
1

Dagstuhl Seminar 99071

Software Engineering Research and Education:
Seeking a new Agenda

Taking Stock of Software Engineering Research and Education
What do we know? What shou ld we know?

February 14 – 19, 1999

organized by

Ernst Denert, sd&m and Technical University München, Germany
Daniel Hoffman, University of Victoria, Canada
Jochen Ludewig, University Stuttgart, Germany
David L. Parnas, McMaster University, Canada

2

3

Preface

Software Engineering should address, and solve, existing problems.

Software Engineering as a branch of computer science emerged from discussions and
conferences in the late sixties. Its goal was to apply knowledge and techniques from
traditional engineering to the construction and maintenance of software.

Now, as the end of the century draws near, many people apply concepts, techniques, and
notations created in, and around, the field of software engineering. But we are far away from a
common understanding of what the important problems are and which approaches are
appropriate. We have many conferences and magazines of questionable value, and littl e
agreement about what should be taught in universities and which topics should be further
investigated.

This workshop attempts to reach an agreement about these questions, for those who
participate, but hopefully also with some effect on our colleagues who don't. By discussing
our abilit y to solve those problems which actually occur in software engineering, we hope to
identify what should be in the curriculum and in the research agenda.

Jochen Ludewig, 1999-02-16

4

Introdu ction

This report is the result of a very intensive five-day workshop at Dagstuhl in February 1999.
As part of the announcement and invitation, a li st of suggested tasks was distributed; those
who intended to participate were asked to submit a position paper on at least one of the
subjects, and to judge the current state of all the subjects. Here is the initial li st:

Analyze intended application, wr ite requirements document

... to determine the requirements that must be satisfied. Record those requirements in a
precise, well -organized and easily-used document.

Select the basic hardware and software components.

Analyze the performance of a proposed design,

... either analytically or by simulation, to ensure that the proposed system can meet the
application's requirements.

Produce an estimate of the cost (effor t and time) of the proposed system.

Design the basic structure of the software,

... i.e., its division into modules, the interfaces between those modules, and the
structure of individual programs while precisely documenting all software design
decisions.

Analyze the software structure for its quali ty,

... i.e. for completeness, consistency, and suitabilit y for the intended application.

Implement the software as a set of well -structured and documented programs.

Integrate new software with existing or off -the-shelf software.

Perform systematic and statistical testing

... of the software and the integrated computer system.

Revise and enhance software systems,

... maintaining (or improving) their conceptual integrity and keeping documents
complete and accurate.

Demonstrate that the resulting software meets the expectations.

At the beginning of the workshop, participants reduced and modified this li st for various
reasons, until eight topics for discussion and elaboration were identified:

• Requirements
• Design, Structures
• Implementation
• COTS (commercial-off-the-shelf software)
• Software Families
• Test

5

• Maintenance
• Measurement

Later on, the topic „Software Configuration Management“ was added.

Out of 23 people who planned to participate, three (including Dave Parnas, who had initiated
this workshop) were not able to attend, mainly due to ill ness. Here is the list of those who
actually arrived at Dagstuhl. They all stayed for at least four days, most of them for the full
workshop. See the complete list, including addresses, in the appendix.

Joanne Atlee Motoei Azuma Wolfram Bartussek

Jan Bredereke Ernst Denert Karol Frühauf

Martin Glinz Daniel M. Hoffman Heinrich Hußmann

Pankaj Jalote Ridha Khedri Peter Knoke

Stefan Krauß Jochen Ludewig Lutz Prechelt

Johannes Siedersleben Paul Strooper Walter F. Tichy

David Weiss Andreas Zeller

Everybody participated in two (or three) groups:

Design,
Structures

Software
Families

Mainte-
nance

Config.
Mgmt.

Measure-
ment

chairing Sieders-
leben

Weiss Zeller Tichy Azuma

Requirements Atlee Atlee

Glinz

Prechelt

Bartussek

 Weiss

Bredereke

Khedri

Implementation Knoke Denert

Siedersleben

Knoke

Ludewig

COTS Strooper Hußmann Strooper Krauß Tichy Jalote

Zeller

Test Hoffman Hoffman Frühauf Azuma

Prechelt: also in Implementation

This organization allowed for two meetings every day, plus two plenary meetings where the
intermediate results were presented and discussed. The content of the report was complete by
the end of the workshop; it was revised and finished after the workshop. Dan Hoffman and
Stefan Krauß did this work.

The results, though presented and discussed in plenary meetings, are certainly not agreed
upon by all participants in any detail; we do believe, however, that they in general express our
consensus, and can be used as a starting point for further discussions. Several participants
have expressed their interest in a permanent activity along the lines initiated at Dagstuhl; we
will t ry to keep the spirit alive by presenting our results in conferences and magazines,
hopefully stimulating responses from those who were missing. Software Engineering needs
definitely more work like this.

6

Readers of this report, who are interested to contribute, or just keep in touch, are invited to
contact any of the organizers.

All participants enjoyed the excellent working conditions provided in Dagstuhl, and the quiet,
but efficient support from the staff there.

7

Topics

Lead authors are shown below in parentheses.

1. Requirements (Joanne Atlee) ... 9

Analyze the intended application to determine the requirements that must be satisfied. Record
those requirements in a precise, well -organized and easily used document.

2. Structures (Johannes Siedersleben) ... 17

Design the basic structure of the software, i.e., its division into modules, the interfaces
between those modules, and the structure of individual programs while precisely documenting
all design decisions.

3. Implementation (Peter Knoke) .. 18

Implement the software as a set of well -structured and documented programs.

4. COTS (Paul Strooper) .. 23

Integrate new software with existing or off-the-shelf software.

5. Test (Dan Hoffman) .. 29

Perform systematic and statistical testing of the software and the integrated computer system.

6. Families (David Weiss) .. 35

Design a set of similar software products as a family exploiting the similarities between the
products.

7. Maintenance (Andreas Zeller) ... 41

Revise and enhance software systems, maintaining (or improving) their conceptual integrity,
and keeping documents complete and accurate.

8. Measurement (Motei Azuma) ... 44

Maintain product and process metrics and measurements, and use them to evaluate existing
and future products and processes.

9. Configuration management (Walter Tichy) ... 54

Keep order in long-lived, multi-person software projects.

8

Tabular Evaluation Fo rmat

In this report, tables are used to provide a standardized evaluation of the existing means for
each task, i.e., to solutions of the problem posed by performing the task. Each table row
corresponds to a means of performing a task. There is one table column for each of the
following attributes:

Effectiveness. How well the solution works, considering factors such as how much of the task
it covers and how good a solution it is to the problem posed by accomplishing the task.
Ratings are High (the solution is very effective), Medium (the solution is somewhat effective),
and Low (the solution is not very effective).

Affordability. The extent to which a typical software development organization can afford to
perform the solution. Note that it may be that a solution is high cost, but that an organization
cannot afford not to use it. Ratings are High (the solution is very affordable), Medium (the
solution is somewhat affordable), and Low (the solution requires relatively high investment).

Teachability. The extent to which the solution can be taught in a University, including the
body of knowledge that must be conveyed to students and how well we understand how to
convey that body of knowledge. Ratings are High (we know how to teach the solution very
well), Medium (we know how to teach the solution to some extent), and Low (we do not
really know how to teach the solution).

Use in Practice. The extent to which the solution has been adopted by industry. Ratings are
High (the solution is widely used), Medium (the solution is somewhat used), and Low (the
solution is not used very much). For use in practice we also provide an alternative view of the
evaluation, namely the class of users who have adopted the solution, where class is one of the
following: laboratory users (LU), innovators (IN - those who are willi ng to use early
prototypes of the solution), early adopters (EA - those who are willi ng to use advanced
prototypes of the solution), early majority (EM - those who are willi ng to be the first users of
industrial-quality versions of the solution), and late majority (LM - those who wil l not use the
solution until there is considerable industrial experience with it). Note that these categories are
taken from Diffusion of Innovations by E. M. Rogers.

Research Potential - The extent to which the set of existing solutions to a problem could be
improved. Ratings are High (better solutions would greatly improve effectiveness,
affordabilit y and/or teachabilit y), Medium (better solutions would provide some
improvement), and Low (new solutions would not be substantially better).

9

Requirements

Joanne Atlee, Wolfram Bartussek, Jan Bredereke, Martin Glinz,
Ridha Khedr i, Lutz Prechelt, David Weiss

The Question

How can we analyze the intended application to determine the requirements that must be
satisfied? How should we record those requirements in a precise, well -organized and easily-
used document?

Requirements Engineering is the understanding, describing and managing of what users
desire, need and can afford in a system to be developed. The goal of requirements
engineering is a complete, correct, and unambiguous understanding of the users' requirements.
The product is a precise description of the requirements in a well -organized document that
can be read and reviewed by both users and software developers.

Short answer – Partially Solved

In practice, this goal is rarely achieved. In most projects, a significant number of software
development errors can be traced to incomplete or misunderstood requirements. Worse,
requirements errors are often not detected until later phases of the software project, when it is
much more difficult and expensive to make significant changes. There is also evidence that
requirements errors are more likely to be safety-criti cal than design or implementation errors.

We need to improve the state of requirements engineering by improving our application of
existing practices and techniques, evaluating the strengths and weaknesses of the existing
practices and techniques, and developing new practices and techniques where the existing
ones do not suffice.

