Dagstuhl Seminar 99071

Software Engineering Research and Education:
Seeking a new Agenda

Taking Stock of Software Engineering Research and Education
What do we know? What should we know?

February 14 — 19, 1999

organized by

Ernst Denert, sd&m and Technical University Minchen, Germany
Daniel Hoffman, University of Victoria, Canada
Jochen Ludewig, University Stuttgart, Germany
David L. Parnas, McMaster University, Canada

Preface

Software Engineaing shoud address and solve, existing problems.

Software Engineaing as a branch of computer science emerged from discussons and
conferences in the late sixties. Its goal was to apply knowledge and techniques from
traditional engineeaingto the mnstruction and maintenance of software.

Now, asthe end of the century draws nea, many people gply concepts, techniques, and
notations creaed in, and around the field of software engineeing. But we are far avay from a
common undrstanding d what the important problems are and which approaches are
appropriate. We have many conferences and magaznes of questionable value, and littl e
agreament abou what shoud betaught in universities and which topics $1oud be further
investigated.

Thisworkshop attempts to read an agreement about these questions, for those who
participate, but hopefully al'so with some dfed on our colleagues who dont. By discussng
our ability to solve thase problems which adually occur in software engineaing, we hopeto
identify what shoud bein the curriculum and in the reseach agenda.

Jochen Ludewig, 199-02-16

Introdu ction

Thisreport istheresult of avery intensive five-day workshopat Dagstuhl in February 1999
As part of the aanourcement and invitation, alist of suggested tasks was distributed; those
who intended to participate were asked to submit aposition paper on at least one of the
subjeds, and to judge the current state of all the subjeds. Hereistheinitial li st:

Analyzeintended application, write requirements document

... to determine the requirements that must be satisfied. Record those requirementsin a
predse, well-organized and easil y-used dacument.

Seled the basic hardware and software components.
Analyzethe performanceof a proposed design,

... either analyticdly or by smulation, to ensure that the proposed system can med the
applicaion's requirements.

Producean estimate of the ast (effort and time) of the proposed system.
Design the basic structure of the software,

... I.e., itsdivisioninto modues, the interfaces between thase modues, and the
structure of individual programs while preasely documenting all software design
dedsons.

Analyze the software structure for itsquality,
... I.e. for completeness consistency, and suitability for the intended appli cation.
Implement the software asa set of well-structured and documented programs.
I ntegrate new software with existing or off-the-shelf software.
Perform systematic and statistical testing
... of the software and the integrated computer system.
Revise and enhance software systems,

... maintaining (or improving) their conceptual integrity and keging dauments
complete and acairate.

Demonstrate that the resulting software medsthe expedations.

At the beginning of the workshop, participants reduced and modified thislist for various
reasons, until eight topics for discusson and elaboration were identified:

* Requirements

* Desgn, Structures

* Implementation

* COTS (commercia-off-the-shelf software)
o Software Families

o Test

« Maintenance
e Measurement

Later on, thetopic ,Software Configuration Management” was added.

Out of 23 people who planned to perticipate, three(including Dave Parnas, who had initiated
this workshop) were not able to attend, mainly dueto ill ness Hereisthelist of thase who
adualy arrived at Dagstuhl. They al stayed for at least four days, most of them for the full
workshop. Seethe mmplete list, including addresses, in the gpendix.

Joanne Atlee Motoei Azuma Wolfram Bartussek
Jan Bredereke Ernst Denert Karol Fruhauf
Martin Glinz Daniel M. Hoffman Heinrich Hul@mann
Pankg Jalote Ridha Khedri Peter Knoke
Stefan Krauf3 Jochen Ludewig Lutz Prechelt
Johannes Siederd eben Paul Strooper Walter F. Tichy
David Weiss Andreas Zéeller
Everybody marticipated in two (or threg groups:
Design, Software Mainte- Config. Measure-
Structures Families nance Mgmt. ment
chairing Sieders- Weiss Zeller Tichy Azuma
leben
Requirements Atlee Atlee Bartussek | Bredereke
Glinz Weiss Khedri
Prechelt
Implementation Knoke Denert Knoke
Siedersleben Ludewig
COTS Strooper HuRmann Strooper Kraul3 Tichy Jalote
Zeller
Test Hoffman Hoffman Frahauf Azuma

Predhelt: also in Implementation

This organization all owed for two medings every day, plustwo plenary medings where the
intermediate results were presented and dscussed. The @ntent of the report was complete by
the end d the workshop it was revised and finished after the workshop. Dan Hoffman and
Stefan Krauf3 dd this work.

The results, thoudh presented and dscussed in plenary medings, are cetainly not agreed
upon byall participants in any detail; we do believe, however, that they in general expressour
consensus, and can be used as a starting point for further discussons. Severa participants
have expressed their interest in a permanent adivity alongthe linesinitiated at Dagstuhl; we
will try to keep the spirit alive by presenting ou results in conferences and magaznes,
hopefully stimulating responses from thase who were missng. Software Engineeing needs
definitely more work like this.

Readers of thisreport, who are interested to contribute, or just ke in touch, are invited to
contad any of the organizers.

All participants enjoyed the excdlent working conditions provided in Dagstuhl, and the quiet,
but efficient suppat from the staff there.

Topics
Lea authors are shown below in parentheses.

1. Requirements (JOaNNEALIEEccoviiiii i 9.....

Analyzethe intended appli caion to determine the requirements that must be satisfied. Reaord
those requirements in a predse, well-organized and easily used dacument.

2. Structures (Johannes Siederdeben) ... 17..

Designthe basic structure of the software, i.e., itsdivisioninto modues, the interfaces
between thase modues, and the structure of individual programs while preasely documenting
al design dedsions.

3. Implementation (Peter KNOKE)cooiiiiiiii e 18...
Implement the software & a set of well-structured and daumented programs.

4, COTS (PaUl SEFOOPEI) ..iitiiiiiie et e e e e e e eaa s 23....
Integrate new software with existing a off-the-shelf software.

5. Test (Dan HOffMaN)ooiei e e 29.....
Perform systematic and statisticd testing d the software and the integrated computer system.

6. FaMIlieS (DaVid WEBISSccviiiiiiiii e e 35....

Designaset of similar software products as afamily exploiti ng the simil ariti es between the
products.

7. Maintenance (ANAreas Zellr) ... 41...

Revise and enhance software systems, maintaining (or improving) their conceptual integrity,
and kegoing dauments complete and acairate.

8. Measurement (MOLE AZUMA)uiiiiiiiiee e e e e e e eaaas 44...

Maintain product and processmetrics and measurements, and use them to evaluate existing
and future products and processs.

9. Configuration management (Walter Tichy) ..o 4.
Keg order in long-lived, multi-person software projeds.

Tabular Evaluation Format

In this report, tables are used to provide astandardized evaluation of the eisting means for
ead task, i.e., to solutions of the problem posed by performing the task. Each table row
corresponds to ameans of performing atask. Thereisonetable column for ead of the
foll owing attributes:

Effectiveness. How well the solution works, considering fadors guch as how much of the task
it covers and how gooda solution it is to the problem pased by acamplishing the task.
Ratings are High (the solution is very effedive), Medium (the solutionis ssmewhat effedive),
and Low (the solutionis nat very effedive).

Affordability. The extent to which atypicd software development organizaion can afford to
perform the solution. Notethat it may be that a solution is high cost, but that an organization
canna afford not to use it. Ratings are High (the solutionis very affordable), Medium (the
solutionis ssomewhat affordable), and Low (the solution requires relatively high investment).

Teachability. The extent to which the solution can be taught in a University, including the
body d knowledge that must be anveyed to students and how well we understand how to
convey that body d knowledge. Ratings are High (we know how to tead the solution very
well), Medium (we know how to tead the solution to some extent), and Low (we do nd
redly know how to tead the solution).

Usein Practice. The extent to which the solution has been adopted byindustry. Ratings are
High (the solution iswidely used), Medium (the solutionis smewhat used), and Low (the
solutionis not used very much). For use in pradicewe dso provide an dternative view of the
evaluation, namely the dassof users who have adopted the solution, where classis one of the
following: laboratory users (LU), innovators (IN - thase who are willing to use ealy
prototypes of the solution), ealy adopers (EA - those who are willi ng to use alvanced
prototypes of the solution), ealy maority (EM - those who are willi ng to be the first users of
industrial-quality versions of the solution), and late mgjority (LM - those who will not use the
solution until thereis considerable industrial experiencewith it). Note that these cdegories are
taken from Diffusion of Innovations by E. M. Rogers.

Research Potential - The extent to which the set of existing solutions to a problem could be
improved. Ratings are High (better solutions would gredly improve dfediveness
affordability and/or teadabilit y), Medium (better solutions would provide some
improvement), and Low (new solutions would na be substantially better).

Requirements

JoanneAtlee Wolfram Bartussk, Jan Bredereke, Martin Glinz,
Ridha Khedri, Lutz Prechdt, David Weiss

The Question

How can we analyzethe intended appli caion to determine the requirements that must be
satisfied? How shoud wereaord those requirementsin apredse, well -organized and easil y-
used dacument?

Requirements Engineeing is the understanding, describing and managing of what users
desire, need and can afford in a system to be developed. The goal of requirements
enginegingisa cmmplete, corred, and urambiguouws understanding of the users requirements.
The product is a predse description of the requirementsin a well-organized dacument that
can bereal andreviewed by both users and software devel opers.

Short answer — Partially Solved

In pradice thisgoal israrely achieved. In most projeds, a significant number of software
development errors can be traced to incomplete or misunderstood requirements. Worse,
requirements errors are often not deteaed urtil later phases of the software projed, whenitis
much more difficult and expensive to make significant changes. Thereis aso evidencethat
requirements errors are more likely to be safety-criticd than design a implementation errors.

We nedl to improve the state of requirements engineaing by improving our appli cation of
existing pradices and tedhniques, evaluating the strengths and weaknesses of the existing

pradices and techniques, and developing new pradices and techniques where the existing
onesdo nd suffice

Long answer

The aove short answer isunsatisfying kecause it doesn't convey the different aspeds of the
question. The axswer depends on

» thetask to be performed (e.g., €licitation, documentation, vali dation)

» the gplicaion danain (e.g., readive system, information system, scientific
applicaions)

» thedegreeof familiarity (i.e., innovative vs. routine gpli caions)

» thedegreeof perfedion desired (e.g., 100% perfedion or "goodenough to keep the
customer satisfied")

Rather than provide acomplete answer, we choase to answer the question an the basis of the
different requirements engineaing tasks. With resped to the other aspeds of the problem, our
answers are domain-independent, they apply to innovative goplications rather than routine
applicaions, and they apply to the development of high-quality software. If we had
considered a different dice of the problem, we would have arived at different answers.

