Decision Diagrams —

Concepts and Applications

24.01. - 29.01.1999
organized by

B. Becker (Freiburg)
C. Meinel (Trier)
S.-I. Minato (Japan)
F. Somenzi (Boulder)

The fifth workshop Decision Diagrams — Concepts and Applications in the series
Computer Aided Design and Test at the IBFI Schlofl Dagstuhl was organized by Bernd
Becker (Univ. Freiburg), Christoph Meinel (Univ. Trier), Shin-Ichi Minato (NTT Optical
Network, Japan), and Fabio Somenzi (Univ. of Colorado). It was attended by 31 scientists.

Decision Diagrams (DDs) have found widespread use in computer-aided design of digital
circuits. They form the heart of many tools for formal verification and are also commonly
used in logic synthesis, circuit testing and in the verification of communication protocols.
With increasing number of applications, also in non—-CAD areas, classical methods to
handle DDs are being improved and new questions and problems evolve and have to be
solved.

The organizers took the opportunity to bring together researchers from different areas
in computer science, electrical engineering and industry. The common aim of all researchers
is to deepen the understanding of DDs as a data structure, to improve existing techniques
and to explore new fields of application. At the workshop, 23 lectures were presented
covering different topics of DD research among them being:

e Potential and limitations of DDs, complexity of algorithms for (Boolean) function
manipulation

e Minimization and approximation of Binary DDs (BDDs)
e Formal verification of sequential circuits with BDD based methods

e Extensions beyond Boolean functions to represent and manipulate word-level circuit
functions

e Applications in synthesis, design and test of real-time systems, state/event systems

There were many discussions concerning challenging open questions — at universities
and in industry as well — and future directions of research in the DD area.

As always, Schlo8 Dagstuhl and its staff provided a very convenient and stimulating
environment for the workshop. The organizers wish to thank all those who helped in
establishing this excellent research atmosphere.

More detailed information including some full papers can be found on the WWW-pages
with the URL:

http://www.informatik.uni-freiburg.de/ira/events/design_and test_99/

Contents
1 Teaching BDDs — Some Instructive Examples 4

2 A New Framework for Dynamic Variable Reordering in Reachability

Analysis 4
3 Accelerating Variable Reordering 5
4 Nonapproximability Results for OBDD- and FBDD-Minimization 5
5 Minimization of Free BDDs 6
6 On a Method to Accelerate Functional Decompositions 6
7 Synthesis of controllers from Interval Temporal Logic specification and
application to C program validation 7
8 Verification of Hierarchical State/Event Systems using Reusability and
Compositionality 7
9 Guided Search for LTL model checking 8
10 Using Lower Bounds during BDD Minimization 8
11 OHO — OBDD Heuristics Online 9
12 More Bad BDD Ideas 9
13 An Implicit Method of Boolean Resubstitution in Multi-Level Logic Syn-
thesis 11
14 In-Place Power Optimization for LUT Based FPGAs 11
15 Symbolic BDD techniques for Exact Scheduling 12
16 MORE good BDD ideas 12
17 Improving Reachability Analysis by means of Activity Profiles 13
18 Approximate Reachability Don’t Cares in Model Checking 13
19 Decision Diagrams and Division 14
20 A Word-Level graph manipulation Package 14
21 Automatic Test Derivation for Real-Time Systems 15
22 Satisfiability on a netlist of BDDs 15
23 Minimization and Approximations of Binary Decision Diagrams 16

1 Teaching BDDs — Some Instructive Examples

Ingo Wegener, Universitat Dortmund

It is well accepted that BDDs have a lot of applications. Therefore, BDDs have become
a main topic of lectures. For this reason, instructive examples are necessary to explain the
structural behavior of algorithms and models. In this talk examples as simple and clearly
structured are presented for the following topics:

e worst case examples for apply and compose, even if the result is a constant function,
e worst and best case examples for sifting,

e an example where sifting increases the size before decreasing it,

e examples with many bad orderings and some good ones,

e examples where one BDD model has polynomial size while others have exponential
size.