Long answer

The above short answer is unsatisfying because it doesn't convey the different aspects of the
question. The answer depends on

• the task to be performed (e.g., elicitation, documentation, validation)
• the application domain (e.g., reactive system, information system, scientific

applications)
• the degree of familiarity (i.e., innovative vs. routine applications)
• the degree of perfection desired (e.g., 100% perfection or "good enough to keep the

customer satisfied")

Rather than provide a complete answer, we choose to answer the question on the basis of the
different requirements engineering tasks. With respect to the other aspects of the problem, our
answers are domain-independent, they apply to innovative applications rather than routine
applications, and they apply to the development of high-quality software. If we had
considered a different slice of the problem, we would have arrived at different answers.

10

Substructure of the problem

We divide requirements engineering into five tasks:

Elicitation - extracting from the users an understanding of what they desire and need in a
software system, and what they can afford.

Description/Representation - recording the users' requirements in a precise, well-organized
and easily-used document.

Validation - evaluating the requirements document with respect to the users' understanding of
their requirements. This sub-task also involves checking that the requirements document is
internally consistent, complete, and unambiguous.

Management - monitoring and controlli ng the process of developing and evaluating the
requirements document to ease its maintenance and to track the accountabilit y of faults.

Cost/Value Estimation - analyzing the costs and benefits of both the product and the
requirements engineering activities. This sub-task also includes estimating the feasibilit y of
the product from the requirements.

Table 1. Structure of the topics of Requirements engineering

1 Elicitation
1.1 Gathering Information (interviews, questionnaires, joint meetings...)
1.2 Requirements analysis methods (SA, OOA, scenarios,...)
1.3 Prototyping
1.4 Consensus building and view integration

2 Description/representation
2.1 Natural language description
2.2 Semiformal modeling of functional requirements
2.3 Formal modeling of functional requirements
2.4 Documentation of non-functional requirements
2.5 Documentation of expected changes

3 Validation
3.1 Reviews (all kinds: inspection, walkthrough, ...)
3.2 Prototyping (direct validation by using prototype / testing the prototype)
3.3 Simulation of requirements models
3.4 Automated checking (consistency, model checking)
3.5 Proof

4 Management
4.1 Baselining requirements and simple change management
4.2 Evolution of requirements
4.3 Pre-tracing (information source(s) ↔ requirement)
4.4 Post-tracing (requirement ↔ design decision(s) & implementation)
4.5 Requirements phase planning (cost, resources,...)

5 Cost/value
5.1 Estimating requirements costs
5.2 Determining costs and benefits of RE activities
5.3 Determining costs and benefits of a system (from the requirements)
5.4 Estimating feasibility of a system

11

For each task, we determine a selection of techniques that have been proposed as solutions to
that task (see Table 1). This li st should neither be considered complete, nor should it be
interpreted as our opinion of the best techniques; it is simply a sampling of the solution space
of the task.

Also, we do not consider any specific techniques for any task (e.g., UML collaboration
diagrams). Instead, we consider how well classes of techniques solve a particular task.
Answers for specific techniques would be more interesting and more useful than answers for
classes of techniques, but would have greatly lengthened this report.

Ranking of the Different Aspects

The tables in this section provide an evaluation of how well classes of techniques solve the
problems posed by performing the task.

Problem: Elicitation

Ranking of solutions

Solution Effective-
ness

Afford-
ability

Teach-
ability

Use in
practice

Research
potential

Comments

Gathering information
(interviews,
questionnaires,
joint meetings...)

medium high medium ad hoc: high
sound: low

medium

Requirements analysis
methods and
languages (SA,
OOA,...)

medium medium high? low medium 1

Prototyping high low medium ad hoc: high
sound: low

low

Consensus building &
view integration

medium low medium? low high

1. Analysis itself is hard to teach, but some concrete languages and methods are easy.

12

Problem: Description

Ranking of solutions

Solution Effective-
ness

Afford-
ability

Teach-
ability

Use in
practice

Research
potential

Comments

Natural language
description

medium? high medium high medium

Semi-formal modeling of
functional requirements

medium -
high

high high medium? medium -
high

Formal modeling of
functional requirements

medium low medium low medium 1

Documentation of
non-functional
requirements

high low low -
medium?

low high 2

Documentation of
expected changes

high high medium low medium

1. Affordability is high in specific situations when checking important or safety-critical properties
2. Rankings are for those techniques we know (however, we do not know enough)

Problem: Validation

Ranking of solutions

Solution Effective-
ness

Afford-
ability

Teach-
ability

Use in
practice

Research
potential

Comments

Reviews (all kinds) high high high high medium

Prototyping high medium medium medium medium

Simulation high, if
feasible

low - medium medium low high?

Automated checking
(consistency,
model checking)

high, if
feasible

medium high low high

Proof high, if
feasible

low (except
safety-critical
systems)

low low high 1

1. Research potential high especially concerning feasibility and developing new methods

13

Problem: Management

Ranking of solutions

Solution Effective-
ness

Afford-
ability

Teach-
ability

Use in
practice

Research
potential

Comments

Baselining requirements,
simple change management

high high high medium low

Evolution of requirements high medium -
high

low -
medium?

low medium -
high?

Pre-tracing
(info sources <->rqmts)

medium medium? medium very low medium?

Post-tracing
(rqmts <-> design&code)

medium -
high

low -
medium?

low -
medium?

very low medium?

Requirements phase
planning

high high high? medium low

Problem: Cost/Value

Ranking of solutions

Solution Effective-
ness

Afford-
ability

Teach-
ability

Use in
practice

Research
potential

Comments

Estimating requirements cost medium medium medium low high 1

Determining cost/benefit
of RE activities

low low low low high 2

Estimating costs/benefits of a
system (from the requirements)

medium medium low low high 3

Estimating feasibility medium low low medium high

1. Experience-based techniques dominate in practice
2. Only ad hoc techniques, motivated by fear of not doing them
3. Requires marketing techniques as well as technical ones

14

What should be taught

We identified five major points that teaching of requirements engineering should be centered
around:

1. The basic RE-process
2. The problems and obstacles encountered
3. The principles of good RE
4. A selection of techniques
5. Practice, practice, practice

The basic RE-process

The requirements engineering process iterates over four main tasks:

• The users develop an understanding of what behavior is desired/needed.
• The requirements engineers elicit requirements from the users.
• The requirements engineers build a model of required behavior based on the elicited

information.
• The users evaluate the engineers’ model against their understanding of their

requirements.

With each iteration, the users form a more concrete understanding of their needs, and the
requirements engineers elicit and document more accurate and more precise behaviors. The
process terminates when the users decide that the engineers’ descriptions match the users’
conceptual models.

Problems and obstacles

Requirements engineers need to be aware of the problems and obstacles to eliciting and
specifying a complete and correct set of requirements. Several good techniques have been
developed to help solve different problems and overcome certain obstacles. However, these
techniques are not foolproof, they do not cover all of the cases, and many are incompatible
with one another. Below is a sample list of problems; the list is neither ordered nor complete.

• Users do not know what they want

User(s)
Requirements
Engineer(s)

Elicitation

Validation

Under-
standing

Description

Understanding
requirements
building
models

building an
understanding
what is wanted/
needed/
affordable

requirements, feedback

models, descriptions...
for validation

r t

15

• Users specify requirements in terms of solutions
• Different stakeholders have different, possibly inconsistent views and needs
• The "right" users are unknown or unavailable
• Requirements evolve (shooting at moving targets)

Principles of good RE

Requirements engineers need to understand and be able to apply good engineering principles,
as they pertain to eliciting and documenting requirements. Several good techniques have been
developed that codify the application of certain principles. However, the principles have
become lost in the presentation of the techniques. This is a problem because the techniques
themselves are not complete; they do not cover every possible situation. Requirements
engineers need to be able to fall back on the fundamental principles when the techniques let
them down. Below is a sample list of RE principles; the list is neither ordered nor complete.

• Separation of concerns
• Abstraction
• Precision
• Planning for change
• Reviewabilit y; (automated) analyzabilit y
• Continuous validation
• Support for testing
• Support for achieving consistency and completeness
• Variation of depth and precision to accommodate the cost and risk of the problem

A selection of techniques

Requirements engineers need a collection of effective techniques for eliciting, describing,
validating, and managing requirements. The techniques are simply heuristics for solving the
problems, overcoming the obstacles, and adhering to the principles; they are not complete
solutions. Therefore, the specific techniques that are taught should be chosen for their abil ity
to solve key problems and for their coverage and support of key principles. Also, it is
important to teach not only the bare techniques, but also where they can be applied effectively
and why they work.

Practice, Practice, Practice

It is essential that the students apply in practice what they have been taught. The course must
have a project component where the students are exposed to the problems and obstacles and
can practice the application of some of the principles and techniques. A good project would
include design, implementation, and enhancement of the requirements, so that the
consequences of good or bad requirements engineering are revealed and can be experienced.

16

Research agenda

In general

The following research problems are not specific to requirement engineering. They arise from
the structure of the table format used to evaluate problems and techniques, and apply to all of
the SE tasks:

• Evaluate the effectiveness/cost of existing techniques
• Develop new techniques that

• adhere more closely to more principles / neglect fewer ones
• do a better job of solving problems completely/overcoming obstacles
• have a lower cost

In particular

The following research problems are those sub-tasks and techniques which we rank as having
high research potential - either because existing techniques are not very effective, are too
expensive, or are deemed too difficult-to-use for widespread practice.

• Elicitation:
• Consensus building & view integration

• Description:
• Semi-formal modeling of functional requirements
• Documentation of non-functional requirements

• Validation:
• Simulation
• Automated checking
• Proof (for high-risk-systems)

• Management:
• Requirements evolution

• Cost/value:
• Estimating requirements costs
• Determining costs and benefits of RE activities
• Determining costs and benefits of a system (from the requirements)
• Estimating feasibilit y of a system

17

Software Design

Joanne Atlee, Ernst Denert, Martin Glinz, Dan Hoffman, Heinr ich Hußmann,
Lutz Prechelt, Johannes Siedersleben

The Question

Design the basic structures of the software, evaluate competing design alternatives, and reuse
existing designs whenever possible.