Substructure of the problem

We divide requirements engineeinginto five tasks.

Elicitation - extrading from the users an understanding d what they desire and neadin a
software system, and what they can afford.

Description/Representation - recording the users requirements in a predse, well-organized
and easil y-used dacument.

Validation - evaluating the requirements document with resped to the users uncerstanding of
their requirements. This sub-task also involves cheding that the requirements document is
internally consistent, complete, and urambiguots.

M anagement - monitoring and controlli ng the processof developing and evaluating the
requirements document to ease its maintenance and to tradk the acountability of faults.

Cost/Value Estimation - analyzing the asts and kenefits of both the product andthe
requirements engineaing adivities. This sub-task also includes estimating the feasibility of
the product from the requirements.

Table 1. Structure of the topics of Requirements engineering

1 Elicitation
1.1 Gathering Information (interviews, questionnaires, joint meetings...)
1.2 Requirements analysis methods (SA, OOA, scenarios,...)
1.3 Prototyping
1.4 Consensus building and view integration
2 Description/representation
2.1 Natural language description
2.2 Semiformal modeling of functional requirements
2.3 Formal modeling of functional requirements
2.4 Documentation of non-functional requirements
2.5 Documentation of expected changes
3 Validation
3.1 Reviews (all kinds: inspection, walkthrough, ...)
3.2 Prototyping (direct validation by using prototype / testing the prototype)
3.3 Simulation of requirements models
3.4 Automated checking (consistency, model checking)
3.5 Proof
4 Management
4.1 Baselining requirements and simple change management
4.2 Evolution of requirements
4.3 Pre-tracing (information source(s) - requirement)
4.4 Post-tracing (requirement ~ design decision(s) & implementation)
4.5 Requirements phase planning (cost, resources,...)
5 Cost/value
5.1 Estimating requirements costs
5.2 Determining costs and benefits of RE activities
5.3 Determining costs and benefits of a system (from the requirements)
5.4 Estimating feasibility of a system

10

For eadh task, we determine aseledion of techniques that have been propcsed as lutionsto
that task (seeTable 1). Thislist shoud neither be considered complete, nor shoud it be
interpreted as our opinion of the best techniques; it is smply asampling d the solution space

of the task.

Also, we do nd consider any spedfic tedhniques for any task (e.g., UML coll aboration
diagrams). Instead, we consider how well classes of techniques lve aparticular task.
Answers for spedfic tecdhniques would be more interesting and more useful than answers for
clases of techniques, but would have gredly lengthened this report.

Ranking of the Different Aspects

Thetablesin thissedion provide an evaluation of how well classes of tedhniques lve the
problems posed by performing the task.

Problem: Elicitation

Ranking d solutions

Solution Effective- | Afford- Teach- Use in Research | Comments
ness ability ability practice potential
Gathering information | medium high medium |ad hoc: high | medium
(interviews, sound: low
guestionnaires,
joint meetings...)
Requirements analysis | medium medium | high? low medium 1
methods and
languages (SA,
OO0A...)
Prototyping high low medium |ad hoc: high |low
sound: low
Consensus building & | medium low medium? | low high

view integration

1. Analysis itself is hard to teach, but some concrete languages and methods are easy.

11

Problem: Description

Ranking d solutions

Solution Effective- Afford- | Teach- Use in Research | Comments
ness ability | ability practice |potential

Natural language medium? high medium | high medium

description

Semi-formal modeling of medium - high high medium? | medium -

functional requirements high high

Formal modeling of medium low medium | low medium 1

functional requirements

Documentation of high low low - low high 2

non-functional medium?

requirements

Documentation of high high medium | low medium

expected changes

1. Affordability is high in specific situations when checking important or safety-critical properties
2. Rankings are for those techniques we know (however, we do not know enough)

Problem: Validation

Ranking d solutions

Solution Effective- | Afford- Teach- Use in Research | Comments
ness ability ability practice | potential
Reviews (all kinds) high high high high medium
Prototyping high medium medium | medium | medium
Simulation high, if low - medium | medium |low high?
feasible
Automated checking | high, if medium high low high
(consistency, feasible
model checking)
Proof high, if low (except low low high 1
feasible safety-critical
systems)

1. Research potential high especially concerning feasibility and developing new methods

12

Problem: Management

Ranking d solutions

Solution Effective- | Afford- Teach- Use in Research | Comments
ness ability ability practice | potential

Baselining requirements, high high high medium | low

simple change management

Evolution of requirements high medium - | low - low medium -

high medium? high?

Pre-tracing medium | medium? | medium |very low |medium?

(info sources <->rgmts)

Post-tracing medium - | low - low - very low | medium?

(rgmts <-> design&code) high medium? | medium?

Requirements phase high high high? medium | low

planning

Problem: Cost/Value

Ranking d solutions

Solution Effective- | Afford- | Teach- |Usein |Research | Comments
ness ability ability practice | potential

Estimating requirements cost medium | medium | medium | low high 1

Determining cost/benefit low low low low high 2

of RE activities

Estimating costs/benefits of a medium | medium |low low high 3

system (from the requirements)

Estimating feasibility medium | low low medium | high

1. Experience-based techniques dominate in practice

2. Only ad hoc techniques, motivated by fear of not doing them
3. Requires marketing techniques as well as technical ones

13

14

uem Aayl Teym MouU>| 10U Op SIBS

*919|dWO02 Jou paJiapIo Jaylau SI 1s1| 8yl ‘swiajqoud o 1s1) ajdwies e S| mojag “Jayjoue auo Yim
a|giedwodul aJe Auew pue ‘sased ay Jo |[e JaA0d Jou op Aay) ‘400.d|00) 10U ase sanbiuyoa)
9sSay) ‘JI9AOMOH "S9|0B]ISUO Ulelad awodlan0 pue swajqold jualayip aajos djay o1 padojanap
uaaq aney sanbiuyoal poob [e1anas ‘sjuswalinbal Jo 189S 1094100 pue 818|dwod e BulAjoads
pue Buniold 0] S8jorISqo pue swa|qoid ay) Jo aleme a(g 0] paau siaaulbua sjuswalinbay

S9|2B]ISqO pue SwWa|qoid

‘Sjlapouw [en1daosuod

S19sn 8y} yorew suonduoasap s1aauibua ayl 1ey) aplaap siasn ayl usym sareulwtal ssasoid
8yl "slolneyaq asioaid 810w pue a1eIndoe 8I0W JUSWNIOP pUE DI SI9auIbus sjuswalinbal
8yl pue ‘spaau J1ay) Jo Bulpur)siapun 8]1810U02 8I0W B WI0J SI9sn ay) ‘uonelall yoes Y

uonepifen 1o}
*suonduosap ‘sjapow

(s)4oauIbug
sjuswalinbay
uonepieA (s)esn

uonduosaq

s|japowl
Buipiing
Juswalinbal
IpuelSIapun

-19pun a|qepiole

/pap]au
/paiuem si jelym
Buipueisiapyin
ue Buip|ng

uoneNoI|T

3oegpaa) ‘sjuswalinbal

‘sjuswialinbal
118y} Jo Buipuelsiapun J1ay) 1surebe |apow S1aaulbua ay) a1eneAs s1esn ayl e
‘uonewoyul
paldI@ 8y} uo paseq Joineyaq palinbal Jo [apow e pjing siaauibua sjuswalinbalayy .
'$19sn ay) wolj sjuswalinbal 11018 s1eaulbua syuswalinbal ayl .
‘papaau/palisap S loineyaq reym jo Buipueisiapun ue dojonsp slasn ayl e

:SYSe] Urew Inoj Jano salelall ssadoud Bulieauibus syuswalinbal ayl

ssa%0.1d-3Y 2Iseq ay L

aonoeud ‘aanoeud ‘eonoeld G
sanbiuyoa) Jo uodBIBS vV v
34 poob Jo sgidipuud ayl ‘g
paJajunodua sajoeIsqo pue swajqosd syl g
ssadold-g4 o1Iseqayl T
‘punose

palajuad aqg pjnoys bBuldauibus syuswalinbal jo Buiyoes) eyl swuiod ofew oAl painuapl apn

ybnel ag pinoys 1eym

* Users pedfy requirementsin terms of solutions

» Different stakeholders have different, possbly inconsistent views and reeds
e The"right" users are unknown or unavail able

* Requirements evolve (shoaing at moving targets)

Principles of good RE

Requirements enginees nead to uncerstand and ke aleto apply goad engineaing principles,
asthey pertain to dliciting and dacumenting requirements. Several goad techniques have been
developed that codify the goplication of certain principles. However, the principles have
beame lost in the presentation d thetedhniques. Thisisaproblem becaise the techniques
themselves are not complete; they do nd cover every possble situation. Requirements
engineas ned to be dleto fal badk on the fundamental principles when the techniques let
them down. Below isasamplelist of RE principles; thelist is neither ordered nor compl ete.

* Separation d concens

* Abstradion

* Predsion

* Planningfor change

* Reviewabhility; (automated) anayzability

* Continuots validation

» Suppat for testing

» Suppat for achieving consistency and completeness

* Variation d depth and predsion to acaommodate the cost and risk of the problem

A selection of techniques

Requirements engineeas need a wlledion d effedive techniques for €liciting, describing,
validating, and managing requirements. The tedhniques are Smply heuristics for solving the
problems, overcoming the obstades, and adhering to the principles; they are not complete
solutions. Therefore, the spedfic techniques that are taught shoud be chasen for their ability
to solve key problems and for their coverage and suppat of key principles. Also, it is
important to tead na only the bare techniques, but also where they can be applied effedively
and why they work.

Practice, Practice, Practice

It is essential that the students apply in pradicewhat they have been taught. The @urse must
have aprojed comporent where the students are exposed to the problems and obstades and
can pradicethe gplicaion of some of the principles and techniques. A goad projed would
include design, implementation, and enhancement of the requirements, so that the
consequences of good @ bad requirements engineaing are reveded and can be experienced.