2 A New Framework for Dynamic Variable Reorder-
ing in Reachability Analysis

Hiroyuki Higuchi, Fujitsu Laboratories LTD

Sifting-based dynamic variable reordering drastically reduces BDD sizes during reach-
ability analysis, mainly because each image computation handles different state sets in
general and requires different variable orderings. However, it requires much computation
time to reorder the variables. This is a bottleneck to apply symbolic traversal to practical
examples.

In this talk a new dynamic variable reordering framework for reachability analysis
is presented. In this framework a next state variable is reordered once in each image
computation just before the variable is put into the partial products. Reordering of a next
state variable is done efficiently by finding a good position for the variable using structural
information of BDDs of the partial product and partitioned transition relations.

Several experimental results are given to demonstrate the effectiveness of the proposed
framework. Methods to find a good position for a next state variable are also discussed in
details.

3 Accelerating Variable Reordering

Christian Stangier, Universitat Trier

Model Checking and reachability analysis are widely used techniques in verification of
sequential circuits, reactive systems, protocols, etc. OBDDs allow a symbolic representa-
tion of the system that may bypass the state space explosion problem of larger systems.
As the size of OBDDs and also the computation time depends on the order of the in-
put variables, the verification may only succeed if a well suited variable order is chosen.
Since the characteristics of the represented functions are changing, the variable order has
to be adapted dynamically. Unfortunately, dynamic variable reordering strategies are of-
ten very time consuming and sometimes do not provide any improvement of the OBDD
representation.

We present two techniques — “Block Restricted Sifting” and “Sample Sifting” — that
substantially accelerate the reordering process by using either easily computable structural
or implicit semantical information about the represented functions.

4 Nonapproximability Results for OBDD- and FBDD-
Minimization

Detlef Sieling, Universitat Dortmund

The variable ordering problem for OBDDs is the problem to compute a variable ordering
minimizing the OBDD size of a function given by an OBDD. Its complexity is of theoretical
and practical importance because the choice of the variable ordering can decide between
polynomial or exponential OBDD size and between success or failure of an application. The
known NP-hardness results do not exclude polynomial time approximation algorithms for
the variable ordering problem, i.e. algorithms which guarantee to obtain variable orderings
for which the OBDD size is larger than the optimum by at most some constant factor.
The main result is that the existence of such an algorithm implies P=NP. Hence, we get
a justification to use heuristics and to give up the search for approximation algorithms for
the variable ordering problem.

Besides OBDDs, Free BDDs (FBDDs) can be used as a data structure for Boolean
functions. The manipulation of FBDDs is efficient if only FBDDs respecting a fixed graph
ordering are used. Graph orderings are a generalization of variable orderings. Hence, we
get the problem of minimizing FBDDs and of optimizing graph orderings for a function
given by an FBDD. The other main result is that polynomial time approximation schemes

for these problems imply P=NP or ZPP=NP, respectively. Approximation schemes are
algorithms whose result is larger than the optimum by a factor of at most 1+ ¢ where € > 0
is part of the input. Again, we get a justification to use heuristics.

5 Minimization of Free BDDs

Wolfgang Giinther, Universitat Freiburg

Free BDDs (FBDDs) are a generalization of OBDDs that allow different orders of the
variables on each path. They allow a more compact representation for Boolean functions,
in some cases even an exponential reduction compared to OBDDs can be observed. Fur-
thermore, many properties of OBDDs also hold for FBDDs, like e.g. the realization in PTL
or the testability of the circuits (if they are directly mapped).

First, we presented an exact minimization algorithm for FBDDs, i.e. an algorithm that
finds the minimal FBDD (in terms of the number of nodes) among all FBDDs representing
the given function. But in spite of an effective pruning technique and the use of symmetries,
the algorithm is only applicable to small functions. For those functions it turned out that
sizes could not be reduced in most cases.

