition which is far from the
heterogeneity and semantic richness of representations routinely used in many
engineaing domains. The dallenge is to adopt domain specific, established modeling
paradigms for representing software components, while preserving the @pability of
trand ating these model sinto exeautable code.

The long term goal of our reseach hes been the development of a broadly
applicable software tedhnology for the design and implementation of complex,
computer-integrated systems. The specific gpplications driving our reseach during
the past decade have been: (@) on-line problem-solving environments for chemical
plants, (b) fault detedion, isolation and rewvery (FDIR) systems for aeospace
systems, (c) red-time facility monitoring and signal analysis for propulsion system
teging, and (d) information systems for discrete manufaduring. Based on our
experience, the reaurring requirements in all these systems have been the tight
conceptual relationships between the computer applicaions and their environment,
the neeal for adapting the goplication/system to changing end-user requirements and
operating conditions, cost sensitivity, and the stringent reliability and dependabil ity
criteria of military and industrial applications. Often these system consist of various
subsystems that have to be integrated with each other and with external interfaces
(e.g. data aquisition, real-time databases, operator interfaces, etc.). This integration
processis often expensive and error prone.

Over the last 14 yeas Vanderbilt University has developed a framework based on
the model-integrated computing paradigm, called Multigraph Architedure. In model-
integrated computing, domain specific models are @nstructed for al aspeds of a
computer-based system, eg. information processing architedure, physicd
architedure, operating environment, as well as their interacions. The models srve
several purposes. (a) they formulate the entire knowledge of the system, (b) they are
used for system analysis, (c) they are used for generating exeautables and their
integration with the physicd system. System evolution is such limited to model
evolution. Imperative to this approad is the aility to define a domain specific
modeling paradigm fadlitated by domain specific tools, such as model editors, model
databases and system builders. The Multigraph Architedure provides a general
framework to specify modeling paradigms and to generate the aciated tools
automatically. The Multigraph Architedure has a proven successrerd in the aeas
of discrete and continuous manufaduring and real-time fault diagnosis. Examples of
domain specific systems installed are Monitoring and Control System at the DuPont
Chemicd Plant in Nashville and the Saturn car manufadure's site production flow
system.

Synthesis of Embedded Generators
Gaba Karsai, Vanderbilt University

The evolution of embedded information processing systems can be modeled as two,
inter-linked "process' loops. The "outer loop" involves the design process system
synthesis, evaluation, and redesign/resynthesis. The design to implementation
mapping, the synthesis can be performed using a model-integrated approad, i.e.
design can be expressed in terms of domain-specific models, and the system
automatically synthesized from them. The outer loop has time-constants
commensurate with the product's life cycle. In sophisticated systems there is an "inner
loop" as well, which proceals along the steps of synthesis, exeaution, evaluation, and
re-synthesis. This loop is responsible for the run-time adaptation of the system, and
just like the outer loop it can be implemented using model-integrated tedhniques. The
time oonstants of the inner loop are commensurate with the dynamic environment
where the system is placed in: we would exped a re-synthesis to take placepromptly
but without excesstransients in the system.

In both of the evolutionary/adaptive loops mentioned above a @ntral component is
the "generator” that transforms domain-specific models into exeautable entities. In the
"inner" or adaptive loop the generator has properties that are spedfic to embedded
systems. On one hand, it has to accessthe embedded models (which were generated
by the "outer" loop), and has to interpret them, i.e. assign meaning to them in terms of
a generic exeaution model. Thus the generator ads as a "model interpreter”. On the
other hand, it has to interfacewith an observer/monitor component that evaluates the
embedded system, and triggers a re-interpretation if circumstances mandate that. The
re-interpretation has to be performed within a required time period, and transients
should be managed. Note that the model interpreter is defined with resped to the
modeling language (the “paradigm”) used, and the exeaution environment, and they
change rather infrequently.

The hand coding of model interpreters is a rather tedious task, involving mundane
programming adivities. However, conceptually, the model interpretation process is
rather smple: it involves traversal of data structures (the models) and taking adions at
specific points in the traversal. This observation enables us to "model” the interpreter
in terms of "traversals’ and "visitations': the first capturing the way a model graph
should be walked, the seand cgpturing what to do a specific nodes in a graph. The
traversal/visitor approadh has its badkground in the Visitor design pattern, Adaptive
programming, and attribute grammars. From a wncise spedficaion of traversals and
visits we can easily synthesize the "glue-code" the surrounds the user-supplied,
domain-specific code mntaining the adions to be taken. The model interpreter can be
built in the form of two objects (Traverser and Visitor) which are connected to the
embedded models, and can ke triggered/adivated by the monitor component. The
synthesized generator can be quite mmpad and efficient, and can handle incremental
interpretation by encgpsulating incremental changes in visitor adions.

Computer-Aided Evolutionary ProcessDevelopment
Andreas A. Linninger, University of lllinas, Chicago

Phenomenalogical process models play an important role in development, planning
and design of chemical production processes. The ongoing challenge for systems
reseach is to invent a new breed of computer-based methodologies for assistance
and/or partial automation of the aeaive modeling adivity.

In systems research, we develop new problem formulations and methodologicd

approades for the advancement of central chemical engineeing problems, such as

* Design of chemicdswith desired properties,

» Synthesis and assessment of chemical processes with elogica considerations,

* Analysis and optimizaion of the steady state and dynamic behavior of existing
processes.

Recent advances in mathematical tedhniques, computer-science and artificial

intelligence open new avenues for computer-aided engineaing adivities in a wide

range of significant disciplines including,

* Integrated process development embedded in a unified framework of process
knowledge (reasoning, simulation, and optimization).