15

Research agenda

In general

The following reseach problems are nat spedfic to requirement engineaing. They arise from
the structure of the table format used to evaluate problems and techniques, and apply to all of
the SE tasks:

» Evaluate the effedivenesgcost of existing techniques

» Develop rew tedhniques that
» adhere more dosely to more principles/ negled fewer ones
* doabetter job d solving problems completely/overcoming olstades
* have alower cost

In particular

The following reseach problems are thase sub-tasks and techniques which we rank as having
highreseach paentia - either becaise existing tedhniques are nat very effedive, aretoo
expensive, or are deemed too dfficult-to-use for widespreal pradice

» Elicitation:
e Consensus building & view integration
» Description:
» Semi-forma modeling of functiona requirements
* Documentation d nonfunctiona requirements
* Vdidation:
e Simulation
* Automated chedking
* Prodf (for high-risk-systems)
e Management:
* Requirements evolution
* Cost/value:
» Estimating requirements costs
» Determining costs and tkenefits of RE adivities
* Determining costs and kenefits of a system (from the requirements)
» Edtimating feasibility of asystem

16

Software Design

JoanneAtlee Ernst Denert, Martin Glinz, Dan Hoffman, Heinrich Hul3mann,
Lutz Prechdt, Johannes Siederdeben

The Question

Designthe basic structures of the software, evaluate competing design aternatives, and reuse
existing designs whenever possble.

Short Answer

The designtask is ©lved at the level of individual modues, but not solved at the level of
system architedure.

Directions for Research and Teaching

1. We believe most PRINCIPLES of succesdul design are known:

» describe parts by their interfaces
* hide detall s behind interfaces

* sSegparate mncerns

* designfor change

2. All designtechniques are mostly heuristics for applying these principles. Their success
depends on the degreeto which they enforce or encourage the use of the principles.

3. For the design of one or afew modues, sufficient techniques are avail able, e.g. objed
oriented methods, structured design, design petterns.

4. Teading hesto make sure that the principles of separation d concerns and information
hiding are nat forgotten, as they often are, when teading oljed oriented methods.

5. For the design of system architedures, the known tedhniques are not sufficient.
Substantial reseach effort will be needed in order to develop sufficient techniques. The
emerging poposals must be validated.

6. Wedo nd know how to relate different levels of abstradionin alarge system. Since
this cgpability isrequired for producing a mnsistent design, morereseach isneealed in
thisarea

7. We shoud colled architedural patterns, that is, proven and concrete architecural
building Hocks aimed at particular problems. These may or may nat be domain-
speafic. The biggest such patterns would be reference achitedures for a particular
classof applicaions. This approac will yield useful results faster than attempts to
define new methods based on first principles.

8. We shoud study succesdul projeds. Thiswill contribute to bah, (5) and (7): Studying
the structure of the systems helps identifying architecural patterns and studying the
design pocessmay tell us which adivities lead to a succes§ul design. The study o
projed fail ures would also help.

17

Software Implementation

Ernst Denert, Peter Knoke, Jochen Ludewig, Lutz Predhelt, Johannes Siederdeben

Topic Description

Implement the software & a set of well-structured and daumented programs.

Assumptions

The following assumptions apply to this edion. They were made to all ow rapid focus with
asociated resultsin a short time.

Goodrequirements and design dacuments exist, and the implementer has accessto
these documents.

The implementer's primary job is to implement the software design using a
programming languege of some kind. He creaes ource @de which redi zes the intent
of the design. This programming language can range from assembly language through
conventional 3rd generation languages, objed oriented languages, and visual
programming languages to 4th Generation Languages.

The implementer's job includes unit testing, the results of which serve & evidence of
satisfadory implementation. It also includes good d@umentation of the source @de.
However, the implementer'sjob dces not usualy include integration testing a full
system testing.

The implementation phase typicdly includes sich quality-enhancing processes as
walkthroughs and code inspedions in which the implementer must participate. The
inspedions may range from persona inspedions to formal inspedions by programmer
pees.

The emphasis of this edionis primarily onimplementation as an individual adivity,
as oppased to implementation as ateam adivity.

The implementer does detail | evel design, e.g. designat amodue level. He hasto ded
with ambiguous, incomplete or passbly incorrea design dauments, and he has the
cgpability to ded with such phenomena. If the implementer needs to repair such design
faults or weaknesses, he is aware of and complies with suitable procedures st up for
such cases.

Implementation for or with code reuse is outside the scope of this sdion.

The primary focus of this dionis on the implementation d standard information
systems ftware. Other areas such asred-time software, embedded system software,
and software for parallel systems are outside the scope. Most emphasisison generic
isaues rather than damain or appli cation-speafic matters.

18

The Problem

The problem isthat the quality of the software implementation is generally not as goad as it
could and shoud be. Quality source @de isimportant, becaise poa source ®de increases
software test time and cost, deaeases ftware performance and reduces ftware
maintainabilit y.

The Question

How can this problem situation beimproved by various means, including SE teading, SE
reseach, or other means?

Short Answers for Solutions

SOL 1: Programming as an adivity shoud recave more enphasis and credit by
management. Spedficaly, programming positions sioud befill ed with skill ed and

experienced people, i.e., quality people.
Ranking: SOLVED, but not STANDARD OPERATING PROCEDURE.

SOL 2: SE teading shoud beimproved so that more highly skill ed and professonal
programmers are educated and trained.

Ranking: SOLVED, but not STANDARD OPERATING PROCEDURE.

SOL 3. Software engineea's and their management shoud seek to improve their management
of change (i.e., reduce daos) inthe programming language and programming
environment techndogy aress.

Ranking: PARTIALLY SOLVED.

Rationale for Ranking

SOL 1: SOLVED becaise management can presently dedde to commit resources to this
areg butitisnot STANDARD OPERATING PROCEDURE for management to
apply the best and most experienced peopleto programmer (coder) positions.

SOL 2: SOLVED becaise for dmost any programming areathere ae text books and sources
of expert opinion. However, in some places where programming is taught the best
teading padicesare not used. Thereis asubstantial gap between the known best
teading padices and the widely used teating pradices. The problem is aggravated
by rapidly changing implementation techndogies. The use of the best pradices here
isnot STANDARD OPERATING PROCEDURE.

SOL 3: PARTIALLY SOLVED. Change management pradices of some sort are inevitably
used in al areas of rapid techndogica change. However, these pradices tend to be
"ad hac': they are usually neither general nor well -defined. Change management
pradices must be used by all software developers, but the use of agoad set of these
pradicesisnot STANDARD OPERATING PROCEDURE. The SEI CMM
(Capability Maturity Model) includes Techndogy Change Management as a Key
ProcessArea & Level 5, but most software development organizations today are

19

operating at CMM level 2 or 3 at the most. Many such organizaions have littl e or no
knowledge of the SEI CMM.

Examples, Limits

SOL 1 Examples

Often, yourng people aefast coders, rapid leaners of new programming languages, paid a
relatively low salary, and willi ng to work long hours of unpaid overtime in developing
programs. This stuation provides an incentive for managers, neading to get alot of
programming dore fast, to hire young, inexperienced, and maybe poorly trained
programmers. The damaging effeds of such dedasions might not be seen for some time.
Microsoft iswell known for routinely hiring young bright, hardworking programmers
(however, usually such programmers serve initially in software test positions).

It is understandable that managers in software development companies, faced with the dhoice
of possbly bad code discovered and regretted |ater versus the nea certainty of bankruptcy
tomorrow, might opt for the former. This particular tradeoff (quality vs. cost andtime) is
definitely domain spedfic. A SpaceShuttle which blows up due to a software failurein the
full view of millionsisathingto be avoided in spite of high costs of its avoidance A word
processng program which occasionally crashes when an esoteric feaure is used is another
matter.

One aontributor to this sedion mentioned a possble management palicy of not hiring an
implementer who has not written at least one big program (say, 5000 LOC). Such apdlicy is
domain spedfic. Thereis now a amnsiderable demand for people who can quickly produce
Web Pages. At minimum, such atask may require alittl e knowledge of HTML. It iseasy to
lean the use of HTML, but experience and credivity are required to produce consistently
goodweb pages.

One aontributor to this sedion nded that an evaluation of good pogramming skill sis needed
at some time (by induwstry if not by the university). Microsoft routinely does this evaluation at
new hire interview time, where the reauiters are themselves programmers.

SOL 2 Examples
The teating d implementation (programming) is often dore by instructors with no interest
and noexperience

More emphasis ioud be placal onreading goal code. The questionis, where to look for
examples of such goodcode.

A good pogrammer (coder) shoud know when to use REPEAT, when to use WHILE, etc.
The use of assertions and precondtions, as recommended by Dijkstra, may be desirable.

Coding can beregarded as acraft (Similar to carpentry). If so, perhaps teading techniques
used for teading aher crafts are gpli cable to teading coding.

Walkthrougls, which may be important for good quality code, may be difficult for code in
languages like a Smalltalk or C++.

20

Books like "Elements of Programming Style" can be helpful in reducing the anount of bad
code being produced. However, "goodstyle" may be programming language and computer
platform dependent. Perhaps there exists a wre of "Good Programming Style" which is
independent of program language and computer platform.

Good daumentationis reagnzed as a solved problem, but it isnot SOP.

In implementation, it may be desirableto separate interfaceisaues from other implementation
isues, espedaly if portability and flexibility are desired source @de fedures.

SOL 3 Examples

The SEI Capability Maturity Model level 5 includes a Key ProcessArea cHled Techndogy
Change Management (see"The Capability Maturity Model: Guideline for Improving the
Software Process', CMU SEI, Addison-Wedley, 1995

What Can Be Taught? How?

Everythingin thistopic area ca usually be taught withou grea difficulty. However, acalemic
palicy isaues determine what will be taught and bywhom. Some of the teading/training can
be delivered ouside the universities. If programming isindeel a craft, then perhapsit can be
taught with theaid of apprenticeships and internshipsin industry.

Research Topics, Goals

Not much nealis e for reseach in the implementation area However, some potentially
promising research areas examples are noted below.

* Reseach might be desirable into what teading methods and rogramming styles work
best and why, or what isimportant and what is not. This could be described as
"empiricd" software engineaingreseach. There could ke reseach into the impad of
language limitations, such asalimitation an the dl owed number of charadersfor an
identifier. There wuld be reseach into the costs of bad or non-existent program
documentation, such asin the case of theY 2K problem. What are the advantages and
disadvantages of the use of multi ple-level inheritance a& oppased to single level
inheritancein olged oriented programming languages? What were the true
quantitative asts of the use of the GOTO statement and perhaps resultant " spaghetti
code"?