Short Answer

The design task is solved at the level of individual modules, but not solved at the level of
system architecture.

Directions for Research and Teaching

1. We believe most PRINCIPLES of successful design are known:

• describe parts by their interfaces
• hide details behind interfaces
• separate concerns
• design for change

2. All design techniques are mostly heuristics for applying these principles. Their success
depends on the degree to which they enforce or encourage the use of the principles.

3. For the design of one or a few modules, sufficient techniques are available, e.g. object
oriented methods, structured design, design patterns.

4. Teaching has to make sure that the principles of separation of concerns and information
hiding are not forgotten, as they often are, when teaching object oriented methods.

5. For the design of system architectures, the known techniques are not sufficient.
Substantial research effort wil l be needed in order to develop sufficient techniques. The
emerging proposals must be validated.

6. We do not know how to relate different levels of abstraction in a large system. Since
this capabilit y is required for producing a consistent design, more research is needed in
this area.

7. We should collect architectural patterns, that is, proven and concrete architectural
building blocks aimed at particular problems. These may or may not be domain-
specific. The biggest such patterns would be reference architectures for a particular
class of applications. This approach will yield useful results faster than attempts to
define new methods based on first principles.

8. We should study successful projects. This will contribute to both, (5) and (7): Studying
the structure of the systems helps identifying architectural patterns and studying the
design process may tell us which activities lead to a successful design. The study of
project failures would also help.

18

Software Implementation

Ernst Denert, Peter Knoke, Jochen Ludewig, Lutz Prechelt, Johannes Siedersleben

Topic Description

Implement the software as a set of well -structured and documented programs.

Assumptions

The following assumptions apply to this section. They were made to allow rapid focus with
associated results in a short time.

• Good requirements and design documents exist, and the implementer has access to
these documents.

• The implementer's primary job is to implement the software design using a
programming language of some kind. He creates source code which realizes the intent
of the design. This programming language can range from assembly language through
conventional 3rd generation languages, object oriented languages, and visual
programming languages to 4th Generation Languages.

• The implementer's job includes unit testing, the results of which serve as evidence of
satisfactory implementation. It also includes good documentation of the source code.
However, the implementer's job does not usually include integration testing or full
system testing.

• The implementation phase typically includes such quality-enhancing processes as
walkthroughs and code inspections in which the implementer must participate. The
inspections may range from personal inspections to formal inspections by programmer
peers.

• The emphasis of this section is primarily on implementation as an individual activity,
as opposed to implementation as a team activity.

• The implementer does detail l evel design, e.g. design at a module level. He has to deal
with ambiguous, incomplete or possibly incorrect design documents, and he has the
capabilit y to deal with such phenomena. If the implementer needs to repair such design
faults or weaknesses, he is aware of and complies with suitable procedures set up for
such cases.

• Implementation for or with code reuse is outside the scope of this section.
• The primary focus of this section is on the implementation of standard information

systems software. Other areas such as real-time software, embedded system software,
and software for parallel systems are outside the scope. Most emphasis is on generic
issues rather than domain or application-specific matters.

19

The Problem

The problem is that the quality of the software implementation is generally not as good as it
could and should be. Quality source code is important, because poor source code increases
software test time and cost, decreases software performance, and reduces software
maintainabilit y.

The Question

How can this problem situation be improved by various means, including SE teaching, SE
research, or other means?

Short Answers for Solutions

SOL 1: Programming as an activity should receive more emphasis and credit by
management. Specifically, programming positions should be fill ed with skill ed and
experienced people, i.e., quality people.

Ranking: SOLVED, but not STANDARD OPERATING PROCEDURE.

SOL 2: SE teaching should be improved so that more highly skill ed and professional
programmers are educated and trained.

Ranking: SOLVED, but not STANDARD OPERATING PROCEDURE.

SOL 3: Software engineers and their management should seek to improve their management
of change (i.e., reduce chaos) in the programming language and programming
environment technology areas.

Ranking: PARTIALLY SOLVED.

Rationale for Ranking

SOL 1: SOLVED because management can presently decide to commit resources to this
area, but it is not STANDARD OPERATING PROCEDURE for management to
apply the best and most experienced people to programmer (coder) positions.

SOL 2: SOLVED because for almost any programming area there are text books and sources
of expert opinion. However, in some places where programming is taught the best
teaching practices are not used. There is a substantial gap between the known best
teaching practices and the widely used teaching practices. The problem is aggravated
by rapidly changing implementation technologies. The use of the best practices here
is not STANDARD OPERATING PROCEDURE.

SOL 3: PARTIALLY SOLVED. Change management practices of some sort are inevitably
used in all areas of rapid technological change. However, these practices tend to be
"ad hoc": they are usually neither general nor well -defined. Change management
practices must be used by all software developers, but the use of a good set of these
practices is not STANDARD OPERATING PROCEDURE. The SEI CMM
(Capabilit y Maturity Model) includes Technology Change Management as a Key
Process Area at Level 5, but most software development organizations today are

20

operating at CMM level 2 or 3 at the most. Many such organizations have littl e or no
knowledge of the SEI CMM.

Examples, Limits

SOL 1 Examples

Often, young people are fast coders, rapid learners of new programming languages, paid a
relatively low salary, and willi ng to work long hours of unpaid overtime in developing
programs. This situation provides an incentive for managers, needing to get a lot of
programming done fast, to hire young, inexperienced, and maybe poorly trained
programmers. The damaging effects of such decisions might not be seen for some time.
Microsoft is well known for routinely hiring young, bright, hardworking programmers
(however, usually such programmers serve initially in software test positions).

It is understandable that managers in software development companies, faced with the choice
of possibly bad code discovered and regretted later versus the near certainty of bankruptcy
tomorrow, might opt for the former. This particular tradeoff (quality vs. cost and time) is
definitely domain specific. A Space Shuttle which blows up due to a software failure in the
full view of milli ons is a thing to be avoided in spite of high costs of its avoidance. A word
processing program which occasionally crashes when an esoteric feature is used is another
matter.

One contributor to this section mentioned a possible management policy of not hiring an
implementer who has not written at least one big program (say, 5000 LOC). Such a policy is
domain specific. There is now a considerable demand for people who can quickly produce
Web Pages. At minimum, such a task may require a littl e knowledge of HTML. It is easy to
learn the use of HTML, but experience and creativity are required to produce consistently
good web pages.

One contributor to this section noted that an evaluation of good programming skill s is needed
at some time (by industry if not by the university). Microsoft routinely does this evaluation at
new hire interview time, where the recruiters are themselves programmers.

SOL 2 Examples

The teaching of implementation (programming) is often done by instructors with no interest
and no experience.

More emphasis should be placed on reading good code. The question is, where to look for
examples of such good code.

A good programmer (coder) should know when to use REPEAT, when to use WHILE, etc.

The use of assertions and preconditions, as recommended by Dijkstra, may be desirable.

Coding can be regarded as a craft (similar to carpentry). If so, perhaps teaching techniques
used for teaching other crafts are applicable to teaching coding.

Walkthroughs, which may be important for good quality code, may be difficult for code in
languages like as Smalltalk or C++.

21

Books like "Elements of Programming Style" can be helpful in reducing the amount of bad
code being produced. However, "good style" may be programming language and computer
platform dependent. Perhaps there exists a core of "Good Programming Style" which is
independent of program language and computer platform.

Good documentation is recognized as a solved problem, but it is not SOP.

In implementation, it may be desirable to separate interface issues from other implementation
issues, especially if portabilit y and flexibilit y are desired source code features.

SOL 3 Examples

The SEI Capabilit y Maturity Model level 5 includes a Key Process Area called Technology
Change Management (see "The Capabilit y Maturity Model: Guideline for Improving the
Software Process", CMU SEI, Addison-Wesley, 1995)

What Can Be Taught? How?

Everything in this topic area can usually be taught without great difficulty. However, academic
policy issues determine what will be taught and by whom. Some of the teaching/training can
be delivered outside the universities. If programming is indeed a craft, then perhaps it can be
taught with the aid of apprenticeships and internships in industry.

Research Topics, Goals

Not much need is seen for research in the implementation area. However, some potentially
promising research areas examples are noted below.

• Research might be desirable into what teaching methods and programming styles work
best and why, or what is important and what is not. This could be described as
"empirical" software engineering research. There could be research into the impact of
language limitations, such as a limitation on the allowed number of characters for an
identifier. There could be research into the costs of bad or non-existent program
documentation, such as in the case of the Y2K problem. What are the advantages and
disadvantages of the use of multiple-level inheritance as opposed to single level
inheritance in object oriented programming languages? What were the true
quantitative costs of the use of the GOTO statement and perhaps resultant "spaghetti
code"?

• Research could be done to find quantitative evidence of the importance and criticality
of high quality code. Such evidence, if available, could be used to convince
management to apply better (more expensive) people to coding asks (cf. solution#1).
Such research might use methods similar to those now being used to determine the
adverse impacts of Global Warming.

• What are the trends in the evolution of programming languages, and what will be their
shorter and longer term impacts on software implementation. One seminar participant
remarked that a possible goal of software engineering was to take the fun out of
implementation. What is the likely impact of ever-higher-level languages on the
implementer?

