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Throughout the last decades, much research has focussed on object-
oriented, template-oriented, and functional programming techniques. How-
ever, there is not much interaction between these research communities. Al-
though there is a high overlap of fundamental ideas and concepts, ideas are
expressed in terms of sharply different language features. Worse, the public
discussion in each of these communities seems to be dominated by a “purist”
viewpoint, which regards the other paradigms as strongly inferior.

Recently, new threads of research have been initiated that try to find
practical combinations of different programming styles in mainstream pro-
gramming languages. This research is centered around Java and C++. Java
has turned out to be too restricted for many applications. Consequently, a
number of extensions to Java have been proposed and implemented, to add
parametric and functional features. On the other hand, the full power of the
generic features of C++ and the possibility to simulate other features from
the functional realm have been discovered only recently. Since the C++ stan-
dard library - and many other recent libraries - is designed according to these
principles, there is a practical need for further research on combinations of
generic and functional techniques with an object-oriented programming style.

The notion of components, or component-based programming, seems to
be a useful fundament for this kind of research. The meaning of this word
is intuitive: programs are broken down into primitive building blocks, which
may be flexibly “plugged together” according to well-defined protocols. In
fact, each of the above-mentioned programming paradigms may be viewed
as an attempt to realize such a component-based programming style, how-



ever, the definition of components and the techniques for combining them
varies significantly. Hence, analyzing these differences is crucial for a deeper
understanding of the problem.

The main goal of this seminar is to bring people from these different
worlds together, to have fruitful discussions, and to share knowledge across
the borderlines of languages and paradigms. Theoretical insights are wel-
come, but we want to put emphasis on practical know-how. Every partici-
pant is expected to give a talk about his or her work and to discuss this work
in view of these goals.

By the end of the seminar, we would like to come up with the following
results:

1. A common language of discourse across the cultures.
2. A process for transferring theoretical insights and practical know-how.

3. A list of problems arising in combined applications of different pro-
gramming styles.
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A Personal View on Components

Karsten Weihe
Fakultat fur Mathematik und Informatik
Universitat Konstanz

This talk was not intended to present any results but to raise provocative
questions and to stimulate discussions. In this sense, the talk was more than
successful: after a few minutes, a lively discussion with the audience came up,
and soon the talk ended up in a “discussion session” on the crucial questions
of the workshop: what is a component; what makes a good component; are
questions of this kind reasonable at all; etc.

GJ:
Making Java Easier to Type, and Easier to Type

Philip Wadler
Bell Labs
Lucent Technologies

The best way to program is to get someone else to do it for you: exploit a
reusable library. Many classes, especially reusable ones, are best thought of
as generic; for instance, a list is generic in its element type. Java 1.2 comes
with a Collections Library, including lists, similar to the Standard Template
Library for C+4-. Such classes are easy to define in Java, but not so easy
to use. The definer implements a class List where the elements are of type
Object. The user has to remember what kind of list it is, and to add casts
from Object to the element type where appropriate.

GJ extends Java with generic types. Typing is more precise: one may
replace the uninformative List by the more precise, say, List(String). And
there is less to type: no extra casts to insert. Many common errors are caught
by the compiler rather than left lurking until run-time. The mechanism looks
like templates in C++, but has greater power (you can specify what interface
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a type should implement) and fewer drawbacks (no code bloat), albeit less
efficiency.

GJ contains Java as a subset, and the GJ compiler may be used as a Java
compiler. GJ compiles into Java bytecodes, so it runs wherever Java runs.
GJ is compatible with Java, backwards and forwards: old Java code may
use new Java libraries, new GJ code may use old Java libraries. Further, old
Java libraries may be retrofitted with new GJ types, and the Java Collections
Library has been given GJ types in this way. The GJ compiler is itself written
in GJ.

GJ is freely available over the web from:
www.cs.bell-labs.com/ “wadler/pizza/gj/

GJ is joint work with Martin Odersky at the University of South Australia,
and Gilad Bracha and Dave Stoutamire at Sun. GJ was designed so that it
could be incorporated into a future Java release, although whether this will
happen is unclear.

Polytypic Programming

Johan Jeuring
Department of Computer Science
Utrecht University

Many functions have to be written over and over again for different
datatypes, either because datatypes change during the development of pro-
grams, or because functions with similar functionality are needed on differ-
ent datatypes. Examples of such functions are pretty printers, debuggers,
equality functions, unifiers, pattern matchers, etc. Such functions are called
polytypic functions. A polytypic function is a function that is defined by
induction on the structure of user-defined datatypes. This talk introduces
polytypic functions, and shows some example applications: pretty printing,
data compression, and database table generation.