Furthermore, we presented a simple heuristic which can be seen as an extension of the
exact method. Experimental results showed that in many cases, the best known OBDD
sizes could be reduced by about 10%.

6 On a Method to Accelerate Functional Decomposi-
tions

Tsutomu Sasao, Kyushu Institute of Technology, Japan

A function f(X) has a simple disjoint decomposition if f is represented as f(X 1, X5) =
g(h(X1), X5). The problem of functional decomposition is to find a bipartition (X, X5) of
X such that f(Xi, X2) = g(h(X1), X2); In this talk, I showed an efficient method to detect
bipartitions (X7, X3) that do not produce decompositions for f(X). It quickly reduces the
search space for the decompositions by using a look-up table for undecomposable functions.
A systematic method to find simple disjoint decompositions by BDD was presented.

7 Synthesis of controllers from Interval Temporal Logic
specification and application to C program valida-
tion

Masahiro Fujita, Fujitsu Laboratories of America

Interval Temporal Logic (ITL) gives much more flexibility in describing both serial
and parallel behaviors of digital systems. In order to verify systems with respect to it
or synthesize circuits from it, ITL formulae must be expanded into automata first. This
process is very complicated and mostly very time consuming. Here a restricted ITL is
defined, whose intervals are always finite. Then FSM models can be relatively easily
generated from such ITL formulae. Moreover, by using decision diagrams to represent
generated sub-formulae when expanding given ITL formulae, the expansion process can
be efficiently implemented. The experimental results demonstrated the usefulness of the
proposed approach.

As an application of the proposed approach, ways to validate C programs with respect
to ITL specification are also discussed.

8 Verification of Hierarchical State/Event Systems us-
ing Reusability and Compositionality

Gerd Behrmann, Aalborg University, Denmark

We propose two new techniques for the verification of state/event systems (a parallel
extension of Mealy Machines) and a hierarchical extension. Compositional Backwards
Reachability (CBR) uses a dependency analysis between the components of the system to
determine which components to include in the reachability analysis. In this way CBR starts
with a minimal set of components, performing backward steps that are possible regardless
of the behavior of the remaining components. If necessary the set of components considered
is extended according to the dependency analysis, reusing the work done with the smaller
set. Using CBR we were able to verify a large number of reachability properties for a
system containing 1492 parallel components (declared statespace of 10476).

The Reusable Reachability Check (RRC) improves the verification of reachability prop-
erties for hierarchical systems. The technique chooses superstates as landmarks that guide
the verification. Ones reachability of a superstate has been established, that information is
reused for establishing reachability of subsets of the state space of the super state. When

combined with CBR, RRC has the additional benefit of dividing a reachability analysis
into several simpler checks, each only requiring a small set of components in the CBR
analysis. Experimental results show that CBR alone would suffer from an increasing hi-
erarchical depth. With the addition of RRC verification of hierarchical systems becomes
independent of the depth of the system.

9 Guided Search for LTL model checking

Roderick Bloem, University of Colorado at Boulder

In order to avoid BDD size explosion during fixpoint computations, we can use a series
of underapproximations to the transition relation. Using these underapproximations, we
replace a fixpoint computation by a series of fixpoints that is often much easier to compute.

The underapproximations are provided by the user in the form of constraints on the
circuit (hints). They are chosen so as to allow a “regular” exploration of the state space,
avoiding a BDD blowup.

The application of hints to reachability analysis is known. Here we extend this approach
to w-regular model checking in general, and LTL model checking in particular. We make a
structural distinction between three types of Biichi automata: general, weak, and terminal.
The latter two types occur frequently in LTL model checking, and can be checked more
efficiently. Hints can be used for either of these types. Our preliminary experimental
results show that this allows for efficient LTL model checking in many cases.

10 Using Lower Bounds during BDD Minimization

Rolf Drechsler, Universitat Freiburg

Ordered Binary Decision Diagrams (OBDDs) are a data structure for representation
and manipulation of Boolean functions often applied in VLSI CAD. The choice of the
variable ordering largely influences the size of the representation, i.e. it may vary from
linear to exponential.