* Reseach could be doreto find quantitative evidence of the importance and criticdity
of high quality code. Such evidence, if avail able, could be used to convince
management to apply better (more expensive) people to coding asks (cf. solution#1).
Such research might use methods smilar to thase now being used to determine the
adverse impads of Global Warming.

* What arethe trendsin the evolution of programming languages, and what will betheir
shorter and longer term impads on software implementation. One seminar participant
remarked that a passble goal of software engineaing wasto take the fun aut of
implementation. What is the likely impad of ever-higher-level languages onthe
implementer?

21

* Somereports on theimpad of passble SE advances asert that ROI (Return On
Investment) is much higher for areaof SOFTWARE REUSE than for the areas of
BETTER TOOLS and BETTER PROCESS. Perhaps reseach into matters like this

would be worthwhil e.

The Standard Table

Problem: software implementation (code) quality is lower than desired.

Solution Effective- | Afford- Teach- Use in Research |[Remarks
ness ability ability Practice Needs
more high high -- low - see above | partly mgmnt
implementation medium policy problem,
emphasis use better people
for coding.
better high high N/A low - seek better || partly university
programming medium teach policy problem
techniques methods,
better
curricula
PSP training high high high low - rigid training
medium disc., diff or std
code reading high high medium low may lack suitable
training books, language
dep.
better style high high high low - language dep.?
training medium separate
handling of
interface
more prog. high high high low - each student
experience for medium writes big prog.
students (5000 LOC)
better mngmt. of | high high high low - hard to do with
prog. lang. and medium changing tech.

env. change

env.

22

Integrating New Software with Off-The-Shelf
Software

Heinrich Hussman, Pankaj Jalote, Stefan Krauf3, Paul Strooper,
Walter Tichy, Andreas Zeller

The question

Commercia-Off-The-Shelf (COTS) products have the potential to reducethe ast and time-
to-market for software gplicaions. Thisisone of the main reasons that COTSis now being
mandated in Request for Tenders by certain organizations and that some software procurers
are asked to justify why they are not using COTS.

To focus our discusson, we first define what we mean by COTS and the type of COTS
products that we want to consider. We will use the foll owing d&finition of COTS:

"A COTS software product provides a core functionality that is patentialy useful in many
systems. It is provided by athird party organizaion which is different from the developer and
user of the system. Thisthird party isresporsible for the quality and evolution of the COTS
product and supdiesit to system developers on acommercial bass."

Therange of COTS productsis extreme, including small-scde comporents such as GUI or
comporent libraries, standard software for commercial applicaions such as the R/3 software
from SAP, and systems ftware such as operating systems.

Some of the feaures or propertiesthat aretypicd of COTS products are:

* theuser of the product hasno a littl e control over the evolution of the product

» theproduct isaccessble througha well-defined interface often an applicaion
programmer interface(API)

» agspedficaion d the functionaity of the product must exist

» theproduct isintended for multi ple use, and as such it often includes more feaures
than necessary for any particular applicaion

* some astomizaion bythe user may be required; COTS products range from products
that can be used withou change to products that require significant customizaion

The use of COTS wewill focus oniswhere aportion d an application is not custom-
developed, but instead provided by a COTS product. Of course, this only makes snseif the
benefits gained by wsing the COTS product outweigh the costs of finding and integrating the
COTS product. Here benefits and costs include isaues such asfinancia cost, time-to-market,
etc. In some sense, the question to be answered is "Buy o Build?'.

However, before we can dedde whether to buy or build, we must know the mnsequences of
using COTS for the various aspeds of the development process Thisisthe problem we wil |
addresshere: Do we know how we can integrate COTS products into software systems?

23

Short answer

Aswe will show below, there are significant problems with the integration of COTS software
andthereisaladk of documented solutions and experiencereports deding with these
problems. We therefore conclude that the problem of integrating COTS products into
software productsis mainly unsolved.

It shoud be noted that small-scde COTS products, such as GUI and comporent libraries,
have been used successfully for alongtime now. In fad, even thoughthe problems i sted
below exist with these products to a cetain extent, these problems are aldressed by fairly
standard software engineaing radices and nospedal solutions or techniques are nealed in
this case.

Tasks and problems

Below we identify the tasks associated with developing an applicaion by integrating COTS
software.

1. AnalyssandDesign

1.1 Evaluate COTS vendas and products
1.2 Requirements analysis

1.3 Determine design/architedure
Development/integration

Verificaion and validation

Maintenance

Management

S

These tasks are simil ar to the tasks encourtered in the traditional lifecycle, except that we
have alded tasks for finding suitable COTS products and we have merged the analysis and
designtasks. Thereason for thisisthat the traditional lifecycle, where we consider
requirements before design, does nat work due to potential integration problems with
incompatible COTS products. Thisiswhy requirements analysis and design, together with
the evaluation of COTS vendars and products, have been merged as threeoverlapping
subtasksin asingetask. We have dso included management as a separate task, becaise there
are several management problems asociated with the use of COTS, as explained below.

Clealy the problems aswciated with the development of software where COTS products are
not integrated are also present when we include COT S products. However, there ae anumber
of additional problems:

1. Some traditional processmodels do nd work. As explained above, we do not want to
ignae design duing requirements analysis. This may lea to architedure mismatch
and aher interoperability problems during design.

2. Similarly, we caana exped to complete requirements analysis and then find suitable
COTS productsto suit those requirements. Thiswill either unrecessarily restrict the
types of products that we can use, or increase the ast when implementing the
requirements.

3. CQOTS product evolution, which is under the cntrol of the COTS vendar, and vendar
behaviour can have asignificant impad. For example, some feaures may be atered o
even deleted in future versions of the product. Not incorporating these future versions
may nat be an optionif older versions are no longer suppated bythe venda.

24

4. Related to the &ove problem are patentia problems with licensing and redistribution
of the COTS produxct.

5. COTS products aretypicdly developed for alarge market and as such incorporate
many more fedures than are necessary for any particular applicaion. This causes
problems with identifying the useful feaures, and pdential problems with interference
of feauresthat are not redly needed with those that are.

6. For many COTS products, no source @deisdelivered. Thisrestrictsthe type of V&V
adivitiesthat can be caried ou onthese products. For example, it makesit harder to
guaranteethat unwanted feaures will nat interfere with the ones that are needed.

7. Some COTS products have missng a incomplete documentation.

Maturity of solutions

The following tables simmarize our opinion of the maturity of the solutionsfor the tasks and
problems identified above. Notethat al the problems, except thefirst, arerelated to ore or
more of the identified tasks. We therefore consider only thisfirst problem and then ead of the
identified tasks. For ead task, we list the related problems and the solutions that we are awvare
of. Many of the entries contain aquestion mark, indicating that we did not fed that we knew
enoughabou the propased solution to judge its maturity.

Problem: Traditional lifecycle models do nd work

Solution Effective- Affordability | Teachability | Use in Research
ness Practice Potential

risk based process model ? medium medium low ?

(e.g. spiral model)

IIDA [FLM98, FML98] ? ? ? low ?

Task 1.1: Evaluate COTS vendars and products

related problems: 3, 4, 5, and 7

Solution Effective- Affordability | Teachability | Use in Research
ness Practice Potential

OTSO ? ? ? low ?

[Kontio96, Kontio96a]

[Voas98] ? medium medium low medium

Thereisalso aproposed acceptance processfor COTS software in reacor applications
[PD5]. We have nat included thisin the table dove, becaise it was developed for a
particular applicaion damain (the nuclea induwstry), which has more stringent requirements

than typicd applicaions.

25

Task 1.2: Requirements analysis

related problems: 2, 5, and 7

Solution Effective- Affordability | Teachability | Use in Research
ness Practice Potential

Prototyping medium medium medium low medium

unify features and medium low low low low

requirements (joint appl.

development)

Task 1.3: Determine design/ architedure

related problems: 1, 5, and 7

Solution Effective- Affordability | Teachability | Use in Research
ness Practice Potential

life cycle architecture ? ? ? low ?

milestone [Boehm96]

middleware (e.g. CORBA, medium medium high medium high

DCOM)

wrappers, glue, bridges low high high low medium

The Simplex architedure [SGP98] is a proposal for an architedure for incorporating COTS
products into trusted systems that attemptsto limit the impaa of a COTS comporent that fail s
onthe remainder of the system.

Task 2: Development / integration

related problems: 3, 5, 6, 7

Solution Effective- Affordability | Teachability | Use in Research
ness Practice Potential

middleware (e.g. CORBA, medium medium high medium high

DCOM)

wrappers, glue, bridges medium low high medium low

26

Task 3: Verificaion & validation

related problems: 5, 6, 7

testing

Solution Effective- Affordability | Teachability | Use in Research
ness Practice Potential

use operational experience low low medium low medium

(for V&V)

black-box unit and system medium medium high medium low

Kohl [Kohl96] has proposed a method for deding with dormant code, that is, code that isn
required o used in the applicaion in which the COTS product is integrated.

Thereisalso aset of guidelinesfor thetesting d existing software (such as COTS
comporents) for safety-related applications [SL].

Task 4: Maintenance
related problems: 3, 4, 6, 7

ot

Solution Effective- Affordability | Teachability | Use in Research
ness Practice Potential

use open comm. standards low high high medium low

Task 5: Management

related problems: 1, 3, 4

Solution Effective- Affordability | Teachability | Use in Research
ness Practice Potential

COCOTS [COCOTS98] ? ? high low medium

Note that COCOTS, aversion

that include COTS.

What to teach

of COCOMO tail ored for

applicaionsthat include COTS
products, only addresss the st estimation asped of the management of software projeds

Clealy there ae many potential problems and very few mature solutions, which posesa
problem asfar asteadingisconcerned. Itisaso clea that students sioud be exposed to the
potential payoffs of using existing software, and the issues involved in choasing between
integrating existing software or writing it from scratch. They shoud also be avare of existing
standards for middeware and interconnedion languages.

Perhaps the best way to dothisisto emphasizethe aea where COTS has been succesgul:
small-scde COTS products such as GUI and comporent libraries. This could be dore by
incorporating such productsinto ore or more projeds that would typicaly exist in a Software

Engineaing curriculum.