22

• Some reports on the impact of possible SE advances assert that ROI (Return On
Investment) is much higher for area of SOFTWARE REUSE than for the areas of
BETTER TOOLS and BETTER PROCESS. Perhaps research into matters li ke this
would be worthwhile.

The Standard Table

Problem: software implementation (code) quality is lower than desired.

Solution Effective-
ness

Afford-
ability

Teach-
ability

Use in
Practice

Research
Needs

Remarks

more
implementation
emphasis

high high -- low -
medium

see above partly mgmnt
policy problem,
use better people
for coding.

better
programming
techniques

high high N/A low -
medium

seek better
teach
methods,
better
curricula

partly university
policy problem

PSP training high high high low -
medium

rigid training
disc., diff or std

code reading
training

high high medium low may lack suitable
books, language
dep.

better style
training

high high high low -
medium

language dep.?
separate
handling of
interface

more prog.
experience for
students

high high high low -
medium

each student
writes big prog.
(5000 LOC)

better mngmt. of
prog. lang. and
env. change

high high high low -
medium

hard to do with
changing tech.
env.

23

Integrating New Software with Off-The-Shelf
Software

Heinr ich Hussman, Pankaj Jalote, Stefan Krauß, Paul Strooper,
Walter Tichy, Andreas Zeller

The question

Commercial-Off-The-Shelf (COTS) products have the potential to reduce the cost and time-
to-market for software applications. This is one of the main reasons that COTS is now being
mandated in Request for Tenders by certain organizations and that some software procurers
are asked to justify why they are not using COTS.

To focus our discussion, we first define what we mean by COTS and the type of COTS
products that we want to consider. We wil l use the following definition of COTS:

"A COTS software product provides a core functionality that is potentially useful in many
systems. It is provided by a third party organization which is different from the developer and
user of the system. This third party is responsible for the quality and evolution of the COTS
product and supplies it to system developers on a commercial basis."

The range of COTS products is extreme, including small -scale components such as GUI or
component libraries, standard software for commercial applications such as the R/3 software
from SAP, and systems software such as operating systems.

Some of the features or properties that are typical of COTS products are:

• the user of the product has no or littl e control over the evolution of the product
• the product is accessible through a well-defined interface, often an application

programmer interface (API)
• a specification of the functionality of the product must exist
• the product is intended for multiple use, and as such it often includes more features

than necessary for any particular application
• some customization by the user may be required; COTS products range from products

that can be used without change to products that require significant customization

The use of COTS we will focus on is where a portion of an application is not custom-
developed, but instead provided by a COTS product. Of course, this only makes sense if the
benefits gained by using the COTS product outweigh the costs of finding and integrating the
COTS product. Here benefits and costs include issues such as financial cost, time-to-market,
etc. In some sense, the question to be answered is "Buy or Build?".

However, before we can decide whether to buy or build, we must know the consequences of
using COTS for the various aspects of the development process. This is the problem we wil l
address here: Do we know how we can integrate COTS products into software systems?

24

Short answer

As we will show below, there are significant problems with the integration of COTS software
and there is a lack of documented solutions and experience reports dealing with these
problems. We therefore conclude that the problem of integrating COTS products into
software products is mainly unsolved.

It should be noted that small -scale COTS products, such as GUI and component libraries,
have been used successfully for a long time now. In fact, even though the problems listed
below exist with these products to a certain extent, these problems are addressed by fairly
standard software engineering practices and no special solutions or techniques are needed in
this case.

Tasks and p roblems

Below we identify the tasks associated with developing an application by integrating COTS
software.

1. Analysis and Design
1.1 Evaluate COTS vendors and products
1.2 Requirements analysis
1.3 Determine design/architecture

2. Development/integration
3. Verification and validation
4. Maintenance
5. Management

These tasks are similar to the tasks encountered in the traditional li fecycle, except that we
have added tasks for finding suitable COTS products and we have merged the analysis and
design tasks. The reason for this is that the traditional li fecycle, where we consider
requirements before design, does not work due to potential integration problems with
incompatible COTS products. This is why requirements analysis and design, together with
the evaluation of COTS vendors and products, have been merged as three overlapping
subtasks in a single task. We have also included management as a separate task, because there
are several management problems associated with the use of COTS, as explained below.

Clearly the problems associated with the development of software where COTS products are
not integrated are also present when we include COTS products. However, there are a number
of additional problems:

1. Some traditional process models do not work. As explained above, we do not want to
ignore design during requirements analysis. This may lead to architecture mismatch
and other interoperabilit y problems during design.

2. Similarly, we cannot expect to complete requirements analysis and then find suitable
COTS products to suit those requirements. This wil l either unnecessarily restrict the
types of products that we can use, or increase the cost when implementing the
requirements.

3. COTS product evolution, which is under the control of the COTS vendor, and vendor
behaviour can have a significant impact. For example, some features may be altered or
even deleted in future versions of the product. Not incorporating these future versions
may not be an option if older versions are no longer supported by the vendor.

25

4. Related to the above problem are potential problems with li censing and redistribution
of the COTS product.

5. COTS products are typically developed for a large market and as such incorporate
many more features than are necessary for any particular application. This causes
problems with identifying the useful features, and potential problems with interference
of features that are not really needed with those that are.

6. For many COTS products, no source code is delivered. This restricts the type of V&V
activities that can be carried out on these products. For example, it makes it harder to
guarantee that unwanted features will not interfere with the ones that are needed.

7. Some COTS products have missing or incomplete documentation.

Maturity of solutions

The following tables summarize our opinion of the maturity of the solutions for the tasks and
problems identified above. Note that all the problems, except the first, are related to one or
more of the identified tasks. We therefore consider only this first problem and then each of the
identified tasks. For each task, we list the related problems and the solutions that we are aware
of. Many of the entries contain a question mark, indicating that we did not feel that we knew
enough about the proposed solution to judge its maturity.

Problem: Traditional li fecycle models do not work

Solution Effective-
ness

Affordability Teachability Use in
Practice

Research
Potential

risk based process model
(e.g. spiral model)

? medium medium low ?

IIDA [FLM98, FML98] ? ? ? low ?

Task 1.1: Evaluate COTS vendors and products

related problems: 3, 4, 5, and 7

Solution Effective-
ness

Affordability Teachability Use in
Practice

Research
Potential

OTSO
[Kontio96, Kontio96a]

? ? ? low ?

[Voas98] ? medium medium low medium

There is also a proposed acceptance process for COTS software in reactor applications
[PS95]. We have not included this in the table above, because it was developed for a
particular application domain (the nuclear industry), which has more stringent requirements
than typical applications.

26

Task 1.2: Requirements analysis

related problems: 2, 5, and 7

Solution Effective-
ness

Affordability Teachability Use in
Practice

Research
Potential

Prototyping medium medium medium low medium

unify features and
requirements (joint appl.
development)

medium low low low low

Task 1.3: Determine design / architecture

related problems: 1, 5, and 7

Solution Effective-
ness

Affordability Teachability Use in
Practice

Research
Potential

life cycle architecture
milestone [Boehm96]

? ? ? low ?

middleware (e.g. CORBA,
DCOM)

medium medium high medium high

wrappers, glue, bridges low high high low medium

The Simplex architecture [SGP98] is a proposal for an architecture for incorporating COTS
products into trusted systems that attempts to limi t the impact of a COTS component that fails
on the remainder of the system.

Task 2: Development / integration

related problems: 3, 5, 6, 7

Solution Effective-
ness

Affordability Teachability Use in
Practice

Research
Potential

middleware (e.g. CORBA,
DCOM)

medium medium high medium high

wrappers, glue, bridges medium low high medium low

27

Task 3: Verification & validation

related problems: 5, 6, 7

Solution Effective-
ness

Affordability Teachability Use in
Practice

Research
Potential

use operational experience
(for V&V)

low low medium low medium

black-box unit and system
testing

medium medium high medium low

Kohl [Kohl96] has proposed a method for dealing with dormant code, that is, code that is not
required or used in the application in which the COTS product is integrated.

There is also a set of guidelines for the testing of existing software (such as COTS
components) for safety-related applications [SL].

Task 4: Maintenance

related problems: 3, 4, 6, 7

Solution Effective-
ness

Affordability Teachability Use in
Practice

Research
Potential

use open comm. standards low high high medium low

Task 5: Management

related problems: 1, 3, 4

Solution Effective-
ness

Affordability Teachability Use in
Practice

Research
Potential

COCOTS [COCOTS98] ? ? high low medium

Note that COCOTS, a version of COCOMO tailored for applications that include COTS
products, only addresses the cost estimation aspect of the management of software projects
that include COTS.

What to teach

Clearly there are many potential problems and very few mature solutions, which poses a
problem as far as teaching is concerned. It is also clear that students should be exposed to the
potential payoffs of using existing software, and the issues involved in choosing between
integrating existing software or writing it from scratch. They should also be aware of existing
standards for middleware and interconnection languages.

Perhaps the best way to do this is to emphasize the areas where COTS has been successful:
small -scale COTS products such as GUI and component libraries. This could be done by
incorporating such products into one or more projects that would typically exist in a Software
Engineering curriculum.

28

Research top ics and goals

In this case, the fact that there are many problems and very few mature solutions could
indicate that there are significant research opportunities. However, it is not clear to us that we
know exactly what all the problems are and how significant they are. This suggests that the
most important research that we can carry out is experimental research to assess this.

The Call for Papers for a 1999 ICSE workshop on Ensuring Successful COTS Development
lists the following topics: architecture for COTS integration, evaluation techniques for COTS
candidates, development process changes, business case development and/or examples,
COTS-based system management, maintenance of COTS-based systems, requirements
engineering of COTS-based systems, security aspects of COTS-based systems, and tools to
support COTS-based development. The call for papers also invites experience reports that
provide insight into the advantages and disadvantages of COTS adoption and integration. We
feel that the latter wil l provide much more insight and progress than more proposals for
potential solutions.