Efficient methods for exact and heuristic minimization of OBDDs are presented that
make intensive use of lower bound computations during the optimization. By this large
parts of the search space can be pruned resulting in very fast algorithms.

Using the exact algorithm it is for the first time possible to exactly minimize larger
functions, e.g. adder functions with up to 64 variables. The heuristic approach achieves
speed-ups of 70% compared to the classical approach that does not consider lower bounds.

11 OHO — OBDD Heuristics Online

Arno Wagner, Universitat Trier
(http://www.informatik.uni-trier.de/TT/OHO.html)

One main problem with new published OBDD heuristics is that the information avail-
able to evaluate the characteristics of the heuristic is limited to the performance on some
limited set of benchmarks. While this is sufficient for a first impression, if there is need
for more information, like the performance on a special class of circuits, presently the only
option is to reimplement the heuristic or to obtain the code. To really work with a heuris-
tic one of these two things has eventually to be done, but as this is a lot of effort it is
unsuitable for early evaluation purposes.

To address this problem we are constructing a system, called OHO, that using the
WWW offers an easy way to use OBDD-tools online. The user is presented with a web-
form that allows to choose parameters and submit input data for the tool that contains
the heuristic. Presently available are Block Restricted Sifting and (soon) Sample Sifting in
SMV as well as Block Restricted Sifting, Sample Sifting and Linear Sifting within CUDD
via nanotrav.

We describe architectural and implementational aspects such as scalability, dependabil-
ity and flexibility. With our system it is quite easy to add additional user-interfaces and
OBDD-based tools. Adding more machines to do the actual computations is easy as well.
An additional benefit is that these machines doing the computations need not to be at our
site, but even remote machines connected to the internet can be used to do computations
with tools that are only available on these remote machines. Such remote computations
would not be visible to the user.

12 More Bad BDD Ideas

Alan J. Hu, University of British Columbia

Following my pattern from the seminar two years ago, I decided once again to present
ideas that did not work — as a basis for discussion and feedback. I presented three different
ideas:

1. For the problem of computing the existential quantification of the conjunction of a
set of BDDs, the idea is as follows:
Given 3z [e1 A ... A ¢yl
Let ¢ = 3z ¢;.

Let ¢; = ¢; | ¢;, where | denotes any simplification operation.
Then the desired result is
n
AN AN NI\ é).
i=1

——
This gets built as a single BDD.

Unfortunately, the method usually fails because the conjunction of the ¢; blows up.

2. In BDD result caching, the observation was made that results based on variables
earlier in the variable ordering represent more work. Hence, it might make sense to
give priority to higher-level calls. We were able to improve the hit rate, but not to
gain speed up. A major difficulty is that the cache gets called so frequently that we
cannot afford much computation.

3. I continue to feel that there must be some way to get “global” functional information
for variable ordering, rather than relying on the local search of e.g. sifting. For this
failed idea, we started out trying to use sparse matrix profile reduction heuristics
combined with ad hoc measures of affinity between variables. Eventually, we settled
on a simple heuristic:

(a) For variables i and j, ¢ < j, define
tii fur
@;; = min (—], &> ,
nj nj

where n; = number of nodes on level j
ti; = number of nodes on level j assuming z; is true
fi; = number of nodes on level j assuming x; is false

It is easy to get these numbers without building the cofactors.
(b) Make the matrix symmetric. a; = 1.
(c) Set the lower 90% of matrix entries to 0 to get a sparse matrix.

(d) Compute the order that pushes the zeros to the lower right.

This algorithm on the ISCAS 89 benchmarks produced results that were better than
window 4 to convergence and worse than sifting. It also ran fast, but not fast enough
to be interesting.

I closed my talk by emphasizing the need for good experimental methodology, especially
the need for good examples for benchmarks that are public, easy to process, but also large
and real.