» Systematic synthesis of chemical processing schemes for pollution prevention,

* Intelligent process sipervision and control including fuzzy, logic-based and
model-predictive goproades.

The arrent reseach interests focus on:

* Novel modeling languages for phenomena-driven generation of processmodels,

» Development and promotion of symbolic/numerical algorithms for the robust
solution of large-scale non-linear processmodels,

» Deployment of a mmputer-aided product and process synthesis methodology for
the manufacturing of pharmacauticals, agricultural and specialty chemicds,

» Design of a systematic framework for the assesanent and improvement of hedth,
safety and environmental performance of chemicd production processs.

We will continue to demonstrate progress through fully-functional software

prototypes in close contact with the industry.

The presentation investigates problems in computer assisted processengineering from

a system theoretical point of view. A solution approad for models is demonstrated.

It’s foundation rests upon a novel problem organizaion structure into three levels of

abstractions. At levell, a new class relationship composed of Models-Problems

interfaces addresses issues of model refinement, model aggregation as well as

problems related to information binding required for the construction of large reusable

model libraries. At level-2, a phenomena oriented modeling language (PML) enables

domain experts to construct continuous/discrete models by specifying concepts

pertaining to physical and chemicd phenomena & used in their “natural” languages.

This high-level language promises rapid development and scalability of model

artifacts. Finally at level-3, meta modelling will allow to dynamically evolve the

paradigms of level-2 languages, e.g. PML.

Multi-L anguage Design
Bernd Kleinjohann University of Paderborn

Typically the market requires IT systems that redize aset of specific feaures for the
end user in a given environment, so cdled embedded systems. For different
applicaion domains like mobile phones, set top boxes for TV or control modules in
cas, airplanes or buildings, a variety of modeling languages with domain specific
fedures was developed in the past. The talk presents how different languages can be
used together during design of embedded systems and which problems have to be
investigated during such multi-language design processs.

A first point will be the investigation of semantic problems in multi-language design,
i.e. the composition of sub-modules in different languages and the consideration of
the environment and its behavior. A concept of language wupling and language
integration will be introduced. Language @upling mecdhanisms for the cnnedion of
inpus and outputs of subsystems modeled in different languages have to be provided
without changing the original subsystem nodels. Language integration models
specified in different languages have to be transformed into a unified model.

The second pert of the talk will introduce extended predicate transition nets on an
integration model. By small examples it will be demonstrated how Statedharts,
continuous system models, synchronous models and asynchronous models can be
integrated. If a subset of a predicate transition ret fulfill some restrictions, the design
methods provided for the original models can be alopted for the unified integration
model.

Trendsin the Domain of Systems Design
Michael Mrva, Semens AG

Trends to be observed in the domain of Systems Design are:

Trend 1 A significant increase in the @l for a solid methodical basis for system
description languages. Rational's Unified Modeling Language (UML) for SW
design is considered to be going in the right direcion and is often cited, but has
also come in for criticism:

() no method yet, but "only" a language; (b) rather large number of heterogeneous
description components, so that the required methodical stringency can rot be
guaranted.

At Siemenswe ae investigating the usability of the UML for HW design.

Trend 2 A new openness toward not only technical aspeds, but also increasingly
toward people-technology interadion aspeds of system development. Here not so
much the user-interfacetopic is meant, but rather questions sich as.

- What are the driving fadors in collaboration and design reuse (in both SW and

HW)?
- How can we make systems cgpable of evolution (changeability-windows,
habitability)?

- What can we lean from non-technical disciplines sich as psychology or social
sciences, about the procedures involved in the development of complex technical
systems?

These questions are under reseach at Siemens. First partial results comprise:

- Besides all neaessary competition, the presence of caring is essential which
means that tean members must learn to care for ead other.

- We ae working on methods which don't hinder the aeativity of people, e.g.,
through application of "alien" thinking petterns. Those dien patterns often don't
fit and are mostly used because one wants to make management happy or becaise
there isa success gory elsewhere aout that method.

- A further important goal for good design methods is finding the ideal level of
abstraction as well asthe ideal degree of independence between components.

Trend 3. An acclerated growth of hybrid tedinologies, with which systems,
consisting of HW and SW, can be described, modeled, verified, and implemented
end-to-end.

One agproach, model-based co-design, is supported by Siemens within the
framework of reseach cooperation with the University of Arizona in Tucson,
Arizona

Integrating aDesign M ethodology and Tod Sets for
Embedded Systems Development
Jerzy Rozenhlit and Sephen Cunning, University of Arizona

Simulation modeling is increasingly recgnized as a useful tool in assessing the
quality of sub-optimal design choices and arriving at acceptable trade-offs. This
approad is often called “simulation-based design.” However, our working hypothesis
is that computer simulation and other advanced computational tools are of limited
effediveness without a methodology to induce asystematic handling of the multitude
of goals and constraints impinging on a design process Therefore, our work focuses
on the development of tedhniques in which design models can be synthesized and
tested within a number of objectives, taken individually or in trade-off combinations.
Mode specificdly, we have developed a methodology called model-based codesign
that lets developers creade models of embedded systems independently of the
hardware and software implementation. In this framework, designers use simulation
modeling-based techniques to explore the feasibility of virtual prototypes and then
interadively map the specificaion onto a software-hardware achitedure. In severa
pulications, we have elaborated on the fundamental concepts supporting model-
based codesign. Here, we postulate the need for redizing the underlying co-design
methodology with integrated design tools sets that mee the following desiderata:

a) provide design flow control and management,

b) provide models for creation, storage, retrieval, and modification of design data,

c) provide facilities for integrating tools independent of the physicd, logicd, projed,
objea, and tool specific data formats and structures, and

d) facilitate accesto databasesin the form of procedural or command interface and
interprocesscommunicaion.