References

[Boehm96] B. Boehm, Anchoring the Software Process, IEEE Software, July 1996, pp. 73-26.
[COCOTS98] COCOTS - Constructive COTS, http://sunset.usc.edu/COCOTS/cocots.html,

August 1998.
[FLM98] G. Fox, K. Lantner, and S. Marcom, A Software Development Process for COTS-

based Information System Infrastructure: Part 1. Crosstalk
(http://www.stsc.hill .af.mil/CrossTalk/crosstalk.html), March 1998.

[Kohl98] R. Kohl, V & V of COTS Dormant Code: Challenges and Issues. SES'98
Presentation (http://www.rstcorp.com/ots), 1998.

[Kontio96] J. Kontio, OTSO: A Method for Selecting COTS,
http://www.cs.umd.edu/~jkontio/reuse.html, August 1996.

[Kontio96a] J. Kontio, A Case Study in Applying a Systematic Method for COTS Selection.
Proceedings ICSE-18 Berlin, IEEE Computer Society, 1996.

[PS95] G.G. Preckshot and J.A. Scott, A Proposed Acceptance Process for Commercial Off-
the-Shelf (COTS) Software in Reactor Applications. Lawrence Livermore National
Laboratory, Report UCRL-ID-122526, September 1995.

[SPG98] L. Sha, J.B. Goodenough, and B. Pollak, Simplex Architecture: Meeting the
Challenges of Using COTS in High-Reliabilit y Systems. Crosstalk
(http://www.stsc.hill .af.mil/CrossTalk/crosstalk.html), April 1998.

[SL] J.A. Scott and J.D. Lawrence, Testing Existing Software for Safety-Related Applications.
Lawrence Livermore National Laboratory, Report UCRL-ID-117224 (revision 7.1).

29

Test

Motoei Azuma, Karol Fruehauf, Dan Hoffman

What is testing?

The repeatable execution of software with the intention of revealing deviations from
requirements, including functional, performance, and reliabilit y requirements.

What is the state of the practice and the state of the art (briefly)?

State of the practice

• Many companies do no systematic testing. Some companies do perform systematic
testing; it is often reasonably effective but very expensive in effort and calendar time.
Unit testing is usually ad hoc, if performed at all . Test automation is primitive.

• Test education, especially in universities, is poor.

State of the art

• Sophisticated automation is feasible and can be very effective, as shown by Microsoft.
Statistical testing can be used effectively, as shown by AT&T. Given the importance of
testing to industry, there is relatively little research done. What is done focuses
primarily on automated input generation from source code or formal specifications.

• Some good training materials do exist, mostly in industry.

What are the most important dimensions?

The topic can be investigated along a number of dimensions. Each dimension would most
likely lead to a different answer to the basic questions. Therefore we will restrict our
considerations to the li fe cycle dimension (but mention the other dimensions which could
have been investigated).

lifecycle

unit, integration, system, field

lifecycle model applied

waterfall , iterative, incremental, spiral

30

focus

correctness, performance, usabilit y, reliabil ity

development paradigm

procedural, OO, AI

domain

information systems, real-time/embedded systems, OS/network, DBMS, telecom

mode of operation

batch vs. interactive (GUI)

Task: system testing

Subtask Effectiveness Affordability Teachability Penetration Research
potential

Design for testability low medium low innovators high

Test planning high medium medium early majority low

Selection:
deterministic

medium medium medium early majority medium

Selection: statistical high low medium innovators high

Oracle medium low high early majority high

Test environment high medium low late majority low

Test report high high high early majority none

Notes

General

Systematic testing only practiced by early majority, limiti ng the penetration in many cases
above.

Design for testability

An important topic in testing that, arguably, belongs under the “design” topic.

Test planning

Careful planning is essential for systematic testing

31

Selection: deterministic

The focus to date has been automated input generation.

While some interesting results have been obtained over the past 20+ years, there has been
littl e industrial impact.

Selection: statistical

Seems promising but lack of experience makes all entries suspect.

Will probably be very effective in some domains; ineffective in others.

Oracle

At present, usually derived manually from the requirements specification, at high cost.

Test environment

Some participants felt that automation is the main route to improvement here, of input
generation, execution, and oracle; others disagreed.

Test report

Usually a manual task, though automated clerical support is sometimes present.

Task: integration testing

Subtask Effectiveness Affordability Teachability Penetration Research
potential

Design for testability high medium low innovators high

Test planning high low low innovators medium

Selection:
deterministic

medium + medium + medium + early
adopters

low

Selection: statistical low low medium none low

Oracle low low low innovators ?

Test environment high low low innovators high

Test report high high high innovators none

32

Notes

General

Integration testing is poorly understood by researchers and practitioners. There is littl e
agreement on the basic issues, terminology, and principles. Consequently, confidence in this
table is low.

Nonetheless, the topic is important. There is lots of experience but it is not packaged for
teaching or use. There is a big potential payoff in getting a firmer understanding of the area.

Design for testability

Really belongs under Structures.

Rarely explicitl y practiced but potential is high.

Test planning

The key issue is planning the integration order, especially in large projects.

Selection: deterministic

Usually based on design specifications.

Selection: statistical

May help in some large subsystems.

Input generation is not hard but it makes the oracle very expensive.

Oracle

Automation has great potential here.

Test environment

Configuration management support for subsystem builds is important.

Support for many test configuration items is needed

Test report

A manual task.

33

Task: unit testing

Subtask Effectiveness Affordability Teachability Penetration Research
potential

Design for testability low ? low innovators medium

Test planning high medium medium innovators low

Selection:
deterministic

medium + medium + medium + early
adopters

low

Selection: statistical low low medium none low

Oracle low low high late
majority

high

Test environment high medium medium innovators. low

Test report high high high innovators none

Notes

General

Systematic unit testing rarely done.

Design for testability

Again, really belongs under “Design” .

Test planning

Systematic unit testing is done rarely because it is not explicitl y planned as an activity. The
specification of the unit test cases rarely appears in a project plan.

Selection: deterministic

Tool support can be improved.

Selection: statistical

Input generation is not hard but it makes the oracle very expensive.

Oracle

Automation has great potential here.

34

Test environment

Automation is the main route to improvement here, of input generation, execution, and oracle.

Test report

A manual task.

What should be taught?

• What testing is and is not.
• How testing differs from "playing with the program".
• The fundamental principles and limitations of testing.
• What to test, when, and how.
• Test planning and reporting.
• The key payoff of unit test: catch errors before integration test.
• The key payoff of integration test: catch errors before system test.
• Test approaches.
• Test tools.
• Statement coverage, test management.
• Overall: reduce methods not proven in practice to "a mention".

Where should research be focused?

• Design for testabilit y.
• Work needed to understand and express "testabilit y".
• Big payoff in careful thought, experimentation, and refinement.
• Oracle automation (and automation of other areas).
• Little work so far, especially in practical situations.
• Lots of potential for improvement.
• Statistical test case selection.

35

Defining Software Families

Wolfram Bartussek, Paul Strooper, David Weiss

Introduction

Family-oriented software development was suggested as early as 1968 0. More recently there
have been several suggestions for engineering families based on the idea of identifying
abstractions that are common to a family and using them as the basis for designing a
specification language for describing family members and for creating a design common to all
family members 0, 0, 0, 0, 0, 0, 0. A variety of technologies may then be used to implement a
translator for such a language or to use the design to create family members rapidly. The
general goal of all of these approaches is to make software development more efficient by
specializing for a particular domain (where we take a domain to be a family) the faciliti es,
tools, and processes that you use to produce software for the domain. You make an
investment in specialized faciliti es, tools, and processes that you might otherwise not, but your
investment is repaid many times over in increased eff iciency in your software development
process.

Software Famili es

The original definition of a program family as given by Parnas [1] is “We consider a set of
programs to constitute a family whenever it is worthwhile to study programs from the set by
first studying the common properties of the set and then determining the special properties of
the individual family members.”

This definition is utilit arian since the use of the word "worthwhile" suggests that one must do
a value analysis before deciding whether or not to consider a set of programs to be a family,
but otherwise says littl e about the commonality among family members. In current practice,
when software families are identified, the identification is li kely to be based on experience
and intuition, rather than by a systematic procedure. This approach corresponds more to
defining a family as a set of items that have common aspects and predicted variabiliti es.
Emphasis here is on having made the commonalities explicit and on predicting the
variabiliti es among family members.

We will distinguish among several stages in defining a family.

Stage 1: Potential family. A set of software for which one suspects that there is sufficient
commonality to be worth studying the common aspects of the software.

Stage 2: Semi-family. A set of software for which common and variable aspects have been
identified.

Stage 3: Defined family. A semi-family for which an economic analysis has been performed
in order to decide how much of an investment should be made in the family, i.e., an
investment to exploit the commonaliti es and variabiliti es for the purpose of
eff iciently creating family members.

36

For purposes of investment it is often worth considering a special case: a product line, which
is a family of software systems where individual members of the family are sold as products
(instead of being incorporated into products or used to create products).

It is rare that you get the chance to create a family afresh. Most families are the result of
success: a company develops a successful product and discovers that customers want changes
to the product. To continue to sell i nstances of the product and to keep up with the market for
it, the company finds that it is producing many variations on it. The company realizes that it
has a product line, i.e., a semi-family of software systems, or systems that need software to
operate, where individual members of the family are sold as products. (Alternatively, a
software development organization may discover that it has a set of software assets that are
used in building members of its product line(s) but that themselves are not packaged to be
sold as products. An example is a database system used in a telephone switch. The same
system may be used in many switches, but is not sold as a separate product.)