27

Research topics and goals

In this case, the fad that there are many problems and very few mature solutions could
indicae that there ae significant reseach oppatunities. However, it isnot clea to us that we
know exadly what all the problems are and how significant they are. This suggests that the
most important reseach that we can carry out is experimental research to asessthis.

The Call for Papersfor a19991CSE workshop an Ensuring Successul COTS Development
lists the foll owing topics: architedure for COTS integration, evaluation techniques for COTS
candidates, development processchanges, businesscase development and/or examples,

COT S-based system management, maintenance of COT S-based systems, requirements
engineaing d COT S-based systems, seaurity aspeds of COT S-based systems, and todls to
suppat COT S-based development. The cadl for papers aso invites experience reports that
provide insight into the advantages and dsadvantages of COTS adoption and integration. We
fed that the latter will provide much more insight and progressthan more proposals for
potential solutions.

References

[Boehm96] B. Boehm, Anchoring the Software Process |EEE Software, July 1996 pp. 73-26.

[COCOTS98] COCQOTS - Congtructive COTS, http://sunset.usc.edw/COCOT S/cocots.html,
August 1998

[FLM9§] G. Fox, K. Lantner, and S. Marcom, A Software Development Processfor COTS
based Information System Infrastructure: Part 1. Crosgak
(http://www.stsc.hill .af.mil/ CrossTalk/crosgak.html), March 1998

[Kohl98] R. Kohl,V & V of COTS Dormant Code: Chall enges and Isaues. SES'98
Presentation (http://www.rstcorp.com/ots), 1998

[Kontio9q J. Kontio, OTSO: A Methodfor Seleding COTS,
http://www.cs.umd.edw/~jkontio/reuse.html, August 19%.

[Kontio96a] J. Kontio, A Case Studyin Applying a Systematic Methodfor COTS Saedion.
Procealings |CSE-18 Berlin, IEEE Computer Society, 19%.

[PD5 G.G. Preckshaot and J.A. Scott, A Proposed Acceptance Processfor Commercial Off -
the-Shelf (COTS) Software in Reador Applicaions. Lawrence Livermore National
Laboratory, Report UCRL-ID-122526 September 19%.

[SPG98] L. Sha, J.B. Goodenough and B. Poll ak, Simplex Architedure: Meding the
Challenges of Using COTS in High-Reli ability Systems. Crosgak
(http://www.stsc.hill .af.mil/ CrossTalk/crosgalk.html), April 1998

[SL] JA. Scott and J.D. Lawrence Testing Existing Software for Safety-Related Appli caions.
Lawrence Livermore National Laboratory, Report UCRL-1D-117224(revision 7.1).

28

Test

Motoal Azuma, Karol Fruehauf, Dan Hoffman

What is testing?

The repedable exeaution d software with the intention of reveding deviations from
requirements, including functional, performance, and reli abilit y requirements.

What is the state of the practice and the state of the art (briefly)?

State of the practice

* Many companies do nosystematic testing. Some companies do perform systematic
testing; it is often reasonably effedive but very expensive in effort and cdendar time.
Unit testing isusually ad hac, if performed at all. Test automationis primitive.

* Test education, espedaly in unversities, is poa.
State of the art

» Sophsticaed automationisfeasible and can be very effedive, as iown by Microsoft.
Statisticd testing can be used effedively, as srown byAT& T. Given the importance of
testing to industry, there isrelatively little reseach dore. What is done focuses
primarily on automated inpu generation from source @de or formal spedficaions.

* Some goodtraining materials do exist, mostly in industry.

What are the most important dimensions?
Thetopic can be investigated alonganumber of dimensions. Each dmension would most
likely lead to a different answer to the basic questions. Therefore we will restrict our

considerationsto the life g/cle dimension (but mention the other dimensions which could
have been investigated).

lifecycle

unit, integration, system, field

lifecycle model applied

waterfall, iterative, incremental, spird

29

focus

correaness performance, usability, reliabil ity

development paradigm

procedural, OO, Al

domain

information systems, red-time/embedded systems, OS/network, DBMS, telecom

mode of operation

batch vs. interadive (GUI)

Task: system testing

Subtask Effectiveness | Affordability | Teachability | Penetration Research
potential

Design for testability low medium low innovators high

Test planning high medium medium early majority | low

Selection: medium medium medium early majority | medium

deterministic

Selection: statistical high low medium innovators high

Oracle medium low high early majority | high

Test environment high medium low late majority | low

Test report high high high early majority | none

Notes

General

Systematic testing orly praaiced by ealy magority, limiti ng the penetration in many cases

above.

Design for testability

An important topic in testing that, arguably, belongs under the “design” topic.

Test planning

Careful planningisesentia for systematic testing

30

Selection: deterministic

The focus to date has been automated inpu generation.

Whil e some interesting results have been oltained over the past 20+ yeas, there has been
littl e industrial impad.

Selection: statistical

Seans promising but ladk of experience makes all entries susped.

Will probably be very effedive in some domains; ineffedive in others.
Oracle

At present, usualy derived manually from the requirements gedficaion, a high cost.

Test environment

Some participants felt that automation is the main route to improvement here, of inpu
generation, exeaution, and orade; others disagreed.

Test report

Usually amanual task, thoudh automated clericd suppat is ometimes present.

Task: integration testing

Subtask Effectiveness | Affordability | Teachability | Penetration | Research
potential

Design for testability high medium low innovators high

Test planning high low low innovators medium

Selection: medium + medium + medium + early low

deterministic adopters

Selection: statistical low low medium none low

Oracle low low low innovators | ?

Test environment high low low innovators high

Test report high high high innovators none

31

Notes

General
Integration testing is poorly understood by reseachers and praditioners. Thereislittle

agreament on the basic isales, terminology, and principles. Consequently, confidencein this
tableislow.

Nonetheless thetopic isimportant. Thereislots of experiencebut it isnot padkaged for
teading a use. Thereisabig potential payoff in getting afirmer understanding of the area

Design for testability

Redly belongs under Structures.

Rarely explicitly pradiced but potential is high.

Test planning

The key isaue is planning the integration order, espeaally in large projeds.
Selection: deterministic

Usually based on design spedficaions.

Selection: statistical

May help in some large subsystems.

Inpu generationis nat hard hut it makes the orade very expensive.
Oracle

Automation hes grea potential here.

Test environment

Configuration management suppat for subsystem buil dsis important.
Suppat for many test configuration itemsis needed

Test report

A manual task.

32

Task: unit testing

Subtask Effectiveness | Affordability | Teachability | Penetration | Research
potential

Design for testability low ? low innovators | medium

Test planning high medium medium innovators low

Selection: medium + medium + medium + early low

deterministic adopters

Selection: statistical low low medium none low

Oracle low low high late high
majority

Test environment high medium medium innovators. | low

Test report high high high innovators none

Notes

General

Systematic unit testing rarely dore.

Design for testability

Again, redly belongs under “Design’.

Test planning

Systematic unit testing is donerarely becaise it isnot explicitly planned as an adivity. The

speaficaion d the unit test casesrarely appeasin aprojed plan.

Selection: deterministic

Tood suppat can beimproved.

Selection: statistical

Inpu generationis nat hard but it makes the orade very expensive.

Oracle

Automation hes grea potential here.

33

Test environment

Automationis the main route to improvement here, of input generation, exeaution, and aade.

Test report

A manual task.

What should be taught?

 What tegtingisandisnat.

» How testing dffersfrom "playing with the program".

* Thefundamental principles and limitations of testing.

* What to test, when, and how.

* Test planning and reporting.

* Thekey payoff of unit test: cach errors before integration test.
* Thekey payoff of integration test: catch errors before system test.
» Test approaches.

* Test tods.

» Statement coverage, test management.

* Overall: reduce methods not proven in pradiceto "a mention".

Where should research be focused?

* Deggnfor testahility.

* Work nealed to understand and express"testabilit y".

* Big payoff in careful though, experimentation, and refinement.
* Orade aitomation (and automation d other arees).

o Littlework sofar, espedally in pradicd situations.

» Lotsof potential for improvement.

o Statisticd test case seledion.

34

Defining Software Families

Wolfram Bartussek, Paul Strooper, David Weiss

Introduction

Family-oriented software development was suggested as ealy as 19680. More recently there
have been several suggestions for engineaing families based onthe ideaof identifying
abstradions that are mmmonto afamily and wsing them as the basis for designing a
speaficaion languege for describing family members and for creaing adesign commonto all
family members0, 0, 0, 0, 0, O, 0. A variety of techndogies may then be used to implement a
trandator for such alanguage or to use the designto crede family membersrapidly. The
genera gaoal of al of these goproadchesisto make software development more dficient by
speaadlizing for a particular domain (where we take adomain to be afamily) the faaliti es,
tods, and processes that you use to produce software for the domain. You make an
investment in spedalized faaliti es, tods, and processes that you might otherwise nat, but your
investment is repaid many times over in increased efficiency in your software development
process

Software Families

The origina definition of a program family asgiven by Parnas[1] is“We @onsider a set of
programs to congtitute afamily whenever it isworthwhil e to study programs from the set by
first studying the common properties of the set and then determining the spedal properties of
the individual family members.”

This definition is utilit arian since the use of the word "worthwhil €' suggests that one must do
avaue analysis before deading whether or not to consider a set of programs to be afamily,
but otherwise says littl e @ou the commonality among family members. In current pradice,
when software families are identified, the identificationis likely to be based onexperience
and intuition, rather than by a systematic procedure. This approach corresponds more to
defining afamily as a set of items that have common aspeds and predicted variabiliti es.
Emphasis hereis on having made the cmmmonalities explicit and an predicting the

variabiliti es amongfamily members.

We will distingush among severa stagesin defining afamily.

Stage 1. Potential family. A set of software for which one suspeds that there is sufficient
commonality to be worth studying the common aspeds of the software.

Stage 2: Semi-family. A set of software for which common and variable aspeds have been
identified.

Stage 3: Defined family. A semi-family for which an econamic analysis has been performed
in order to dedde how much o an investment shoud be madein the family, i.e., an

investment to exploit the commonaliti es and variabiliti es for the purpose of
efficiently creding family members.

35

For purpaoses of investment it is often worth considering a spedal case: a product line, which
isafamily of software systems where individual members of the family are sold as products
(instead o being incorporated into products or used to crede products).