We ae developing an environment that would med the &ove requirements. This
environment, cdled SONORA, will realize the model-based codesign methodology.
The Functional and Behavioral Requirements Spedficaion and Modeling Hock
embodies requirement solicitation and documentation and development of an

10

executable model. The Behavioral Simulation and Model Refinement Loop is used to
iteratively refine the design model until it is functionally correct. Structural
Requirements Specificaion and Modeling relates physica design constraints to a
proposed physical architedure. In the Performance Simulation and Model
Refinement Loop the model is enhanced with performance estimates for computation
and communication based upon the proposed physicd architecture. Synthesis and
I mplementation involves extrading design information from the models in order to
produce a physical prototype. Experimental Frame Development and Testing
involves the aedion of a set of test cases based upon the system requirements that are
used to assesthe aurrent design at all stages of the design process

Transients in Adaptive and Reconfigurable M easuring Channels
Gaba Pecdi, Tedhnical University of Budapest

The study of reconfigurable measuring channels, adaptive and/or recnfigurable DSP
systems is a very important areaof reseach related mainly to large scale, distributed
intelligent monitoring and control systems. To use reconfiguration techniques in such
computer-based applicaions has real meaning if drastic changes may occur in the
physicd system. Changes due to faults evolving into system degradation are typical
examples. In such cases, the supervising computer program should observe the
changes and turn to another operation or program. In other words, the models applied
within the computer program are also to be danged to correctly represent the
physicd system. Model changes can be performed using different techniques. For
conventional system models the typicd solution is the adaptation or dired change of
the wefficients and/or the (signal processing) structure. These dhanges, however, can
cause large transients, sincethere is a real difference between the stationary behavior
of the system before and after the change. From our investigations it turned out that
reconfigurations transients depend significantly on the DSP structure gplied. This
structure dependency is grongly related to the energy distribution within the
processing structure, therefore the famous orthogonal structures, which try to
distribute the energy uniformly, provide good performance. The behavior of the
widely used direct structureis rather poor.

The prediction-correction type processing structures, which incorporate the model of
the system generating the input signal, provide relatively good transient behavior. If
during reconfiguration the system order is also modified, it is important to assign the
new state-variables to the previous ones in a systematic way. The proper drategy is
not available yet, further investigations are required. The signal processing structures
incorporating the model of the input signal can be suggested to serve the so-cdled
“any-time” algorithms, which are expeded produce accptable output even if there is
atemporal shortage of input data and/or computational power.

11

Traceability among Software Artifacts Based on M eta-M odelling
Antje von Knethen, University of Kaiserslautern

Tednical systems, like automobiles, washing madhines, or building automation
systems are widely distributed and depend more and more on software. The
embedded software in these systems has to be eaily adaptable to requirement changes
that are unavoidable wmnsidering the longevity of technicd systems. Today, various
notations are used to describe different abstradion levels (e.g., system requirements,
software requirements, and software design) and different views on one level (e.g.,
static and dynamic view). The relationships among different abstradion levels
(verticd tracedility) and among different views (horizontal tracedility) are often not
explicitly documented. Therefore, it is difficult to analyse the impad of a dhange (i.e.,
the definition of the elements that have to be dianged to get a consistent software
documentation at the end) and to implement a dange nsistently. An explicit
documentation of vertical and horizontal tracedility can support impad analysis,
implementation of changes and consistency cheding One typical approad to
support vertical tracedility is to apply a requirements tracedility tool, like ARTS,
DOORS, or RTM. Such tools focus on tracedility among requirements (mostly
described informally) and documents on subsequent abstradion levels. Moreover,
they support horizontal tracedility on requirements level. The relationships among
the components have to be set manually. The tools manage and visualize the
relationships by generating matrices, cross references, or entity-relationship models.
Disadvantages of using such tools are that the dfort for establishing tracedility is
expensive and the granularity of the components that can be tracel is typically too
coarse for acarate impad analysis. One typical approach to support horizontal
tracedility is to apply meta-modelling (the main goal is to guarantee ©nsistency
between different views). Each notation applied to describe aview is defined on a
meta-level (meta-model). On this meta-level, consistency rules among the notations
can be defined (i.e., to define semantic relationships among views). The defined rules
can be used to analyse the impad of a dhange in one view on other views and to chedk
consistency among the different views automatically (if the description language used
on the meta-level is formal). It is possible to transform one model into another with
transformation rules developed on the basis of the wnsistency rules. For a
transformation, the information represented by the models has to be the same. The
advantage of the gproad is that the dfort for establishing tracedility is low and the
granularity of the components that can ke traceal is fine. My approad is to apply
meta-modelling to vertical tracedility among system requirements, software
requirements and software design. This means that the notations applied to describe
the astradion levels have to be defined on a metalevel. Then consistency and
transformation rules among components on the different levels have to be developed.
Therefore, information about design decisions is required. The information can be
taken from design guidelines (i.e., guidelines described by methods, like OCTOPUS
or FUSION), design patterns, and architedures. Based on the meta-information (i.e.,
meta-models and rules) atool should be developed that should generate some atifads
on the subsequent abstradion level. A complete definition of consistency and
transformation rules (i.e., a full semantic description) for the verticd tracedility
among the éstradion levels sems to be impossible (e.g., if the semantic relationship
between components depends on a aedive procesy. Therefore, the manual setting of
relationships should also be supported by the tool to be developed. With the tool, the

12

impad analysis of a system requirement change, the implementation of changes and
the dhedking of consistency should be supported.