Most software families, then, evolve from existing systems. Even when an organization
realizes that it has a product line that is a semi-family, it still rarely has methods that allow it
to guide the evolution of the product line. It lacks reasonable methods for deciding what the
short and long term evolution should be, for identifying information critical to the software
developers for creating software families, for informing the developers of that information,
and for managing their decisions over time. From a business viewpoint, this is strategic
software planning. From a technical viewpoint, it is strategic software design.

In many engineering disciplines the idea of investing in a product line is a natural one and is
part of the product line development process. Automobile manufacturers make strategic
decisions about investing in assembly lines and factories as a standard way of conducting
business. They plan investments in technology and process, and know the expected return
from those investments. Manufacturing engineers are involved in such decisions and design
the manufacturing process accordingly. Such infrastructure investment planning is missing in
most software development processes, which often focus on the near term production of a
single system.

The Question: How To Define A Family

For software families, there are few techniques available for deciding what the members of a
defined family should be, i.e., for moving from a potential family to a defined family. Without
performing such an analysis, it is difficult to decide how much investment to make in the
family, and it is difficult to create the resources needed for creating family members, such as
design, code, and tools for creating family members. Note that these issues involve both
economic and technical issues concerning the feasibilit y of creating the resources. This
section is concerned with identifying the tasks involved in identifying (and documenting)
defined families.

 The Short Answer

In general, few techniques exist for defining families, i.e., for performing the analysis needed
to identify a defined family. There are a few techniques that have become commercially
available in the last 2-3 years, but they are just starting to be tried by the early adopters in
industry. As a result, we rate the problem as partially solved. The following sections provide
more detail on what types of techniques are available, and the reasons we have ranked them
as they appear .

37

Aspects Of Defining A Family

There are two key aspects of identifying a defined family: the tasks to be performed and the
means for performing those tasks. The tasks involve the actions to be taken, and the means
involve the methods for performing those tasks and the artifacts that result from applying
those methods.

Task Aspect

1. Elicitation of common and variable requirements
2. Description of common and variable requirements
3. Validation of common and variable requirements
4. Investment analysis - cost benefit of including family members, and cost benefit of

infrastructure investment
5. Management

Means Aspect

1. Languages
2. Processes
3. Tools
4. Heuristics

Evaluation o f Means for Individual Tasks

Problem: Elicitation of common and variable requirements

Solution Effective-
ness

Affordability Teachability Use in
Practice

Research
Potential

Confidence

Commonality
Analysis

High Medium High
(teach!)

Low (EA) Medium High

Scenarios Medium Medium High Low (EA) Medium Medium

Model Building Low Low Medium Low (IN) Medium Medium

Organization
Domain Modeling

Medium ? ? Low (LU) ? Low

Summary High Medium High Low High Medium

Research might focus on investigating combinations of the identified solutions

38

Problem: Description of common and variable requirements

Solution Effectiveness Afford-
ability

Teachability Use in
Practice

Research
Potential

Confidence

Precise Use of
Natural Language

Medium

(highly
effective for
communicating
ideas, less
effective for
further formal
treatment)

High High (teach!)

(much time
needed for
disciplined use
of nat. lang. for
engineering
purposes)

Low
(EA)

High Medium

Table of
Parameters

Medium Medium High (teach!) Low
(EA)

Medium Medium

Domain Models

(state trans.,
context models,
object
diagrams,...)

Low Low Medium Low
(EA)

High High

Pattern Language ? ? Medium (dare
to teach)

Low (IN) High Low

Semantic
Networks

? ? Low Low
(LU)

? Low

Summary Medium High High Low High Medium

Combination of the first three items may yield a solution of very high pay off

Problem: Validation of common and variable requirements

Solution Effective-
ness

Afford-
ability

Teachability Use in
Practice

Research
Potential

Confidence

Prototyping Medium Low ? Low (IN) Medium Medium

Formal reviews Medium Medium High (teach!) Low (EA) Low High

Examples from
history

Medium High High (teach
and train!)

Low (EA) High High

Market research Medium Low Low Low (EA) High Low

Summary Medium Medium High Low High Medium

Formal reviews: understandabilit y (experts from the field, not involved in the project), active
reviews, inspections, desk reading

Examples from history: More effective than other techniques but in a narrow range

39

Problem: Investment Analysis

Solution Effective-
ness

Affordability Teachability Use in
Practice

Research
Potential

Confidence

PULSE-ECO

Product line SE

Medium Medium Medium (teach
and train)

Low (IN) High Low

Value Proposition Medium Medium Medium (hire
economist)

Low (EA) High Low

FAST cost
analysis

Medium High High (train!) Low (EA) Medium Medium

Summary Medium Medium Medium Low High Low

High potential, littl e work done, but may able to use standard marketing and economic
techniques

Problem: Management Analysis (managing the process to find the family)

Solution Effectiveness Affordability Teachability Use in
Practice

Research
Potential

Confidence

Summary Medium High Low (include in
management
training)

Low (EA) ? Low

Standard management techniques used; identification of roles and resources

Summary of Research Issues

The most promising areas for research are those ranked as high:

• Precise use of natural language for description of common and variable requirements,
• Domain models for description of common and variable requirements,
• Pattern languages for description of common and variable requirements,
• Use of historical examples for validation of common and variable requirements,
• Market research for validation of common and variable requirements,
• Use of PULSE-ECO for investment analysis, and
• Creation of value propositions for investment analysis.

In addition, research into integrating several different means of accomplishing tasks may lead
to more effective, more affordable, and more appealing versions of tasks. In particular,
precise use of natural language combined with tables of parameters and model building may
lead to a very effective and affordable technique for description of family requirements.

40

Summary of Teaching Issues

The most promising areas for teaching are those ranked as high:

• Commonality analysis for elicitation of common and variable requirements,
• Precise use of natural language for description of common and variable requirements,
• Use of formal reviews for validation of common and variable requirements, and
• FAST cost analysis for investment analysis.

References

[1] Campbell , Grady H. Jr., Faulk, Stuart R., Weiss, David M.; Introduction To Synthesis,
INTRO_SYNTHESIS_PROCESS-90019-N, 1990, Software Productivity Consortium,
Herndon, Dijkstra, E. W., Notes on Structured Programming. Structured Programming,
O.J. Dahl, E.W. Dijkstra, C.A.R. Hoare, eds., Academic Press, London, 1972

[2] Coglianese, L, Tracz, W.; An Adaptable Software Architecture for Integrated Avionics,
Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-
NAECON 1993, Jun, 1993

[3] Cuka, D., Weiss, D.; Engineering Domains: Executable Commands As An Example,
Proc. International Conference On Software Reuse, June, 1998

[4] Dijkstra, E. W., Co-operating Sequential Processes, Programming Languages, ed. F.
Genuys, New York: Academic Press, pp. 43-112, 1968

[5] Gupta, N., Jagadeesan, L., Koutsofios, E., Weiss, D.; Auditdraw: Generating Audits the
FAST Way, IEEE International Symposium on Requirements Engineering, pp. 188-
197, January, 1997

[6] Kang, K., Cohen, S., et al., Feature Oriented Domain Analysis (FODA) Feasibilit y
Study, Technical Report CMU/SEI-90-TR-21, Software Engineering Institute,
Pittsburgh, PA, November, 1990

[7] Moore, Geoffrey, Crossing the Chasm
[8] Neighbors, J., The Draco Approach to Constructing Software from Reusable

Components, IEEE Transactions on Software Engineering, SE-10, 1984
[9] Parnas, D.L., On the Design and Development of Program Families, IEEE

Transactions on Software Engineering, SE-2:1-9, March 1976
[10] Simos, Mark, Anthony, Jon, Weaving the Model Web: A Multi -Modeling Approach to

Concepts and Features in Domain Engineering, Proc. Fifth Int. Conf. Software Reuse,
June, 1998

[11] Weiss, David M., Lai, Robert Chi Tau, Engineering Software Domains: A Family-
Based Software Development Process, Addison-Wesley-Longman, July 1999

41

Maintenance

Jan Bredereke, Karol Frühauf, Ridha Khedr i, Stefan Krauß, Andreas Zeller

The question

How can we maintain a product's integrity during its evolution?

The answer

This problem is partially solved.

Reasons for the ranking

There is a number of well -understood solutions that help in software maintenance. However,
there is a need and a potential for better solutions, especially in the areas of reverse
engineering and reengineering.

Details

The aim of maintenance is to change a software product after it has been released to the user;
the problem is to ensure the integrity of the product even after a change. As the number of old
software systems increases, so does the need for maintenance.

Designing for change is the best way to easy maintenance.

Prior to any change comes the problem the structure oft the product needs to be understood
and the potential impact of the intended change determined. This is typically supported by the
product documentation. Where the documentation is incomplete or inaccurate, program
comprehension can be supported by reverse engineering tools.

If the required change is suff iciently large and has an impact on the overall structure of the
program then the product need to be reengineered.

After a change to the product has been accomplished, regression testing helps in detecting
unwanted side effects. For the whole maintenance activity, software configuration
management is a necessity to keep track of the product evolution.

42

The following table lists a number of proven and proposed solutions that can help reducing
maintenance costs.