It israre that you get the chanceto crede afamily afresh. Most families are the result of
success. a mmpany develops a successful product and discovers that customers want changes
to the product. To continue to sell i nstances of the product and to keg upwith the market for
it, the company finds that it is producing many variations on it. The company redizesthat it
has a product line, i.e., a semi-family of software systems, or systems that need software to
operate, where individual members of the family are sold as products. (Alternatively, a
software devel opment organizaion may discover that it has a set of software sssetsthat are
used in building members of its product line(s) but that themselves are not padkaged to be
sold as products. An example is adatabase system used in atelephore switch. The same
system may be used in many switches, but is not sold as a separate product.)

Most software families, then, evolve from existing systems. Even when an organization
redizesthat it has aproduct linethat is a semi-family, it still rarely has methods that all ow it
to gude the evolution of the product line. It ladks reasonable methods for dedding what the
short and longterm evolution shoud be, for identifying information criticd to the software
developersfor creaing software families, for informing the developers of that information,
and for managing their deasions over time. From a businessviewpaint, thisis drategic
software planning. From atednicd viewpoaint, it is grategic software design.

In many engineaing disciplines the ideaof investing in aproduct lineisanatural oneandis
part of the product li ne development process Automobil e manufadurers make strategic
deasions abou investing in asembly lines and fadories as a standard way of condtcting
business They plan investments in techndogy and process and krow the expeded return
from those investments. Manufaduring engineas are involved in such dedsions and design
the manufaduring processacardingly. Such infrastructure investment planning ismissngin
most software development processes, which dften focus on the nea term production of a
single system.

The Question: How To Define A Family

For software families, there ae few tedhniques avail able for dedding what the members of a
defined family shoud be, i.e., for moving from a paotential family to a defined family. Withou
performing such an anaysis, it is difficult to deade how much investment to make in the
family, and it is difficult to creae the resources nealed for creaing family members, such as
design, code, andtodsfor creaing family members. Note that these issuesinvolve both
eomnamic and technicd isaues concerning the feasibility of creaing the resources. This
sedionis concerned with identifying the tasks involved in identifying (and daumenting)
defined families.

The Short Answer

In general, few techniques exist for defining families, i.e., for performing the analysis needed
to identify a defined family. There ae afew tedhniques that have become commercialy
availablein the last 2-3 yeas, but they are just starting to be tried by the ealy adopersin
industry. Asaresult, we rate the problem as partiall y solved. The foll owing sedions provide
more detail on what types of techniques are avail able, and the reasons we have ranked them

asthey appea .

36

Aspects Of Defining A Family

There ae two key aspeds of identifying a defined family: the tasks to be performed and the
means for performing those tasks. The tasks involve the adions to be taken, and the means
involve the methods for performing those tasks and the atifads that result from applying
those methodks.

Task Aspect

Elicitation of common and variable requirements

Description d common and variable requirements

Validation d common and variable requirements

Investment analysis - cost benefit of including family members, and cost benefit of
infrastructure investment

Management

AN

o

Means Aspect

Languages
Processes
Tools
Heuristics

Eal NN

Evaluation of Means for Individual Tasks

Problem: Elicitation of common and variable requirements

Solution Effective- Affordability | Teachability [Use in Research | Confidence
ness Practice [Potential

Commonality High Medium High Low (EA) [Medium High

Analysis (teach!)

Scenarios Medium Medium High Low (EA) | Medium Medium

Model Building Low Low Medium Low (IN) [Medium Medium

Organization Medium ? ? Low (LU) |? Low

Domain Modeling

Summary High Medium High Low High Medium

Reseach might focus on investigating combinations of the identified solutions

37

Problem: Description of common and variable requirements

Solution Effectiveness | Afford- | Teachability Usein | Research | Confidence
ability Practice | Potential

Precise Use of Medium High High (teach!) |[Low High Medium
Natural Language (highly (much time (EA)

effective for needed for

communicating disciplined use

ideas, less of nat. lang. for

effective for engineering

further formal purposes)

treatment)
Table of Medium Medium | High (teach!) |Low Medium Medium
Parameters (EA)
Domain Models Low Low Medium Low High High
(state trans., (EA)
context models,
object
diagrams,...)
Pattern Language || ? ? Medium (dare |Low (IN) | High Low

to teach)

Semantic ? ? Low Low ? Low
Networks (LU)
Summary Medium High High Low High Medium
Combination d thefirst threeitems may yield asolution d very high pay off
Problem: Validation of common and variable requirements
Solution Effective- | Afford- Teachability Use in Research || Confidence

ness ability Practice Potential
Prototyping Medium Low ? Low (IN) Medium || Medium
Formal reviews Medium Medium High (teach!) |Low (EA) Low High
Examples from Medium High High (teach Low (EA) High High
history and train!)
Market research [Medium Low Low Low (EA) High Low
Summary Medium Medium High Low High Medium

Formal reviews. understandability (experts from thefield,
reviews, inspedions, desk reading

not involved in the projed), adive

Examples from history: More effedive than ather techniques but in a narrow range

38

Problem: Investment Analysis

Solution Effective- Affordability | Teachability Use in Research | Confidence
ness Practice | Potential

PULSE-ECO Medium Medium Medium (teach | Low (IN) [High Low

Product line SE and train)

Value Proposition | Medium Medium Medium (hire | Low (EA) [High Low

economist)

FAST cost Medium High High (train!) Low (EA) | Medium Medium

analysis

Summary Medium Medium Medium Low High Low

High pdentidl, littl e work done, but may able to use standard marketing and econamic

techniques

Problem: Management Analysis (managing the processto find the family)

Solution || Effectiveness | Affordability | Teachability Use in Research [Confidence
Practice Potential
Summary || Medium High Low (include in Low (EA) |? Low
management
training)

Standard management tedhniques used; identification of roles and resources

Summary of Research Issues

The most promising areas for reseach are those ranked as high:

* Predseuseof natural language for description d common and variable requirements,
* Domain modelsfor description d common and variable requirements,

» Pattern languages for description d common and variable requirements,
» Useof historicd examples for validation of common and variable requirements,
* Market reseach for validation of common and variable requirements,
* Useof PULSE-ECO for investment analysis, and
» Credion d vaue propasitions for investment analysis.

In addition, reseach into integrating severa different means of accomplishing tasks may leal
to more effedive, more dfordable, and more gpeding versions of tasks. In particular,
predse use of natural language combined with tables of parameters and model buil ding may
lead to avery effedive and affordable technique for description of family requirements.

39

Summary of Teaching Issues

The most promising areas for teading are those ranked as high:

Commondlity analysis for €licitation of common and variable requirements,

Predse use of natural language for description of common and variable requirements,
Use of formal reviews for validation of common and variable requirements, and
FAST cost analysisfor investment analysis.

References

[1]

[2]

[3]
[4]
[5]
[6]
[7]
[8]

[9]
[10]

[11]

Campbell, Grady H. Jr., Faulk, Stuart R., Weiss David M.; Introduction To Synthes's,
INTRO_SYNTHESIS PROCESS-90019N, 1990, Software Productivity Consortium,
Herndon Dijkstra, E. W., Notes on Structured Programming. Structured Programming,
0O.J. Dahl, EW. Dijkstra, C.A.R. Hoare, eds., Academic Press Londm, 1972
Coglianesg, L, Tracz W.; An Adaptable Software Architedure for Integrated Avionics,
Procealings of the IEEE 1993National Aerospace ad Eledronics Conference-
NAECON 1993 Jun, 1993

Cuka, D., Weiss D.; Engineaing Domains. Exeautable Commands AsAn Example,
Proc. International Conference On Software Reuse, June, 1998

Dijkstra, E. W., Co-operating Sequential Processes, Programming Langueges, ed. F.
Genuys, New York: Academic Press pp. 43-112 1968

Gupta, N., Jagadeesan, L., Koutsofios, E., Weiss D.; Auditdraw: Generating Auditsthe
FAST Way, |IEEE International Sympasium on Requirements Engineaing, pp. 188
197, January, 1997

Kang, K., Cohen, S,, et d., Feaure Oriented Domain Analysis (FODA) Feasibility
Study, Technicd Report CMU/SEI-90-TR-21, Software Engineeaing Institute,
Pittsburgh, PA, November, 1990

Moore, Geoffrey, Crossng the Chasm

Neighbas, J., The Drac Approach to Constructing Software from Reusable
Comporents, |EEE Transadions on Software Engineeing, SE-10, 1984

Parnas, D.L., On the Design and Development of Program Families, IEEE
Transadions on Software Engineeing, SE-2:1-9, March 1976

Simos, Mark, Anthony, Jon, Weaving the Model Web: A Multi-Modeling Approach to
Concepts and Feaures in Domain Engineaing, Proc. Fifth Int. Conf. Software Reuse,
June, 1998

Weiss David M., Lai, Robert Chi Tau, Engineaing Software Domains. A Family-
Based Software Development Process Addison-Wesey-Longman, July 1999

40

Maintenance

Jan Bredereke, Karol Frihauf, Ridha Khedri, Stefan Kraul3, Andreas Zeller

The question

How can we maintain a product's integrity during its evolution?

The answer

This problem is partiall y solved.

Reasons for the ranking

Thereisanumber of well-understood solutions that help in software maintenance. However,
thereisaneeal and apatentia for better solutions, espedally in the aeas of reverse
engineaing and reengineding.

Details

The aim of maintenanceis to change asoftware product after it has been released to the user;
the problem is to ensure the integrity of the product even after achange. Asthe number of old
software systems increases, so dces the need for maintenance

Designing for change is the best way to essy maintenance

Prior to any change ammes the problem the structure oft the product needs to be understood
and the patential impad of the intended change determined. Thisistypicdly suppated bythe
product documentation. Where the documentation isincomplete or inacairate, program
comprehension can be suppated by reverse engineering toadls.

If the required changeis aufficiently large and has an impad on the overall structure of the
program then the product need to be reengineered.

After a change to the product has been accompli shed, regression testing helpsin deteding
unwanted side dfeds. For the whole maintenance adtivity, software configuration
management is a necessity to keep trad of the product evolution.

41

The following table li sts a number of proven and proposed solutions that can help reducing
maintenance ©sts.