PS: talk was presented by Doaitse Swierstra



A Simple Approach to
Generic Functional Programming

Ralf Hinze
Institut fur Informatik
Universitat Bonn

A generic or polytypic function is one that is parameterised by datatype.
The archetypical example for a polytypic function is size :: f a — Int which
counts the number of values of type a in a given value of type f a. The
function size can sensibly be defined for each polymorphic type and it is
often—but not always—a tiresomely routine matter to do so. We show that
a polytypic function is uniquely defined by its action on predefined type
constructors (ie constant types, sums, and products) and type parameters.
This information is sufficient to specialize a polytypic function to arbitrary
polymorphic datatypes, including mutually recursive datatypes and nested
datatypes. The key idea is to allow infinite trees as index sets for polytypic
functions and to interpret recursive datatypes as algebraic trees. This ap-
proach appears both to be simpler, more general, and more efficient than
previous ones which are based on the initial algebra semantics of datatypes.

Behavior Protocols and Components

Frantisek Plasil, Stanislav Visnovsky, Miloslav Besta
Department of Software Engineering
Charles University, Praha

In this paper we enhance the SOFA Component Description Language
with a semantic description of a component’s functionality. There are two
key requirements the description aims to address: First, for the design pur-
pose, it should ensure correct composition of the nested architectural abstrac-
tions; second, it should be easy-to-read so that an average user can identify



a component with the correct semantics for the purposes of component trad-
ing. Rigorous semantic models are usually too complex making it difficult to
target these areas in a practically effective way. The semantic description in
SOFA expresses the behavior of the component in terms of behavior proto-
cols using a notation similar to regular expressions which is easy-to-read, and
which grants guarantees about required and provided services. The behavior
protocols are used on three levels: interface, frame, and architecture. The
frame protocol provides a black-box view of the component’s behavior; the
architecture protocol provides a grey-box view in which one layer of com-
position is visible; interface protocols are a part of a contract when binding
requires and provides interfaces. A key achievement of this paper is that it
defines a protocol conformance relation where the component designer can
statically verify that the frame protocol adheres to requirements of the inter-
face protocols, and that the architecture protocol adheres to the requirements
of the frame and interface protocols.

Separation of Concerns
with Adaptive Plug-n-Play Components

Mira Mezini
FB Elektrotechnik & Informatik
Universitat - GH - Siegen

In this talk, we present a new language construct for object-oriented
languages, called Adaptive Plug-n-Play Component (APPC for short). The
construct complements classes in modeling what we call slices of high-level
functionality. High-level has a twofold meaning: (a) that the functionality
might, in general, involve a collaboration protocol between several parties and
(b) that the functionality might be multiply deployable with a given basic
object-decomposition of an application, each deployment assigning different
classes in the application the responsibility of playing the roles of the parties
in the functionality. Slice is used to indicate that the functionality defined
in an APPC is in general not self-contained and need to be deployed with an
application and/or composed with other APPCs before being used.

We argue that APPCs reconcile the object-based, function-based and
concern-based approaches to organizing software, accommodating both ob-
ject-collaborations and system aspects that cross-cut the the object structure



in a way that enables a strict separation of concerns resulting in less tangled
and hence more modular and better reusable software.

Adaptive Programming:
Strategies to Make Friends

Karl Lieberherr
College of Computer Science
Northeastern University, Boston

Aspect-oriented programs consist of complementary, collaborating com-
ponents, each one addressing a different application/system level concern.
Two components Source and Target are complementary, collaborating com-
ponents if an element of Source is formulated in terms of partial information
about elements of Target and Source adds information to Target not pro-
vided by another component. The aspects are the components that are the
source of a collaboration. The insertion from Source to Target is specified
by a connector that defines the cross-cutting between Source and Target.

Adaptive Programming (AP) is a special case of Aspect-Oriented Pro-
gramming where some components or connectors involve graphs and some
components or connectors use traversal strategies referring to those graphs.
Traversal strategies are best viewed as regular-expression-like constructs de-
scribing navigation through graphs.

The Law of Demeter (LoD) is a style rule for programming that says
that each unit should only talk to its friend units. LoD is widely used by
the OO community. The best way to follow the LoD is to use traversal
strategies to turn units that are far away into friends. Programming in this
style separates the structural aspects from the navigation and navigation
enhancement aspect (visitor aspect) leading to programs that are less tangled
and easier to maintain and write.