Adapters and Adaptive Computing Systems Benchmar king
Sanaya Kumar, Honeywell Technology Center

FPGAs (Field-Programmable Arrays) have dtraded quite a bit of interest as an
implementation tedinology. Recently, work has focused on the development of
tedhniques to support dynamic reconfiguration of FPGAS, providing another element
of adaptation in systems.

This presentation discusses two aspeds of reanfigurable technology being supported
by DARPA (Defense Advanced Reseach Projeds Agency):

1) Evaluation Tedinology (ACS (Adaptive Computing Systems) Benchmarking),

2) Programming Development Environments (Adapters).

The ACS Bnedhmarking Program developing a suite of benchmarks for evaluating
configurable computing systems. 6 Benchmarks have been developed (5 stressmarks
and 1 CAD benchmark). A stressmark is a benchmark that focuses on a specific
charaderistic or property of a remnfigurable system. For example, the versatility
stressmark focuses on the aility of an infrastructure (both tools and architedure) to
implement a variety of functions using a specified sequence of steps. The Adapters
program is developing three ©re technologies: (1) programming environments, (2)
modeling and analysis tedhniques, (3) dynamic rewnfiguration tedniques for
FPGAs. The focus of the program isto develop technologies that can be used to map
a complex application onto a heterogeneous collection of resources. general purpose
processors, applicaion-spedfic processors, and FPGAs. One class of applications
being explored is mode-based systems. In addition, partial reconfiguration ideas are
being investigated. The following platforms are being uwsed to illustrate the
tedhnologies being developed; Alaaon board, VCC Hot Works board and Annapolis
Micro Systems Wildforce board.

Composition of Software Hardware Systems
Gesture-based | nteraction/Pr ogramming
Pradeey Koshla, Carnegie Mellon University

We ae developing technologies that allow users to:

- Crede robots that are customized for tasks from modular and reconfigurable
elements

- Crede attomatically rea-time software (from software modules that are
intelligent) for robot control

- Interad with robots using gestures (based on apent oriented programming).

Our goal is to create the hardware and software infrastructure for next generation

intelligent systems. Our vision is that such systems will be able to interad with

humans and interpret their intent. Based on this interpretation, the system will

automatically creae its control programs. We ae gplying these futuristic ideas to

robot arms and distributed mobile robots. The distribute robots range in size from 2m

(all terrain vehicle) to 5 cm on the side (millibots).

13

Architeaural Refinement Calculi
Jan Phili pps, Tednische Universitat Miinchen

It has long been recgnized that there ae high demands on the correctness of
embedded software systems. Consequently, in the last yea's an impressve amount of
work has been produced on the formal verification of embedded systems, partly using
deductive tedhniques such as theorem provers, partly using model checking.

Most of this work, however, focuses on the verification of single cmponents or of
black-box-views of embedded systems. Architedural and structural aspeds of
systems have largely been ignored, and there ae no satisfying tedhniques to reason
about the evolution of system structures caused by changes in technology, additional
requirements, or new product variants.

To addressthese questions, we believe that design processes for verifiably correct
systems neal rules to formally describe structural changes of the glass-box
description of a system. Such rules could appea in various forms. as simple deductive
rules, similar to first-order formulas, or as graphicd manipulations dealing with the
addition and removal of components and their conneaions. Of course, there will be
side-conditions for a well-formed rule gplication. It is important that these side-
conditions can be kept local, so that they can be discharged using established
verification techniques sich as (component) invariance proofs or model chedking.

Some initial work on structural refinement calculi, which, however, is not specifically
targeted at embedded systems, is presented in the references below.

Top Down Design of Mixed Signal
Klaus Waldschmidt, J. W. Goethe Universitat Frankfurt

The design of mixed-signal systems is essential in the domain of embedded systems
as for example in telecommunication, avionic and automotive goplications.
Mixed-signal systems consist basically of software, off-the-shelf digital hardware and
customized digital hardware. For the digital processing of analog signals, incoming
signals from the analog environment must be mnverted to digital signals. Besides
sensors and aduators this requires analog components for the analog signal
preprocessing, such as filters, nonlinear operators or amplifiers. These analog
components are often integrated together with the digital components to build a
mixed-signal system ““on achip".

Today, the design of the digital parts of such systems can be done in a very systematic
»top-down" design flow, which starts with an algorithmic spedficaion and is
supported by tools for hardware/software-codesign or high-level synthesis. However,
this designflow negleds sme important aspects of mixed-signal system design:

- Mixed-signal systems often perform signal-processing functions. The doice of

important parameters uch as bit-widths, sampling-rates or methods for filtering
and conversion are determined intuitively.

14

- The design of analog components goes rather bottom-up, takes much time and
requires a lot of expert-knowledge and experience

- An approach which is as general as the register-transfer synthesis is gill missng
inthe analog domain.

These two aspeds of the design of mixed-signal systems are the main focus of this

presentation.

In this presentation, a top-down methodology for the design of mixed-signal systems

is proposed. The proposed methodology structures the design of mixed-signal systems

into a sequence of transformations on a graph-based model.

The benefits of such adesign methodology are obvious:

- The top-down design-processleals to a more systematic exploration of the design
space

- The determination of system-parameters and the global management of resources
as part of the design-process makes these parameters available for an optimizaion
regarding implementation-costs.

- The methodology can be automated easily.

The proposed methodology is based on the formal model of hybrid data-flow graphs
(HDFG). HDFG permit the homogeneous and graph-based representation of arbitrary
hybrid systems. The specified behavior of a mixed-signal system can be represented
by HDFG as well as the chosen architedure (structure). The design-process can then
be represented by a sequence of transformations that stat with the HDFG-
representation of the specified behavior, and that ends with a HDFG-representation of
a dhosen structure.