Solution Effective-
ness

Affordability Teachability Use in
Practice

Research
Potential

1. Configuration Management
(see also extra working
group)

high high high early
majority

low

2. Regression Testing high medium high early
adopters

medium

3. Reverse Engineering

3.1 Peopleware

3.1.1 Talk to knowledgeable
People

high medium low late majority high

3.2 Static Analysis

3.2.1 Lexical Analysis (i.e.
cross reference)

high high high early
majority

medium

3.2.2 Syntactic Analysis ? medium medium pioneer high

3.2.3 Semantic Analysis ? low low lab use high

3.3 Dynamic Analysis (i.e.
program spectra)

? ? ? ? ?

3.4 Complexity Analysis medium high high pioneer low

3.5 Reconstructing
Abstractions

medium ? ? ? ?

4. Reengineering

4.1 Restructuring Code low medium high innovators low

4.2 Restructuring Modules medium low low innovators high

4.3 Wrapping Legacy
Systems

high medium high early
adopters

low

4.4 Software Migration medium high low late majority high

5. Designing for Change (see
also extra working group)

high medium high early
adopters

medium

6. Documentation
Maintenance

medium high low late majority high

As the expertise of the authors mainly covers configuration management and regression
testing, the confidence level of the judgements for the areas 2-6 is significantly lower. Several
of these judgements need to be supported by experience data; gathering such evidence is as
useful a research topic as gathering more knowledge about the individual solutions.

43

What should be taught?

As “best practices” , the solutions with high effectiveness and high teachabilit y should be part
of any software engineering course:

• Software Configuration Management
• Regression Testing
• Lexical Analysis
• Wrapping Legacy Systems
• Designing for Change (the littl e we know)

What research shou ld be done?

First of all , we should evaluate existing solutions for effectiveness, if this has not already been
done. Besides developing alternate solutions, the following tasks have high research
potential:

• Extracting and Evaluating People's Knowledge
• Syntactic and Semantic Analysis
• Restructuring Modules
• Designing for Change (all that we don't know)
• Software Migration
• Documentation Maintenance

The potential of the following tasks was not judged due to lack of knowledge:

• Dynamic Analysis
• Reconstructing Abstraction

Suggested Readings

[1] Reidar Conradi and Bernhard Westfechtel. Version Models for Software Configuration
Management. ACM Computing Surveys 30(2), June 1998, pp. 232-282.

A survey article on the current state of the art in configuration management.

[2] Akira K. Onoma and Wei-Tek Tsai and Mustafa H. Poonawala and Hiroshi Suganuma.
Regression Testing in an Industrial Environment. Communications of the ACM 41(5),
May 1998, pp. 81-86.

A recent survey on regression testing covering several practical aspects.

[3] Helmut Balzert. Lehrbuch der Software-Technik, Band 2. Spektrum-Verlag,
Heidelberg, 1997.

A recent software engineering textbook that discusses recent maintenance and
reengineering issues.

[4] Hausi Müller and Thomas Reps and Gregor Snelting (eds.). Program Comprehension
and Software Reengineering. Dagstuhl Seminar-Report #204.
http://www.dagstuhl.de/DATA/Seminars/98/#98101

A survey on current research topics in Reverse Engineering and Reengineering.

44

Measurement

Motoei Azuma, Pankaj Jalote, Peter Knoke, Jochen Ludewig

Introduction

Why are metrics important? Because:

1. In order to do anything scientifically the target product as well as process should be
measurable.

2. In order to improve anything, the effects must be observed, i.e. measured.
3. In order to measure something, metrics should be well defined, validated and

standardized.

Basic Questions

Specifically, when dealing with software using metrics, we can assess metrics with the
following basic questions:

• Are we able to describe and forecast process and product characteristics by metrics?
• Are we able to control process and product using metrics, possibly continuously?

Overall Answer

Metrics can be categorized into process metrics and product metrics based on the target
attributes to be measured. There are some books and papers on process and product metrics.
Some metrics are widely known and sometimes, used in practice. ISO/IEC JTC1/SC7 is keen
to develop international standards for measurement. JTC1/SC7/WG6 is developing a series of
international standards for software product metrics and evaluation. Examples are shown in
the bibliography. Yet there are many metrics to be developed, validated and taught for
practical use.

Therefore the overall answer to the above questions is:

Partially Solved.

Concept of Metrics and Measurement

Definitions from ISO/IEC 14598-1 (Information Technology - Software product
evaluation - Part 1: General overview)

Metric: the defined measurement method and the measurement scale.

Measurement: the use of a metric to assign a value (which may be a number or category) from
a scale to an attribute of an entity.

Measure (Noun): The number or category assigned to an attribute of an entity by making a
measurement.

45

External measure: an indirect measure of a product derived from measures of the behavior of
the system of which it is a part.

Internal measure: a measure of the product itself, either direct or indirect.

Taxonomy (1): Categories based on attributes to be measured

Metrics can be categorized by target attributes to be measured.

The highest level of categories is process metrics and product metrics.

They are refined into detailed levels of categories. Process metrics includes those that measure
process as well as resources. Product metrics are categorized into internal metrics, external
metrics and quality-in-use metrics. (See Reference Model)

Taxonomy (2): Usage and timing of use

Metrics can be also categorized by their usage.

Initial Stage: At this stage metrics are used for description of plan (or requirement) for both
process and product.

Current Stage: At this stage metrics are used for description of current (at a milestone) process
or product. Resulting value (measure) is used for control or as input for forecasting process or
product at goal stage.

Future Stage (Goal): Metrics for future stage are those which forecast (or predict) Estimated
Process or Product at Goal Stage.

Resource
And

Environment
Process Products

Influence
Of

Products

Resources
Metrics

Process
Metrics

Internal
Metrics

External
Metrics

Quality In
Use Metrics

Process
Metrics

Product
Metrics

46

Framework of Metrics by Target Attributes and Usage

Target attribute and usage are used for categorizing measurement technologies.
Measurement technologies include metrics as well as process for measurement and their use.

Table 1: Categories of Metrics and Assessment Results Clauses

Planning Current Estimate

Forecast

Process Process-Planning Process-Current
State

Process-Forecast

Product Product-Planning Product-Current
State

Product-Forecast

Techno logy Assessment Framework

The framework

Solution indicates examples of metrics in the category or associated information.

Metrics and associated method and tools were assessed by the following criteria:

• Technical Maturity (Effectiveness).
• Practical Maturity (Use in practice).
• Affordabil ity.
• Teachabilit y (Education needs).
• Research potential (Research needs).

Technical Maturity

How accurate or correct it is?

High: Scientifically proved
Med-High: Statistically validated
Medium: Accessed by experts
Med-Low: Proved to be useful by experimental use
Low: Proposed

Practical Maturity

How widely it is known and used?

High: Widely used in practice
Med-High: Widely accepted, but used by limited users
Medium: Widely known, but used by limited users
Med-Low: Experimentally used by some users
Low: Proposed, but known by small

47

Affordability

How reasonable are the cost and effort required for using it?

Teachability (Education needs)

How easy is it to teach it in university or industry? Is it necessary to teach it?

Research potential (Research needs)

Is research for new technologies necessary?

Assess ment Results

Process / Planning

Metrics and measurement technologies for planning a process.

(1) Sub-category: Resources estimation

Solution (Metric or Measurement Process): Cost models such as COCOMO

Technical Maturity (Effectiveness): Useful but limited
Practical Maturity (Use in practice): Medium
Affordabil ity: Medium
Teachabilit y (Education needs): High
Research potential (Research needs): (1) Model with easy inputs that is applicable in

 starting stages.

(2) Sub-category: Schedule estimation

Solution (Metric or Measurement Process): Schedule estimation model

Technical Maturity (Effectiveness): High
Practical Maturity (Use in practice): Med-High
Affordabil ity: High
Teachabilit y (Education needs): High
Research potential (Research needs): (1) Minimum schedule for a given project and

 effort estimate,
(2) Relationship between schedule compression
 and effort escalation.

(3) Sub-category: Measurement process

Solution (Metric or Measurement Process): JTC1/SC7/WG13, ESPRIT project AMI

Technical Maturity (Effectiveness): High
Practical Maturity (Use in practice): Med-High
Affordabil ity: High

48

Teachabilit y (Education needs): High
Research potential (Research needs): Not research topic

Product / Planning

Metrics and measurement technologies for planning products.

(4) Sub-category: Functionality

Solution (Metric or Measurement Process): Validated Function

Technical Maturity (Effectiveness):
Practical Maturity (Use in practice):
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs):

(5) Sub-category: Reliabilit y

Solution (Metric or Measurement Process): MTTF (Mean Time To Failure), Mean time
for recovery, etc.

Technical Maturity (Effectiveness): High
Practical Maturity (Use in practice): Low
Affordabil ity: Low
Teachabilit y (Education needs): High
Research potential (Research needs): (1) Relationship between defect density and

 MTTF.

(6) Sub-category: Usabilit y

Solution (Metric or Measurement Process): Time to learn, Mistakes made in using the
system, User satisfaction

Technical Maturity (Effectiveness): Low
Practical Maturity (Use in practice): Low
Affordabil ity: Low
Teachabilit y (Education needs): Medium
Research potential (Research needs): High. Need simple, cheap, and usable metrics

 (e.g. which can have tool support)

(7) Sub-category: Efficiency

Solution (Metric or Measurement Process): Response time, Throughput, Memory
requirement.

Technical Maturity (Effectiveness): High
Practical Maturity (Use in practice): Medium-high
Affordabil ity: Medium
Teachabilit y (Education needs): High
Research potential (Research needs):

49

(8) Sub-category: Maintainabilit y

Solution (Metric or Measurement Process): MTTR, effort required to make changes,
regression testing effort.