The ideas presented included work by Felix Chary, David Currie, Paul Kundarewich,
and Kim Milvary-Jenson. They should share in the credit for any good ideas here; I assume
full responsibility for any stupidity.

10

13 An Implicit Method of Boolean Resubstitution in
Multi-Level Logic Synthesis

Shin-ichi Minato, NTT Optical Network Systems Labs., Japan

In recent a few years, we have been developing a multi-level logic synthesis program
based on implicit cube set representation with zero-suppressed BDDs (ZBDDs). Our pro-
gram "SDDOPT” is much faster than SIS, which is based on explicit cube set representa-
tion, and in many cases SDDOPT produces as good results as SIS in terms of optimization
quality. However, there are some exceptional cases where the result of SDDOPT is much
worse (more than 400%) than SIS’s result. In such cases, SIS uses Boolean resubstitution
techniques by using the correlationship of the multiple primary output functions. This is
sometimes quite effective, so we introduced this resubstitution techniques into SDDOPT.

SIS performs Boolean resubstitution using ESPRESSO based on explicit cube set repre-
sentation, but we developed a new method of Boolean resubstitution using ISOP (Minato-
Morreale) algorithm based on implicit cube set representation. In this talk, we show a
trivial but effective heuristic method to perform Boolean resubstitution using M-M algo-
rithm. Experimental results show that our method is very effective to the instances where
SDDOPT was much worse than SIS, and thus our method fills the gap between SDDOPT
and SIS in terms of optimization power. Computation time is a little increased, but still
much faster than SIS. Lastly, we can conclude that there are some typical cases where
the optimization result is very sensitive to the Boolean resubstitution, and our method is
useful to such cases.

14 In-Place Power Optimization for LUT Based FPGAs

Balakrishna Kumthekar, University of Colorado at Boulder

We consider a technique to perform power-oriented re-configuration of a system im-
plemented using LUT-based FPGAs. The main features of our approach are: Aggressive
exploitation of degrees of freedom, concurrent optimization of multiple LUTs based on
Boolean relation, and in-place reprogramming without re-placement and re-routing. Our
technique optimizes the combinational component of the CLBs after layout and does not
require any re-routing or re-wiring. Hence, delay and CLB usage are left unchanged, while
power is minimized. The algorithm operates locally on the various LUT clusters of the
network. It is applicable and best performs on large examples. An average power reduction
of 20% has been obtained on standard benchmarks.

11

15 Symbolic BDD techniques for Exact Scheduling

Forrest Brewer, ECE/UCSB Santa Barbara CA

We describe a technique for representation of CDFG resource scheduling on a BDD-
based automata model. This model is very efficient when compared to previous work and
several examples of exact solution of large problems are reported for the first time. Key to
this technique is the representation of our operation node on a single bit NFA automata.
In this way, all scheduling constraints are easily added to the automata transition relation.
Scheduling then proceeds via symbolic state enumeration until a terminal state is reached.
A reverse traversal then restricts solutions to only the shortest paths. In the case of
control dependent scheduling, added bits guard the switching behavior and implicitly allow
all forms of code hoisting and CDFG optimization. However, the set of minimum time
schedules must be validated to ensure causal scheduling. This is done using an iterative
fixed point procedure. We also introduced the problem of protocol based scheduling based
on the idea of automata co-execution in a generalization of this model.

16 MORE good BDD ideas

Andreas Hett, Universitat Freiburg

The MORE-approach idea performing synthesis by introducing a set of operator nodes
atop of the operand BDDs, shifting them by specialized level exchanges and regaining
canonicity by means of a reduction run, proved to be a good alternative for combinational
problems. However for sequential problems (e.g. model checking) synthesis behavior differs
a lot. Especially due to the lack of parallelity (e.g. pipelining) a CT (computed table)
has a much higher influence on the calculation process and this was added in our new
approach. In order to allow transformations on operator nodes (giving the opportunity to
eliminate operator nodes before actually carrying out the operator), an online-reduction
(for eliminating superfluous calculation paths as soon as possible) and the opportunity
to synthesize on selected “promising frontiers” we introduced a new implementation of
MORE. This last feature allows us to not only handle 1-path (DFS) or all nodes of a level
(BFS) but handling the most “promising paths” first. The best solution to find these paths
would be an oracle telling us in no time which sub-problem to solve first in order to get
the most reductions eliminating neighbored branches which leads to a better performance.
However this oracle doesn’t exist and we have to rely on an estimation of our current stage
(i.e. analysis of the BDD operands that are to be combined) to get this data. The better,
faster and more precise this estimation works, the more profit we can make, improving on
runtime and memory usage as well.