In order to support the design of mixed-signal systems, a VHDL-AMS or block-
diagrams can be translated to HDFG. Well-known optimizaion tedniques for data-
flow graphs can be gplied on HDFG. Furthermore, transformations can be performed
between different models of computation. Finally, the HDFG can be mapped onto
discrete, functional blocks by a graph-covering algorithm. Outputs of all functional
blocks are buffered with registers in the digital and with operational amplifiers in the
analog domain. Each functional block can then be designed separately, either
automatically or in an interadive way.

The proposed top down design methodology for mixed-signal systems is now under
evaluation within concrete gplicaions.

Representation Issuesin Self-Adaptive Computing
Jancs Stipanovits, Vanderbilt University

Embedded information systems provide ample evidence for the need of self-adaptive
behavior. A common challenge in these gplications is the unpredictable number and
kind of events emerging from the physical environment that impad fundamentally the
required software achitedure. For instance, in position control of manipulators the
controller receives the measured position and speed of the manipulator, and calculates
a ontrol signal. If one of the sensors breaks down, control can still be maintained but
the achitecure of the cntroller must be dhanged. This change impads the signal
flow and complexity of the computations which in turn requires change in the
software achitedure of the @ntroller.

15

The model-integrated approad to self-adaptive software decomposes the problem
into two major issues. (1) representation and (2) the reconfiguration mechanism. The
representation issue deals with modeling of self-adaptive systems, including models
of architedures and adaptation proceses. The objedive of the reseach on
representation is finding the gpropriate level of abstradion, modeling constructs and
modeling paradigms that fadlitate a manageable design process for self-adaptive
systems. The reconfiguration mechanism focuses on methods for mapping the models
into exeautable systems, and changing the dataflow and control structure of the
applicaion in a safe, consistent manner. Summarized below are cnsiderations for
representation strategies in self- adaptive software.

Representation in self-adaptive software faces two primary challenges:

* segparation of the time-variant and time-invariant elements of the software, and

» formalism for the representation of the time-variant components.

The justificaion of decomposing self-adaptive software into "time-variant" and "time

-invariant”" components deserves ©me nsideration. Since software, self-adaptive or

not, defines behaviorg/trajedories in an infinite state-space why not to use eisting

tedhnology? The agument is similar to that of used in the theory of adaptive dynamic
systems. Adaptive dynamic systems are time-variant, non-linea systems. However,
they are conceptualized as an "adapted system” (time variant component) and an

"adaptation algorithm” (time invariant component) in order to make their design

manageable. The design of self-adaptive software can be formulated in this

conceptual framework which offers similar theoretical and pradical advantages.

Seleaion of time variant charaderistics of an adapted system is another fundamental

issue. The most frequently used method in building adaptive signal processing or

control systems is to adapt carefully seleded parameters of the adapted system. The
goa in self-adaptive software is to change system behavior through adapting the
composition of a runnng system. Accordingly, the representation in self-adaptive
software must include formalism describing the time variant composition of the
adapted system and must provide @nstructs for expressing the alaptation processin
terms of composition changes. Time variant system composition can be modeled by
means of trgjedoriesin a"Design Space€'. Transitions in the Design Space ae driven
by state transitions in the computing system, in its environment, or both. Points in the

Design Space represent architedures that can be cmposed form the available

resources. A representation theory in this framework requires lution for the

following problems:

o State-Space representation: modeling the discrete state space describing the
behavior of the cmputing system and/or its environment for the alaptation
process

» Design Space onstruction: modeling the possibly very large number of
meaningful architedures that can be aeaed from the available resources.

o State-Space ad Design Spacerelationship: modeling the mapping between the
State Space ad the Design Space

* Design Constraints. modeling the functional, compatibility, resource, performance
and other congtraints that define the set of meaningful architedures in the Design
Space

* We will discuss a formal representation approach that enables the design and
analysis of self-adaptive systems over finite (but paossibly very large) state and
design spaces.

16

Adaptive Computing Runtime Environments
Ted Bapty, Vanderbilt University

High-performance, embedded applicaions must function efficiently in rapidly
changing environments. Power and volume nstraints limit hardware resources,
while extreme performance requirements demand algorithm-specific achitedures.
Remnfigurable @mputing devices address these problems by allowing the
architedure to change in response to the danging environment and changing
algorithms.

With the avent of Field Programmable Gate Array (FPGA) chips, the task of
designing reconfigurable hardware is relatively straightforward. FPGA’s are typicaly
used for computations and bus connedions, along with other tednologies such as
RISC procesors, DSP's, and fixed-function ASIC's.

Implementation of the gplicaion software is more difficult. The design challenge
lies in the need to implement the many modes of system operation using a @mmon
set of hardware resources. The designer must implement a separate configuration for
each operational mode, optimizing the system to function within the minimum overall
hardware envelope.

Given the complexity of the operational modes and the heterogeneous, changing
nature of the hardware target platform, significant design and runtime support is
required. These can be divided into two categories. high-level design tools for
requirements, algorithm, and system resource cgture and manipulation; and mid/low-
level runtime infrastructure. The @ncepts and implementation of the high-level
design environment can be found in. The aitical point of this division is the interface
between high level design and the runtime infrastructure. This interfacemust present
a high-level abstraction of the underlying hardware/software environment to smplify
system synthesis.

The underlying runtime system must suppat the system synthesis tools,

implementing the functional system. The functions for the runtime system include:

* Abstraction of Hardware/Software Interfaces. Hardware detail s must be hidden to
support a high-level, uniform view of the underlying resources. A real-time
dataflow paradigm is implemented.