Solution Effective- Affordability | Teachability | Use in Research
ness Practice Potential
1. Configuration Management | high high high early low
(see also extra working majority
group)
2. Regression Testing high medium high early medium
adopters

3. Reverse Engineering

3.1 Peopleware

3.1.1 Talk to knowledgeable | high medium low late majority | high
People

3.2 Static Analysis

3.2.1 Lexical Analysis (i.e. high high high early medium
cross reference) majority

3.2.2 Syntactic Analysis ? medium medium pioneer high
3.2.3 Semantic Analysis ? low low lab use high
3.3 Dynamic Analysis (i.e. ? ? ? ? ?

program spectra)

3.4 Complexity Analysis medium high high pioneer low
3.5 Reconstructing medium ? ? ? ?
Abstractions

4. Reengineering

4.1 Restructuring Code low medium high innovators | low
4.2 Restructuring Modules medium low low innovators | high
4.3 Wrapping Legacy high medium high early low
Systems adopters

4.4 Software Migration medium high low late majority | high
5. Designing for Change (see | high medium high early medium
also extra working group) adopters

6. Documentation medium high low late majority | high

Maintenance

As the expertise of the authors mainly covers configuration management and regresson
testing, the mnfidencelevel of the judgementsfor the aeas 2-6 is sgnificantly lower. Several
of these judgements neal to be suppated by experience data; gathering such evidenceis as
useful areseach topic as gathering more knowledge @ou the individual solutions.

42

What should be taught?

As*“best pradices’, the solutions with high effedivenessand high teadability shoud be part
of any software engineaing course:

» Software Configuration Management

* RegressonTesting

* Lexicd Analysis

* Wrapping Legacy Systems

* Deggningfor Change (thelittl e we know)

What research should be done?

First of al, we shoud evauate existing solutions for effediveness if thishasnot aready been
dore. Besdes developing aternate solutions, the foll owing tasks have high reseach
potential:

» Extrading and Evaluating People's Knowledge
* Syntadic and Semantic Analysis

* Restructuring Modues

* Deggningfor Change (all that we dont know)
» Software Migration

* Documentation Maintenance

The potential of the following tasks was not judged due to ladk of knowledge:

* DynamicAnalysis
* Reoonstructing Abstradion

Suggested Readings

[1] Reidar Conradi and Bernhard Westfedhtel. Verson Models for Software Configuration
Management. ACM Computing Surveys 30(2), June 1998 pp. 232-282.
A survey article onthe aurrent state of the at in configuration management.

[2] AkiraK.Onoma andWei-Tek Tsai and Mustafa H. Poorawala and Hiroshi Suganuma.
Regresson Testing in an Industrial Environment. Communicaions of theACM 41(5),
May 1998 pp. 81-86.

A recent survey onregresson testing covering several pradicd aspeds.

[3] Helmut Balzert. Lehrbuch der Software-Tedhnik, Band 2. Spektrum-Verlag,
Heidelberg, 1997.

A recent software engineaing textbodk that discusss recent maintenance and
reengineaingissues.

[4] Hausi Muller and Thomas Reps and Gregor Snelting (eds.). Program Comprehension
and Software Reengineeing. Dagstuhl Seminar-Report #204.
http://www.dagstuhl.de/DATA/Seminars/98/#98101

A survey on current reseach topicsin Reverse Engineeing and Reengineeing.

43

Measurement

Motoei Azuma, Pankaj Jalote, Peter Knoke, Jochen Ludewig

Introduction

Why are metrics important? Becaise:

1. In order to do anything scientificdly the target product as well as process $ioud be
measurable.

2. In arder to improve awything, the effeds must be observed, i.e. measured.

3. In arder to measure something, metrics sioud be well defined, validated and
standardized.

Basic Questions
Speaficdly, when deding with software using metrics, we can assessmetrics with the
following besic questions:
* Arewe aleto describe and forecast processand product charaderistics by metrics?
* Arewe aleto control processand product using metrics, passbly continuowsly?
Overall Answer

Metrics can be cdegorized into processmetrics and product metrics based onthe target
attributes to be measured. There ae some books and papers on processand product metrics.
Some metrics are widely known and sometimes, used in pradice |1SO/IEC JTC1/SC7 is keen
to develop international standards for measurement. JTC1/SC7/WG6 is developing a series of
international standards for software product metrics and evauation. Examples are shown in
the bibliography. Yet there ae many metricsto be developed, validated and taught for
pradicd use.

Therefore the overall answer to the @ove questionsis:
Partially Solved.

Concept of Metrics and Measurement

Definitions from ISO/IEC 14598-1 (Information Technology - Software product
evaluation - Part 1: General overview)
Metric: the defined measurement method and the measurement scae.

Measurement: the use of a metric to assgn a value (which may be anumber or category) from
ascdeto an attribute of an entity.

Measure (Noun): The number or category assgned to an attribute of an entity by making a
measurement.

44

External measure: an indired measure of a product derived from measures of the behavior of
the system of which it isa part.

Internal measure; a measure of the product itself, either dired or indired.

Taxonomy (1): Categories based on attributes to be measured

Metrics can be cdegorized by target attributes to be measured.
The highest level of categoriesis processmetrics and product metrics.

They are refined into detail ed levels of categories. Processmetrics includes those that measure
processas well asresources. Product metrics are categorized into internal metrics, external
metrics and quality-in-use metrics. (SeeReference Model)

-
Resource Influence
And Process Products Of
Environment Products
_

R&eources Process I nternal External Quality In
Metrics Metrics Metrics Metrics Use Metrics
Process Product
Metrics Metrics

Taxonomy (2): Usage and timing of use

Metrics can be dso categorized by their usage.

Initial Stage: At this dage metrics are used for description of plan (or requirement) for both
processand poduct.

Current Stage: At this dage metrics are used for description d current (at a milestone) process
or product. Resulting value (measure) is used for control or asinpu for forecasting processor
product at goal stage.

Future Stage (Goal): Metrics for future stage ae thase which forecast (or predict) Estimated
Processor Product at Goal Stage.

45

Framework of Metrics by Target Attributes and Usage

Target attribute and usage ae used for caegorizing measurement techndogies.
Measurement techndogies include metrics as well as processfor measurement and their use.

Table 1: Categories of Metrics and Assessment Results Clauses

Planning Current Estimate
Forecast
Process Process-Planning Process-Current Process-Forecast
State
Product Product-Planning Product-Current Product-Forecast
State

Technology Assessment Framework

The framework

Solution indicaes examples of metricsin the caegory or associated information.
Metrics and associated method and tools were assessed by the foll owing criteria

* Tednicd Maturity (Effediveness.
» Pradicd Maturity (Usein pradice).
» Affordability.

* Teadability (Educdion nedls).

* Reseach pdential (Reseach nedls).

Technical Maturity

How acairate or corred it is?

High: Scientificaly proved

Med-High: Statisticdly validated

Medium: Accessed by experts

Med-Low: Proved to be useful by experimenta use
Low: Propased

Practical Maturity

How widely it isknown and used?

High: Widely used in pradice

Med-High: Widely accepted, but used by limited users
Medium: Widely known, but used by limited users
Med-Low: Experimentally used by some users

Low: Propased, but known by small

46

Affordability

How reasonable aethe st and effort required for using it?

Teachability (Education needs)

How easy isit totead it in unversity or induwstry? Isit necessary to tead it?

Research potential (Research needs)

Isreseach for new techndogies necessary?

Assess ment Results

Process / Planning

Metrics and measurement tecdhndogies for planning a process

(1)

(2)

(3)

Sub-caegory: Resources estimation
Solution (Metric or Measurement Process: Cost models such as COCOMO

Tedhnicd Maturity (Effediveness: Useful but limited
Pradicd Maturity (Usein pradice): Medium

Affordability: Medium

Teadability (Educaion neels): High

Reseach pdential (Reseach neals): (1) Model with easy inpusthat is applicablein
starting stages.

Sub-caegory: Schedule estimation
Solution (Metric or Measurement Process: Schedule estimation model

Tedhnicd Maturity (Effediveness: High
Pradicd Maturity (Usein pradice): Med-High

Affordability: High

Teadability (Educaion neels): High

Reseach pdential (Reseach neals): (1) Minimum schedule for agiven projed and
effort estimate,

(2) Relationship between schedule mmpresson
and effort escdation.

Sub-caegory: Measurement process
Solution (Metric or Measurement Procesy: JTCL/SC7/WG13, ESFRIT projed AMI

Tedhnicd Maturity (Effedivenesy: High
Pradicd Maturity (Usein pradice): Med-High
Affordability: High

47

Teadability (Educaion neels): High
Reseach pdential (Reseach neals): Not research topic

Product / Planning

Metrics and measurement tedhndogies for planning products.

(4) Sub-caegory: Functionality
Solution (Metric or Measurement Procesy: Validated Function
Tedhnicd Maturity (Effediveness:
Pradicd Maturity (Usein pradice):
Affordability:

Teadability (Educaion neels):
Reseach pdential (Reseach nedls):

(5 Sub-caegory: Reliability

Solution (Metric or Measurement Procesy: MTTF (Mean Time To Failure), Mean time
for recovery, etc.

Tedhnicd Maturity (Effediveness: High
Pradicd Maturity (Usein pradice): Low

Affordability: Low

Teadability (Educaion neels): High

Reseach pdential (Reseach neals): (1) Relationship between defed density and
MTTFE

(6) Sub-caegory: Usahility

Solution (Metric or Measurement Procesg: Timeto lean, Mistakes made in using the
system, User satisfadion

Tedhnicd Maturity (Effediveness: Low

Pradicd Maturity (Usein pradice): Low

Affordability: Low

Teadability (Educaion neels): Medium

Reseach pdential (Reseach neals): High. Nead smple, chegp, and usable metrics
(e.g. which can have tod suppart)

(7) Sub-caegory: Efficiency

Solution (Metric or Measurement Procesy: Resporse time, Throughpu, Memory
requirement.

Tedhnicd Maturity (Effedivenesy: High
Pradicd Maturity (Usein pradice): Medium-high
Affordability: Medium
Teadability (Educaion neeals): High
Reseach pdential (Reseach nedls):

48

(8)

(9)

Sub-caegory: Maintainability

Solution (Metric or Measurement Procesy: MTTR, effort required to make changes,
regresson testing effort.

Tedhnicd Maturity (Effedivenesy: Medium

Pradicd Maturity (Usein pradice): Low

Affordability:

Teadability (Educaion neels):

Reseach pdential (Reseach neals): Medium (relationship between user level metrics
and internal/ processmetrics needs to be
understood)

Sub-caegory: Portability

Solution (Metric or Measurement Procesy: Effort needed to port to a new
hardware/software platform.