12

17 Improving Reachability Analysis by means of Ac-
tivity Profiles

Gianpiero Cabodi, Politecnico di Torino

Symbolic techniques are still limited by the size of the BDDs involved in computations.
Extending their applicability to larger and real circuits is still a key issue.

Within this framework, we introduce “activity profiles” as a novel technique to charac-
terize transition relations. We use an inexpensive reachability analysis phase as a “learning”
methodology to collect activity measures for each BDD node of the transition relation. We
operate within inner steps of image computations based on the relational product operator.
For each node of the transition relation we record countings of recursions and operation
cache hits, as well as a measure of newly generated nodes.

The above informations can be used for several purposes. In particular, we present an
application of activity profiles in the field of reachability analysis. We propose transition
relation subsetting and partial traversals of the state transition graph. We show that
a sequence of partial traversals is able to complete a reachability analysis problem with
improved memory and time performance.

18 Approximate Reachability Don’t Cares in Model
Checking

In-Ho Moon, University of Colorado at Boulder

RDCs (Reachability Don’t Cares) can have a dramatic impact on the cost of CTL
Model checking. Unfortunately, RDCs are often much more difficult to compute than
the satisfying set of typical CTL formulas. We address this problem through the use of
Approximate Reachability Don’t Cares (ARPCs), computed with the algorithms developed
for the VERITAS sequential synthesis package. ARDCs represent an upper bound on the
set of true reachable (Don’t Cares) states. ARDCs can be 10X to 100X (or much more
for very large circuits) cheaper to compute than RDCs, and in some cases have the same
dramatic effect on CTL model checking as the real RDCs. We also discuss the application
of ARDCs to the problem of exactly computing the RDCs themselves. Experiments on
industrial benchmarks show that order of magnitude speedups are possible, and occurs
frequently. The experimental results presented strongly support our claim that ARDCs
play a safe and important way out of a serious dilemma: RDCs are necessary for tractable
model checking of many large circuits, but the computation of the RDCs themselves in

13

often intractable. We include significant extensions of the VERITAS algorithms, and show
that they can be up to an order of magnitude faster, while computing a virtually identical
upper bound.

19 Decision Diagrams and Division

Christoph Scholl, Universitat Freiburg

Several types of Decision Diagrams (DDs) have been proposed for the verification of
Integrated Circuits. Recently, word-level DDs like BMDs, *BMDs, HDDs, K«xBMDs and
*PHDDs have been attracting more and more interest, e.g., by using *BMDs and *PHDDs
it was for the first time possible to formally verify integer multipliers and floating point
multipliers of “significant” bitlengths, respectively.

On the other hand, it has been unknown, whether division, the operation inverse to
multiplication, can be efficiently represented by some type of word-level DDs. In this
paper we show that the representational power of any word-level DD is too weak to effi-
ciently represent integer division. Thus, neither a clever choice of the variable ordering,
the decomposition type or the edge weights, can lead to a polynomial DD size for division.

For the proof we introduce Word-Level Linear Combination Diagrams (WLCDs), a DD
which may be viewed as a “generic” word-level DD. We derive an exponential lower bound
on the WLCD representation size for integer dividers and show how this bound transfers
to all other word-level DDs.

Moreover we presented an idea how to verify dividers using word-level DDs all the same
(by means of a transformation approach).