Object-Based Inheritance
for Run-Time Component Adaption

Ginter Kniesel
Institut fur Informatik
Universitat Bonn

The adaptation mechanisms of component software are still limited. Most
proposals concentrate on adaptations that can be achieved either at compile
time or at link time. Current support for dynamic component adaptation, i.e.
unanticipated, incremental modifications of a component system at run-time,
is not sufficient. There are no concrete proposals how to achieve adaptation
if existing component instances cannot be replaced in a running system (e.g.
because the component to be adapted holds private data which it is not able
to hand over to a new component version or because the old functionality of
a component is still required by some parts of the running application).

The talk proposes object-based inheritance (also known as delegation) as
a complement to purely forwarding-based object composition. It presented
an integration of delegation into a statically typed class-based object model
and shows how it overcomes the problems faced by forwarding-based com-
ponent interaction, thus providing the missing support for unanticipated,
selective, dynamic component adaptation.

Specialization and Modules

Peter Thiemann
Institut fur Informatik
Universitat Freiburg

Program specialization is a powerful method to derive efficient specialized
programs from generic ones. We lay out the goals of specialization technology,
give an overview of some applications for it, give pointers to implemented sys-
tems, and mention promising research directions in the area. The relevance
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with respect to the seminar is due to the possibility to specialize software
configuration languages (software architectures) to efficient production sys-
tems. The module part of the talk pursues one specific research topic. It
proposes that specialization generalizes the compile-time action of modules
and thus specialization provides a promising avenue to more powerful module
systems.

Type Systems Via Partial Evaluation

Todd Veldhuizen
Department of Computer Science
Indiana State University

Three connections have recently been made between type systems and
partial evaluation: Hughes [1] has described how partial evaluation can be
viewed as type inference. Shields, Sheard, and Jones [2] have demonstrated
that dynamic typing can be regarded as staged type inference (i.e. deferring
type inference until run-time). Finally, the templates mechanism of C++
can be regarded as partial evaluation [3].

Building on these observations, a simple language is presented which has
no type system — but does have partial evaluation and tuples. Using these fea-
tures, it is possible to build a type system in the language itself, by wrapping
all primitive operations with functions that expect jvalue,type-tag; pairs and
check that operands have appropriate type tags. Type tags are simply values;
the underlying interpreter need know nothing about types. Partial evalua-
tion can be used to eliminate type tags (i.e. soft typing). It can also turn
dynamically typed procedures into statically typed ones (similar to template
instantiation in C++). The resulting system provides a mixture of dynamic
and static typing, polymorphism, overloading, and dependent types.

Such a language may solve some problems in creating efficient software
components. To be useful in a variety of contexts, software components must
be adaptable. Handling adaptivity at run-time is often inefficient. One of
the successes of C++ templates has been its ability to specialize components
at compile-time. A language which provides partial evaluation as a language
feature can achieve the same benefit and much more.

References

[1] J. Hughes. Type Specialization. ACM Computing Surveys 30(3), 1998.

11



[2] M. Shields, T. Sheard and S. P. Jones. Dynamic Typing as Stages Type
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Meta-Programming Component Composition

Thomas GenfBler
FZ1 Karlsruhe

In the recent years, the term Component-Based Software Development
has earned much attention within the community. Unfortunately, however,
until now, the big expectations the term has provoked, have not yet been
fulfilled. One reason for this is the fact that the reusability of components is
often limited due to so-called mixing of aspects. An aspect is a model of a
certain functional or non-functional requirement, wich cross-cuts models of
other requirements. Since the implementation of a particular aspect may be
spread throughout the entire component implementation, changing require-
ments may cause extensive adaptation of the component. Another problem
of today’s component systems is that they are relatively complicated to use.
This is due to the fact that they are often lacking an appropriate glue-code
generation. We claim that a generated “component framework”, i.e., the
application infrastructure would be highly appreciated.