Technical Maturity (Effectiveness): Medium
Practical Maturity (Use in practice): Low
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs): Medium (relationship between user level metrics

 and internal/process metrics needs to be
 understood)

(9) Sub-category: Portabilit y

Solution (Metric or Measurement Process): Effort needed to port to a new
hardware/software platform.

Technical Maturity (Effectiveness): Low
Practical Maturity (Use in practice): Medium
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs):

Process / Current State

Metrics and measurement technologies which describe the current state of the process.

(10) Sub-category:

Solution (Metric or Measurement Process): Effort expended, time consumed, tasks
completed, defects found, no. of changes (revisions) made, no. of compilations, etc.

Technical Maturity (Effectiveness): Medium
Practical Maturity (Use in practice): Medium
Affordabil ity: Medium
Teachabilit y (Education needs):
Research potential (Research needs): (1) Models for forecasting user-level properties

 from these process measures,
(2) Rules for interpreting the data.

Product / Current State

Metrics and measurement technologies which describe the current state of the products.

(11) Sub-category: Functionality

Solution (Metric or Measurement Process): Amount of functionality built

Technical Maturity (Effectiveness): Low
Practical Maturity (Use in practice): Medium
Affordabil ity:

50

Teachabilit y (Education needs):
Research potential (Research needs): (1)Tools support for tracing current system to

 requirements/design.

(12) Sub-category: Reliabilit y

Solution (Metric or Measurement Process): No of errors found, timing of errors, No of
errors removed, code coverage in testing, percentage of test cases that succeeded.

Technical Maturity (Effectiveness): High
Practical Maturity (Use in practice): Medium
Affordabil ity: High
Teachabilit y (Education needs): High
Research potential (Research needs):

(13) Sub-category: Usabilit y

Solution (Metric or Measurement Process): Clarity of messages

Technical Maturity (Effectiveness): Low
Practical Maturity (Use in practice): Low
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs): Need intermediate metrics for controlli ng

 usabilit y.

(14) Sub-category: Efficiency

Solution (Metric or Measurement Process): Measure response time, analyze design,
benchmarking.

Technical Maturity (Effectiveness): Measurement is OK, analysis is not.
Practical Maturity (Use in practice): Medium
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs): Analyze a design for runtime properties.

(15) Sub-category: Maintainabilit y

Solution (Metric or Measurement Process): Complexity of design, code, etc.; modularity;
structure; OO metrics.

Technical Maturity (Effectiveness): Low
Practical Maturity (Use in practice): Low
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs): High

(16) Sub-category: Portabilit y

Solution (Metric or Measurement Process): Amount of hw/sw dependent code;
percentage of modules that have this code.

51

Technical Maturity (Effectiveness): Low
Practical Maturity (Use in practice): Low
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs): High

Process / Forecast

Metrics and measurement technologies for forecasting properties of the remaining part of the
process.

(17) Sub-category:

Solution (Metric or Measurement Process): Time to complete, effort to complete, defect
density on completion, other product quality properties, productivity.

Technical Maturity (Effectiveness): Medium
Practical Maturity (Use in practice): Medium
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs): Medium

Product / Forecast

Metrics and measurement technologies for forecasting a product quality at goal stage.

(18) Sub-category: Functionality

Solution (Metric or Measurement Process): Amount of functionality that wil l be
delivered.

Technical Maturity (Effectiveness): Low
Practical Maturity (Use in practice): Low
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs):

(19) Sub-category: Reliabilit y

Solution (Metric or Measurement Process): MTTF, defect density, recovery time

Technical Maturity (Effectiveness): Medium
Practical Maturity (Use in practice): Low-medium
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs): Tools/models for identifying potential reliabilit y

 problems; potentially difficult modules;
 Improved prediction models. Can metrics be
 used to identify hot-spots?

52

(20) Sub-category: Usabilit y

Solution (Metric or Measurement Process): ??

Technical Maturity (Effectiveness):
Practical Maturity (Use in practice):
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs): high

(21) Sub-category: Efficiency

Solution (Metric or Measurement Process): Models for predicting resp. time, etc.

Technical Maturity (Effectiveness):
Practical Maturity (Use in practice):
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs): High. Predicting run-time performance of a

 design, or code, for some environment. Tools to
 identify possibiliti es of performance
 improvement.

(22) Sub-category: Maintainabilit y

Solution (Metric or Measurement Process): ??

Technical Maturity (Effectiveness):
Practical Maturity (Use in practice):
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs): Given process data and product data, can

 maintainabilit y be predicted. Can we use metrics
 to identify possibiliti es for improving
 maintainabilit y.

(23) Sub-category: Portabilit y

Solution (Metric or Measurement Process):??

Technical Maturity (Effectiveness):
Practical Maturity (Use in practice):
Affordabil ity:
Teachabilit y (Education needs):
Research potential (Research needs): Can portabilit y of design be estimated, Can

 portability of code be estimated? Can we
 identify modules/deign elements for improving
 portability.

53

Summary and Recommendations

Education Needs

What should be taught in universities? Focus on mature product metrics and how they can be
used for improving product development.

What should be taught in industry? Both product and process metrics; Building models and
calibrating models; Using metrics for project management (planning and control).

Research Needs

1. Validate as yet unvalidated metrics (using experiments and statistical techniques).
2. Build forecasting models (identify measurable metrics and how they can be used to

predict desired characteristics).

Bibliography

[1] ISO/IEC 9126-1: Software product quality - Part 1: Quality model
[2] ISO/IEC 9126-2: Software product quality - Part 2: External metrics
[3] ISO/IEC 9126-3: Software product quality - Part 3: Internal metrics
[4] ISO/IEC 9126-4: Software product quality - Part 4: Quality in use metrics
[5] ISO/IEC 14598-1: Software product evaluation - Part 1: General overview
[6] ISO/IEC 14756: Measurement and rating of performance of computer based software

system
[7] ISO/IEC 15504-1: Software process assessment - Part 1: Concepts and introductory

guide
[8] ISO/IEC 15504-2: Software process assessment - Part 2: A reference model for process

capabilit y
[9] Fenton and Pfleeger, Software Metrics: A rigorous and Practical Approach,

International Thomson Computer Press, 1996
[10] Natale, D. Qualita E Quantita Nei Sistemi Software (Italian), FrancoAngeli, 1995
[11] Lorentz and Kidd, Object-Oriented Software Metrics – A practical Guide, Prentice

Hall 1994
[12] Azuma, M (Editor), Software Quality Evaluation Guide Book (Japanese), JISA, 1994
[13] Moller, K.H. and Paulish, D.J. Software Metrics, Chapman & Hall (IEEE Press), 1993
[14] Dumke, R. Softwareentwicklung nach Masz (German), Vieweg, 1992
[15] Zuse, Software Complexity - Measures and Methods, Walter de Gruyter, 1991

54

Software Configuration Management

Karol Fruehauf, Walter Tichy, Andreas Zeller

The question

How can we manage and control the evolution of a product?

The answer

This problem is solved.

Reasons for the ranking

Software configuration management is a well-understood discipline that offers a number of
solutions for managing software evolution. Some areas still offer room for improvement.

Details

Software configuration management (SCM) is a sub-discipline of software engineering. Its
goal is to keep order in long-lived, multi-person software projects. It does so by controlli ng
and recording the evolution of software products through their entire li fecycles, from
requirements and development to test, deployment, operation, all the way through
maintenance and upgrades.

Solutions and Tasks Effective-
ness

Affordability Teach-
ability

Use in
Practice

Research
Potential

Version management for
individual items (revisions,
branches, variants, checking /
checkout, sandboxes,
identification)

high high high early
majority

low

Version management for
structures (renaming,
reorganization, retiring of
subsystems with whole history)

medium high hi pioneer medium

Configuration definition (parts
lists, baselines plus change sets,
generic configurations, version
selection)

high high high early
majority

low

55

Solution and Tasks Effective-
ness

Affordability Teach-
ability

Use in
Practice

Research
Potential

Build management (Make and
Make-oids, derivation history)

high high high late
majority

low

Automated change management
(change requests, change
request tracking, task
assignment)

medium high high early
majority

low

Process support low ? ? lab use ?

Traceability (implementation →
design → requirements)

high? ? ? lab use ?

LAN connectivity high low high late
majority

?

Internet connectivity (remote
access, replication, caching)

medium ? high early
adopters

medium

Support for geographically
distributed collaboration (parallel
work as the rule, automated
merging)

low ? ? lab use high

Software distribution and
installation on the internet, esp.
for distributed applications

for distribution

for updates

high

low

low

?

high

?

late
majority

pioneer

low

high

Dynamic reconfiguration high? ? ? pioneer high

What should be taught?

Software Configuration Management should be part of any software engineering course. The
functionality of SCM tools li ke RCS, CVS, or MAKE should cover almost all needs of a mid-
size (i.e. undergraduate-level) software project.

What should we research?

Most parts of software configuration management are well -understood and well -automated.
Distributed software configuration management still requires more attention. With the advent
of loosely connected components over a network, it is expected that static configuration (at
build time) wil l lose importance in favour of dynamic configuration (at run time), which is
still a research topic. Also, composition of complex systems from versioned components
brings problems with configuration consistency, which must be identified.

56

Suggested Readings

[1] Reidar Conradi and Bernhard Westfechtel. Version Models for Software Configuration
Management. ACM Computing Surveys 30(2), June 1998, pp. 232--282.

A survey article on the current state of the art in configuration management.

[2] Walter F. Tichy (ed.). Configuration Management. John Wiley & Sons, Chichester,
UK, 1994.

A collection of articles covering the state of the art and state of the practice in software
configuration management.