» Configuration of resources. FPGA’s must be programmed with the proper
configurations for the system operating mode. Red-time schedules must be
constructed and installed aaoss paralel DSP and RISC processrs.
Communicaion topologies must be implemented in the messaging fabric.

» Control of dynamicdly changing system state: The infrastructure must support the
dynamic reconfiguration of the executing system. This involves rapid transition
from one computational architedure to another. The transitions include changing
hardware topologies, procesor schedules, and communicaion maps. System
consistency must be maintained during transitions.

* Implementing timing constraints. The real-time behavior of the system must be
maintained, during normal computation/communicaion, and duing
reconfiguration.

17

The semantics of the exeaution environment implement a large-grain dataflow
architedure. Processes and Processors are ejuivalent, representing functions on data.
Proceses/Procesors are connected via logical Streams/Signals which must buffer,
communicae, and match data formats.

The eeadtion environment spans ftware and rewmnfigurable hardware. The
software environment consists of a simple, portable real-time kernel with a run-time-
configurable process shedules, communicaion schedule, and memory management.
Communicaions interfaces are supported within the kernel, making crossprocessor
conrections invisible. Memory management is integrated with the scheduler and
communicaion subsystems, enabling (but not solving) the problems associated with
dynamic recnfiguration. The software kernel uses the cmmmunicaion infrastructure
broadcast commands from the Rewnfiguration Manager to receve mnfiguration
information.

The hardware exeaution environment is mantically similar, but the implementation
is much different. The Virtual Hardware Kernel exists as a design paradigm only: no
operating system exeautes on the FPGA hardware. Instead, the necessary
communicaion and computational components implement the dataflow functionality.
The MIC Generator synthesizes the procesrs, the signal buffering, and the necessary
off-chip interfaces and data wnverters.

The Remonfiguration Manager manages resources and executes the system behavior
state machine. Using results from computations, it evaluates gate transition
decisions. When atransition is indicated, the manager performs the orderly shutdown
of existing components, rewmnfigures hardware cmponents, and reinitializes the
system with the new mode of operation.

Status: The environment is gill preliminary. A set of intrinsic components are being
constructed for the hardware communicaion interfaces. Dynamic remnfiguration
approadies are being tested and refined. Applications are being built to evaluate and
refine components and approacdes.

The Design of Embedded Real-Time Systems using Extended
Predicate/Transition-Nets
Jurgen Tacken, C-LAB

In recent yeas embedded systems have gained increasing importance Due to the
increasing functionality they have to be designed in teams with several specialists,
each of them working on one single part of the whole system. But the focus in design
is not only more functionality and higher performance but aso safety and reliability
criteria that have to be fulfilled by the designed components. This includes functional
requirements as well as real-time constraints.

By now every single aea of applicaion has developed its own well understood
tedniques for modeling, combined with corresponding methods and toals for analysis
and simulation. Already at the state of many individual models many predictions
about the temporal and functional behavior of eat subsystem can be made. But to
validate the behavior of the whole system, the individual models have to be mupled.

18

Especially for the systems' reliability it is important to consider not only each single
component on its own kut its behavior within the whole wntext. Many functional
errors only expose themselves when all individual components work together in the
whole context, observed over time.

Often the models are given in different domain specific modeling languages, so
coupling can only be realized either on the level of simulation or within a hybrid
language, that usually does not offer any fadlities for further analysis. Coupling of
simulators allows a hybrid simulation in the sense of a cmbined simulation of all
subsystems, while e@h subsystem may be formulated in a different language for a
specific simulator. On the level of simulation temporal and functional behavior and
performance can be studied and validated. But not al errors can be found by
simulation becaise of the exhaustive number of possible simulation runs. Hence it is
desirable to run a formal analysis of the static and dynamic properties for formal
verification purposes.

A further problem in a separated design process of different subsystems is that eah
individual domain has proprietary methods of optimization, but for a global
optimizaion of the joint system no facility exists. Especially when coupling different
subsystems it may be useful and more cs-effedive to export some functionality
from one into another subsystem. An overall analysis of the joint system may reveal
states that can rever be readed and therefore can be eliminated from the design. The
prerequisite for this kind of analysis is that al models are given in an uniform
language.

In the talk | will describe our method for the design of embedded real-time systems.
During the specificaion and modeling phase it allows the use of several domain
specific modeling languages. All these different languages are transformed into one
common model using extended Predicate/Transition-Nets. Predicae/Transition-Nets
are ahigh level form of Petri-Nets. This modeling language is very powerful since it
must have & least the functionality of every single domain spedfic modeling
language.

After combining all the different designs a global analysis and formal verificaion of
the system may be performed on the Predicae/Transition-Net Model. To apply
efficient and useful analysis and verification methods together with a arresponding
software and Hardware synthesis the modeling language should be lesspowerful and
very redtrictive. This is a contradiction to the first claim of a powerful language. So
how can this conflict be solved?

Sinceit is apparently more effedive to reuse existing analysis methods than deducing
new ones for a powerful modeling language, we decided to use less powerful
modeling languages for the analysis phase of our design method. This less powerful
modeling languages are reduced versions of the extended Predicate/Transition-Nets
with properties like determinism and synchronism that support an effedive analysis
and synthesis of the specified models. In the talk | will describe strategies how
extended Predicae/Transition-Nets can be transformed into the lesspowerful versions
and show how analysis and formal verification can be performed for this model.

19

Adaptation Techniquesin
Embedded Real-time Communication Systems
Franz J. Rammig, University of Paderborn

Embedded Real Time Systems tend more and more to become distributed and perall el
ones. This is true for both, the platform for the design process and the embedded
system itself.

Reason for parallel and distributed platforms for the design of embedded systems are
the needed computing power, the natural parallelism of the systems to be developed
and the distributed design processitself.