Tedhnicd Maturity (Effediveness: Low
Pradicd Maturity (Usein pradice): Medium
Affordability:

Teadability (Educaion neels):

Reseach pdential (Reseach nedls):

Process / Current State

Metrics and measurement techndogies which describe the aurrent state of the process

(10) Sub-caegory:

Solution (Metric or Measurement Procesy: Effort expended, time consumed, tasks
completed, defeds found, no. of changes (revisions) made, no. of compil ations, etc.

Tedhnicd Maturity (Effediveness: Medium
Pradicd Maturity (Usein pradice): Medium
Affordability: Medium
Teadability (Educaion neels):
Reseach pdential (Reseach neals): (1) Modelsfor forecating wser-level properties
from these processmeasures,
(2) Rulesfor interpreting the data.

Product / Current State

Metrics and measurement techndogies which describe the aurrent state of the products.

(11) Sub-caegory: Functionality

Solution (Metric or Measurement Procesg: Amourt of functionality built

Tedhnicd Maturity (Effediveness: Low
Pradicd Maturity (Usein pradice): Medium
Affordability:

49

Teadability (Educaion neels):
Reseach pdential (Reseach neals): (1)Tods suppat for tradng current system to
requirements/design.

(12) Sub-caegory: Reliability

Solution (Metric or Measurement Proces: No of errorsfound timing of errors, No of
errors removed, code cverage in testing, percentage of test cases that succeeled.

Tedhnicd Maturity (Effediveness: High
Pradicd Maturity (Usein pradice): Medium
Affordability: High
Teadability (Educaion neels): High
Reseach pdential (Reseach nedls):

(13) Sub-caegory: Usahility

Solution (Metric or Measurement Proces9: Clarity of messages

Tedhnicd Maturity (Effediveness: Low

Pradicd Maturity (Usein pradice): Low

Affordability:

Teadability (Educaion neels):

Reseach pdential (Reseach neals): Neal intermediate metrics for contralling
usability.

(14) Sub-caegory: Efficiency

Solution (Metric or Measurement Process: Measure resporse time, analyze design,
benchmarking.

Tedhnicd Maturity (Effediveness: Measurement is OK, analysisis nat.
Pradicd Maturity (Usein pradice): Medium

Affordability:

Teadability (Educaion neels):

Reseach pdential (Reseach neals): Analyze adesign for runtime properties.

(15) Sub-caegory: Maintainability

Solution (Metric or Measurement Procesy: Complexity of design, code, etc.; moduarity;
structure; OO metrics.

Tedhnicd Maturity (Effediveness: Low
Pradicd Maturity (Usein pradice): Low
Affordability:

Teadability (Educaion neels):

Reseach pdential (Reseach neals): High

(16) Sub-caegory: Portability

Solution (Metric or Measurement Procesg: Amourt of hw/sw dependent code;
percentage of modues that have this code.

50

Tedhnicd Maturity (Effedivenesy: Low
Pradicd Maturity (Usein pradice): Low
Affordability:

Teadability (Educaion neels):

Reseach pdential (Reseach neals): High

Process / Forecast

Metrics and measurement techndogies for forecating properties of the remaining part of the
process

(17) Sub-caegory:

Solution (Metric or Measurement Process: Time to complete, effort to complete, defed
density oncompletion, other product quality properties, productivity.

Tedhnicd Maturity (Effediveness: Medium
Pradicd Maturity (Usein pradice): Medium
Affordability:

Teadability (Educaion neels):

Reseach pdential (Reseach neals): Medium

Product / Forecast

Metrics and measurement techndogies for forecating a product quality at goal stage.

(18) Sub-caegory: Functionality

Solution (Metric or Measurement Procesg: Amourt of functionality that will be
delivered.

Tedhnicd Maturity (Effedivenesy: Low
Pradicd Maturity (Usein pradice): Low
Affordability:

Teadability (Educaion neels):

Reseach pdential (Reseach nedls):

(19) Sub-caegory: Reliability
Solution (Metric or Measurement Procesy: MTTF, defed density, recmvery time

Tedhnicd Maturity (Effediveness: Medium

Pradicd Maturity (Usein pradice): Low-medium

Affordability:

Teadability (Educaion neels):

Reseach pdential (Reseach neals): Toodsmodels for identifying pdential reliability
problems; patentialy difficult modues;
Improved prediction models. Can metrics be
used to identify hot-spots?

51

(20) Sub-caegory: Usahility
Solution (Metric or Measurement Procesg: ??

Tedhnicd Maturity (Effediveness:
Pradicd Maturity (Usein pradice):
Affordability:

Teadability (Educaion neels):

Reseach pdential (Reseach neals): high

(21) Sub-caegory: Efficiency
Solution (Metric or Measurement Procesg: Models for predicting resp. time, etc.

Tedhnicd Maturity (Effediveness:

Pradicd Maturity (Usein pradice):

Affordability:

Teadability (Educaion neels):

Reseach pdential (Reseach neals): High. Predicting run-time performance of a
design, or code, for some ewironment. Todlsto
identify posshiliti es of performance
improvement.

(22) Sub-caegory: Maintainability
Solution (Metric or Measurement Procesy: ?7?

Tedhnicd Maturity (Effediveness:

Pradicd Maturity (Usein pradice):

Affordability:

Teadability (Educaion neels):

Reseach pdential (Reseach neals): Given processdata and product data, can
maintainabilit y be predicted. Can we use metrics
to identify posshbiliti es for improving
maintainabilit y.

(23) Sub-caegory: Portability
Solution (Metric or Measurement Procesy:??

Tedhnicd Maturity (Effediveness:

Pradicd Maturity (Usein pradice):

Affordability:

Teadability (Educaion neeals):

Reseach pdential (Reseach neals): Can patability of design ke estimated, Can
partability of code be estimated? Can we
identify modu es/deign elements for improving
partability.

52

Summary and Recommendations

Education Needs

What shoud be taught in universities? Focus on mature product metrics and how they can be
used for improving oduct development.

What shoud be taught in industry? Both product and processmetrics; Building models and
cdibrating models; Using metrics for projed management (planning and control).

Research Needs

1. Validate a yet unvalidated metrics (using experiments and statisticd tedhniques).
2. Build forecasting models (identify measurable metrics and how they can be used to
predict desired charaderistics).

Bibliography

[1] ISO/IEC 9126 1: Software product quality - Part 1. Quality model

[2] ISO/EC91262: Software product quality - Part 2: External metrics

[3] [ISO/IEC91263: Software product quality - Part 3: Internal metrics

[4] ISO/IEC 91264: Software product quality - Part 4. Quality in use metrics

[5] ISO/IEC 145981: Software product evaluation - Part 1. General overview

[6] [ISO/EC 14756 Measurement and rating of performance of computer based software

system

[7] ISO/EC 155041: Software processassessment - Part 1. Concepts and introductory
guide

[8] [ISO/IEC 155042: Software processassessment - Part 2: A reference model for process
cgpability

[9] Fenton and Pfleeger, Software Metrics: A rigorous and Pradicd Approadh,
International Thomson Computer Press 1996

[10] Natale, D. QualitaE QuantitaNei Sistemi Software (Italian), FrancoAngeli, 1995

[11] Lorentz and Kidd, Objed-Oriented Software Metrics—A pradicd Guide, Prentice
Hall 1994

[12) Azuma, M (Editor), Software Quality Evaluation Guide Book (Japanese), JISA, 1994

[13] Moaller, K.H. and Paulish, D.J. Software Metrics, Chapman & Hall (IEEE Presg, 1993

[14] Dumke, R. Softwareentwicklung rach Masz (German), Vieweg, 1992

[15] Zuse, Software Complexity - Measures and Methods, Walter de Gruyter, 1991

53

Software Configuration Management

Karol Fruehauf, Walter Tichy, Andreas Zeller

The question

How can we manage and control the evolution of a product?

The answer

Thisproblem is slved.

Reasons for the ranking

Software nfiguration management is awell-understood dscipline that offers a number of
solutions for managing software evolution. Some aeas gill offer room for improvement.

Details

Software anfiguration management (SCM) is a sub-discipline of software engineaing. Its
god isto ke order in longlived, multi-person software projeds. It does 9 by controlli ng
and recording the evolution of software products through their entire lifecycles, from
requirements and development to test, deployment, operation, all the way through
maintenance and upgades.

Solutions and Tasks Effective- [Affordability | Teach- Use in Research

ness ability Practice Potential
Version management for high high high early low
individual items (revisions, majority

branches, variants, checking /
checkout, sandboxes,
identification)

Version management for medium high hi pioneer medium
structures (renaming,
reorganization, retiring of
subsystems with whole history)

Configuration definition (parts high high high early low
lists, baselines plus change sets, majority

generic configurations, version

selection)

54

Solution and Tasks Effective- | Affordability | Teach- Use in Research
ness ability Practice Potential

Build management (Make and high high high late low

Make-oids, derivation history) majority

Automated change management |medium high high early low

(change requests, change majority

request tracking, task

assignment)

Process support low ? ? lab use ?

Traceability (implementation — high? ? ? lab use ?

design - requirements)

LAN connectivity high low high late ?
majority

Internet connectivity (remote medium ? high early medium

access, replication, caching) adopters

Support for geographically low ? ? lab use high

distributed collaboration (parallel

work as the rule, automated

merging)

Software distribution and

installation on the internet, esp.

for distributed applications

for distribution high low high late low
majority

for updates low ? ? pioneer high

Dynamic reconfiguration high? ? ? pioneer high

What should be taught?

Software Configuration Management shoud be part of any software engineeing course. The
functionality of SCM todslike RCS, CVS, or MAK E shoud cover amost al neals of amid-
size(i.e. undergraduate-level) software projed.

What should we research?

Most parts of software configuration management are well -understood and well -automated.
Distributed software @nfiguration management still requires more attention. With the advent
of loosely conreded comporents over a network, it is expeded that static configuration (at
build time) will lose importancein favour of dynamic configuration (at run time), which is
still areseach topic. Also, compasition of complex systems from versioned comporents
brings problems with configuration consistency, which must be identified.

55

Suggested Readings

[1]

[2]

Reidar Conradi and Bernhard Westfedhtel. Verson Models for Software Configuration
Management. ACM Computing Surveys 30(2), June 1998 pp. 232-282.

A survey article onthe aurrent state of the at in configuration management.

Walter F. Tichy (ed.). Configuration Management. JohnWiley & Sons, Chichester,
UK, 1994

A colledion d articles covering the state of the art and state of the pradicein software
configuration management.

56