20 A Word-Level graph manipulation Package

Stefan Horeth, Siemens AG

In the talk I presented a decision diagram package for Word-level graph manipulation.
The package is a framework that supports many well-known, ordered types of decision
diagrams, like OBDDs, xBMDs and K«BMDs.

Major features of the package, currently not found in other implementations are

e its support for hybrid operations involving multiple graph types

e its support for dynamic reordering techniques for graph types like #BMDs or KiBMDs

14

e a complete set of data-path operations.
I like to invite everyone to check-out the web-page
http://www.rs.e-technik.tu-darmstadt.de/~sth

for background information and demos.

21 Automatic Test Derivation for Real-Time Systems

Brian Nielsen, Aalborg University, Denmark

For real-time systems the timelyness of a response is equally important as the correct
type of response. An actual implementation of such a system must therefore be checked
by means of testing with respect to both logical and timing errors.

We propose an algorithm for automatically deriving test-cases from specifications given
as Event Recording Automata, a subclass of timed automata. To aid testselection we
partition the statespace of the specification into coarse equivalence classes and cover each
with at least one test. The reachable parts of the equivalent classes can be computed by
solving linear inequalities.

Our technique is implemented in a prototype tool which uses difference bound matrixes
as the underlying data-structure.

22 Satisfiability on a netlist of BDDs

Vigyan Singhal, Cadence Berkeley Labs.

We are interested in solving a SAT problem, expressed as a set of BDDs: the root
BDD, f(X,Y) and the cutpoint BDDs, y; = f;(X,Y). Here X and Y represent the sets
of input and cutpoint variables. These problems arise from solving analysis problems on
Boolean circuits, where the circuits are so large that building one BDD is impossible,
and cutpoints (denoted by Y variables) have to be introduced. Our applications for these
problems include timing analysis, combinational verification, LTL model checking and
directed simulation.

The basic algorithm to solve this problem is to successively substitute the cutpoint
functions until either a) the root BDD is 0, or b) there exists a satisfiable path in the
root BDD consisting of only X variables. Clearly the order of composition is important,

15

and we have some heuristics. In our experience, using this compose algorithm alone does
not yield a robust method. It is best to balance this algorithm with other search-based
methods which have complementary strengths. As we show, it is important to integrate
the networks tightly so that each method yields a successively simpler problem for the next
method.

I also present an open problem: To determine the complexity of: “Given two sequential
circuits with same number of latches, does there exist a one-to-one mapping of latches such
that the associated combinational function for the next state functions of each latch pair
are equivalent (note that the input values are determined by the one-to-one mapping). My
guess is that the problem is ¥2-complete.

23 Minimization and Approximations of Binary De-
cision Diagrams

Fabio Somenzi, University of Colorado at Boulder

We consider the problem of deriving a small BDD from a given function interval. We
assume a fixed variable order and suppose that the function interval is given as either a
lower bound and upper bound, or an on-set and a care-set. We review several algorithms
that have been proposed for this problem that we call the minimization problem.

The first and most influential algorithm for the minimization problem is due to Coudert,
Berthet, and Madre. It is known by the name of “constrain”. We examine its properties
and contrast it to more recent algorithms like “restrict”, “compaction”, and “squeeze”.
The last one is a new algorithm based on one-sided matching and working on function
intervals specified as pairs of bounds.

The approximation problem is the problem of finding a function at a small Hamming
distance from the input function and a small BDD. If the new function is contained in
the old one, the problem is called underapproximation. We review several algorithms that
solve the underapproximation problem by redirecting edges inside the BDD.

Early algorithms like “heavy-branch subsetting” and “short-path subsetting” run in
time linear in the size of the input BDD. More recent algorithms trade off increased run-
time for higher quality of the solution. In particular, we discuss a new algorithm called
“remapping underapproximation”, that combines the remapping idea of “constrain” with
a scheme for the estimation of the impact of redirecting one edge. The algorithm is “safe”
in that it does not decrease the density of a BDD (the ratio of minterms to nodes).

16