Concerning the target system it makes snse to distribute the antrollers to the objeds
to be ontrolled rather than concentrate dl controlling adivities in one centralised
computer. This distribution results in very short connedions of high communicaion
bandwidth (between the dedicaed controller and the ntrolled objed) while
relatively low bandwidth is needed for the coommunication between the cntrollers.

It depends on the computing power nealed for such a dedicated controller, whether a
parallel architecture is needed or not.

Traditionally distributed controlling systems have designed just as a colledion of
individually designed dedicated controllers. In such an approach only the local
applicaion supported by a local RTOS has to be cnsidered. Any kind of a general
purpose interconnedion system with enough bandwidth then might serve to suppat
the coommunication.

Obviously this approach leads to sub-optimal solutions. Therefore holistic gpproadhes
have to be mnsidered. In such approadies the etire system to be designed as a
distributed system is considered. This leals to dstributed application programs, to
distributed RTOS and to a Real Time Communicaion System (RCOS) which now
bemmes a mmponent of its own.

In our contribution we want to dscuss design support for such a scenario. We
strongly belief that a design processfor complex embedded systems has to cope with
heterogeneous ecifications using different description paradigms. These
multiparadigmatic descriptions have to be mapped to a unified modelling platform. In
our case we use etended predicate/transition nets for this purpose. Based on this
unified internal format design tedhniques adapted from the design of digital hardware
can be aplied. As a result a distributed embedded RT application is obtained that
runs on a network of microcontrollers, based on a distributed RTOS and supported by
adistributed RCOS.

High-L evel Embedded System Speafications Based on
ProcessActivation Conditions
Wolfgang Bossung, University of Darmstadt

High-level specifications for the behavior of information processng systems consist
of data and control flow descriptions as well as of timing requirements. These ae to
be met by feasible implementations. Using a functional partitioning of a system, a
process net description with conditional process adivation is proposed. The
simulation of token flow leads to a schedule that makes investigations in the timing
analysis of the proposed Codesign Model (CDM) possible. Predictions about the

20

delay between any two nodes of the system are also possible, as well as the sped of
processing external inpus and outputs, iteration times of determined periods and,
hence, all derivable time aiteria. A formal notation of processnets as cyclic graphsis
given, which is useful for the description of complex digital embedded systems. n this
context of embedded systems design and its ecification by the proposed model,
some terms and properties are to be introduced. A processP consists of an ordered set
of atomic adivities, which embody a basic function of the embedded system. A
procesor element PE denotes a set consisting of an allocaed procesr, the
asociated exeautable mde, and the processshell. A processor is a pieceof hardware,
either with an own instruction set such as gandard/DSPASIP processors or
programmable in a more general sense such as ASIC/FPGA. The process code is an
executable program code in the processcore & part of a PE. And the process $ell is
an additional program code dedicaed to the definition and exeaution of
communicaion tasks of a processwithin the processnet. To every processrunning on
a determined hardware achitedure, an adivity time @an be asociated. A computing
time for every process in the CDM graph is introduced to generate a schedule. In
general, scheduling with resource dlocaion on a graph structure, as proposed in the
tak, is NP-complete. However, the proposed smulation methodology delivers
detailed information on conditional paths of data axd control flow in a CDM. The
simulation can be terminated at every point in time for evaluation of the results.
Scheduling of a new specified CDM will lead to a guided refinement of the CDM.
Internal state transitions for processes need not necessarily be specified to start with
this kind of scheduling. With regard to the specified 1/0O relations, a simulation of the
schedule makes all state sequences of processs obvious. A designer can eliminate
non-appropriate sequences tep by step and restrict alternate paths of data gained from
simulation. So, the simulation time deaeases for a specific number of simulated
iteration cycles.

Composable Smulation for Design of M echatronic Systems
Chris Paredis, Carnegie Mellon University

We ae arrently developing a framework for composable simulation in which
simulation of mechatronic systems istightly integrated with design. With composable
simulation we mean the adility to automaticdly generate simulations from individual
component models by manipulating the crresponding physical componentsin a CAD
system. Asociated with each physical component, there ae multiple model
fragments describing the cmponent's behavior in multiple energy domains and at
multiple levels of detail within a single energy domain. Based on system-level
simulation requirements, the gpropriate simulation models are selected for individual
components and combined in a system graph (a linear graph representing the energy
flow through the system). In a model composition phase, the system level dynamic
eguations are extraded from the system graph and are compiled and exeauted in a
simulation kernel. The goa is to allow the designer to specify the complexity and
fidelity of a simulation such that it suppats the required analyses with minimal
computational cost a eadh stage of the design process This form of virtua
prototyping will reduce the design cycle significantly by providing immediate
feedbadk to the designer with minimal intervention of simulation and modeling
specialists.

21

Introduction of Delay-I nsensitivity into
HW/SW Codesign M ethodology
Wolfram Hardt, CLAB Paderborn

Today's computation power available for exeaution of design algorithms allow the
handling of much more complex tasks than a few years ago. On the other hand there
are well established and in praxis proven design environments. Such environments
implement design methodology. New challenges make the introduction of new
complex design tasks necessary. This can not be realized by a cmplete change of
design methodology but such tasks have to be introduced into the overall design
methodology. For demonstration we have picked the very old idea of delay-
insensitive design and introduced it into the HW/SW Codesign methodology. It points
out that for ead step in the design methodology an equivalent step for the introduced
asped is needed. We have chosen a mixture of top down and bottom up introduction.
On high level performance quantification concepts allow the gplication of analysis
and ealy partitioning. On lower level implementation tednology is needed as well
as the implementation of functionalities. In our example —referred to by FLYSIG-
bitserial implementation of dataflow oriented algorithms has been chosen. This is
reflected by the achitecture based on the mult-ring concept introduced by Staunstrup.
The mapping from analysis results onto the register transfer level is performed by
high level synthesis algorithms which may be taken form the eisting design
environment.

Active Software Composition
Robert Laddaga, MIT & DARPA

Active software composition (ASC) is a DARPA reseach program whose goa is to
enable the development of programs that can modify their behavior in response to
changing conditions and changing neels. This ftware self-adaptation is
acomplished by having the software evaluate its progress to gaol, and seled
alternative gproades based on the evaluation. Thus, the software needs to have the
following capabiliti es:

1) evaluate progressto goal

2) have acessto dternative algorithms and implementations

3) seled an appropriate dternative based on evaluation

4) reoonfigure and optimize for newly seleded alternatives.

Clearly, to have these caabilities, the @mde will nead to contain and operate on
explicit descriptions of intent, specifications, design, program structure and mapping
of tasks to functions and modules. Also the code will need to contain a large number
of alternative algorithms and implementations, or have acess to such alternatives
over network conneaions. The key problem to solve is how to evaluate progressto
goal. Classification of problems into constructive and truth finding (with or without
ground truth available) classes is discussed, with examples of evaluators for eath
class A subsidiary problemsis the need to avoid the potentially significant additional
work of writing evaluators. The potential for generating evaluators (as well as
principle code) from formal specifications, is discussed. Also presented is a broader
context of adive ade and data, which includes mobile software, tolerant software and
self-organizing ceta, in addition to ASC.

22

L arge Scale Distributed Smulation
Zoltan Papp, TNO Institute of Applied Physics, Delft

A certain type of large-scale, mixed continuous/discrete event simulators belongs to a
particular type of structurally adaptive dynamical systems. The problem domain can
be charaderized as follows. the behavior of relatively big number of highly
autonomous dynamical entities has to be simulated. The aitities can observe the
embedding world (which also contains ome representation of other entities, for) and
they can receive transmissons from other entities. According to these inputs an entity
changes its internal states, can lroadcast messages and can make transformations on
the world (including other entities).

The main topic of the reseach is the design of a runtime environment, which (1)
enables distributed implementation on messaging hardware achitedures, (2) provides
scaleability, (3) maintains hardware/software platform independence A modeling
concept has been introduced, which by incorporating a sensor/aduator abstraction
layer can separate clealy the simulation environment dependent components and the
experiment independent runtime infrastructure and simplifies the entity interadions
for quantifying entity relationships.

The formalization of the sensor/aduator abstraction makes the generation of the
relation maintenance and database management components of the runtime system
possible. This way the runtime system can be optimized with resped to
communicaion overhead, which is the key for successful application of this
framework in various applicaion domains. Currently the reseach focused on traffic
micro-simulation applicaions.

Rapid Prototyping of Embedded Systems
Klaus Buchenrieder, Semens AG

Embedded systems are everywhere and many devices that appea to belong in the
hardware domain are adually software products. Without embedded systems (ES)
many appliances and devices would be more expensive, larger and harder to use. The
right mix of embedded software and hardware differentiates price and decides over
business siccess or failure.

The processing power of a traditional ES comes either from a re, an IP or from a
reonfigurable element. The mbination of embedded software ad soft-
configuration is the key to flexibility. Versahility is achieved through system and
core/IP parameterizaion whereby reprogrammable HW structures a the re-level
are mainly responsible for system performance, flexibility and affordable price The
trend however, isto increase the flexibility and performance of ES to satisfy the needs
of new challenging applicaions. Especially when subsystems guide users in
acomplishing a task. This higher degree of flexibility is achievable only through
adaptation or evolution methods. Changes of HW and SW cgpabilities, ensure that ES
can properly evolve by development of new charaderistics and properties to master
new situations quickly. As a result, embedded systems can fulfill goals under
changing environmental conditions, while maintaining the specified performance

23

Our reseach focuses on prototyping and debugging of advanced E-HW/SW systems.
Prototyping allows us to continuously measure the performance while a HW/SW
prototype performs its task in a real-world environment. The clea advantage over
simulation or emulation is that function cheds and adaptation/evolution steps can be
performed and observed under real circumstances.

Domain Spedfic M odel Architecture for
Complex Embedded Systems: A Building Automation Case Study
Gerhard Zimmermann, University of Kaiserslautern

There is a large clan of complex embedded systems that are both readive and
distributed with real-time and fault tolerance requirements. Digital control systems ot
automobiles, buildings, and airplanes are typicad examples. Software engineeing hes
to provide techniques and methods to support the dficient and reliable development
of such systems. It is our goa to provide domain specific methods for the
development of well structured models for complex problems with a cnsiderably
smaller effort than universal methods can achieve. This paper concentrates on the
analysis phase of the software engineering process for embedded control systems,
based on an available modeling language (SDL). The contribution of our group is a
new model architeadure alled “organizaional architedure” becaise it is similar to
hierarchies in organizaions. This architedure can be supported by a small number of
model patterns. A specific modeling method is shown that applies this architedure to
control problems in an efficient way. The resulting models build system requirements
specifications that can be attomaticdly compiled into prototype software for
validation and verifications using commercial tools. A case study with a @mmplex
building automation system with more that 400 controlled devices has shown, that
this method can be easily applied, that the proposed model architedure is well suited
to structure control systems in the chosen domain, and that the analysis phase was
completed in avery reasonable time. It also helped the domain experts to expresstheir
overall solution of the aontrol problem at an abstrad level. Further case studies will
be exeauted to demonstrate the alvantage of reuse of generic atifads during the
analysis phase.

24