We present an approach to component adaptation based on so-called
meta-programming composers. Meta-programming composers are either wea-
vers for particular aspects and / or glue-code generators. Composers take
separate aspect specifications and transform a set of given components in the
appropriate way. Our composers are implemented on top of a static meta-
object protocol for Java. They are organized within a composer library and
may be smoothly integrated into standard development environments. We
present several applications of composers ranging from architectural connec-
tors to design pattern operators. Architectural connectors are composers,
which install or replace communication links (connections) between compo-
nents, e.g., CORBA connections versus method-based connections. Design
pattern operators are mostly concerned with improving code flexibility by
introducing design patterns into existing code.
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We show that efficient final code may be generated since meta-program-
ming composers may remove unneeded indirections and superfluos interfaces
from the code. Although we still lack a proof for this, we expect the result-
ing code to be nearly as efficent as hand-written code with tangled aspect
implementations in it.

Discussion: C+-+ as a Functional Language

Moderated by Erik Meijer and Lutz Kettner

If you look closely at many C-APIs such as the Win32 API, you can
recognize a lot of concepts such as lazy evaluation, call-backs, and closures
from functional languages. Perhaps surprisingly this means that many “low-
level” programs can be coded more cleanly in a functional language than in
C or C++.

Besides the obvious fact that C++ is not a functional programming lan-
guage, it is surprising to see to what extend C++ has borrowed concepts from
functional programming languages. One of the first examples in the intro-
duction [1] to the Standard Template Library STL, part of the C++ standard,
makes extensive use of function objects. Function objects are first class cit-
izens in STL. Even currying and higher-order functions can be expressed
and easily used. However, the implementation of them is considerably longer
than in functional programming language.

Another surprising fact about C++ is a kind of lazy-evaluation at compile
time. A member function of a class will only be compiled if it is actually
used. In consequence, there will be no error messages for even syntactically
wrong code (besides basic rules such as matching curly braces) in the body
of unused member functions.

At the previous day a generic function flatten was used as an example
for polytypic programming in functional languages. It raised the question
whether a similar program could be written using templates in C++. Be-
sides that the meta-information for the self-inspection of user-defined types
must be given explicitly, it can be written, see http://www.inf.ethz.ch/
personal/kettner/pieces/flatten.html.
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[1] Alexander A. Stepanov and Meng Lee. The Standard Template Library.
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904

Shriram Krishnamurthi
Department of Computer Science
Rice University, Houston

Object-oriented and functional programming languages are traditionally
described in different ways and applied to different domains. Yet conceptu-
ally, the traditional modes of design in these languages have a strong simi-
larity: class hierarchies correspond to datatype definitions, and encapsulated
methods to functions. The significant difference is that these designs are
drawn on paper at 90 degrees to each other. The Visitor design pattern
[Gamma, Helm, Johnson, Vlissides|, in particular, is a object-oriented way
of simulating functional design, ie, of rotating object-oriented design by 90
degrees.

The rotational analogy manifests itself repeatedly when we use these de-
signs to build extensible software. Object-oriented design expresses type ex-
tensions well while functional design excels at extending the set of functions,
but neither style of design does both in their generality, and their failures
follow the 90 degree rule. To truly synthesize these abilities we need more
complex protocols, which are essentially lazy fixed-point constructions. The
rotational analogy is manifest in this solution also.
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Synchronous Object-Oriented Components for
Dependable Embedded Systems

Reinhard Budde
GMD

Motivation

Embedded reactive Systems are crucial components of controllers for plants,
robots, cars, up to household utensils. In order to decrease the production
costs and to gain flexibility such devices are built using micro-controllers with
an increasing share of software.

Industry, customers and the public depend on a reliable functionality of
embeddedsystems. Malfunction may be dangerous, and repairing usually is
very costly. Therefore high competence of developers and powerful tools are
needed for building even small systems.

With synchronousEifel,we provide the following design and programming
paradigms in an integrated environment:

Synchronous modeling, for constructing real-time components and for
enabling proofs of system assertions by model-checking.

Object-oriented modeling, which is well suited for a robust and flexible
design of complex systems.

Model

An embedded reactive system interacts with its environment via signals. In-
put signals may carry sensor-data, for instance. The system computes a
reaction depending on its internal state and on the value of input-signals. It
generates output-signals for controlling actuators which influence the envi-
ronment.

Synchronous modeling reflects the basic idea of digital hardware design
and of many engineering formalisms: All processes proceed in discrete steps
controlled by a clock. Triggered by the tick of a clock, a system starts to react
and the reaction is finished in time before the next tick occurs. This idea
is unusual in the software domain, although real-time systems are designed
according to this assumption.
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With synchronousFEifel, we combine the model of a clocked process and
the construction of object-oriented systems: The components of an applica-
tion are objects which wait for signals. At the tick of the clock, all signals
provided by the environment are made available to all objects. The reaction
causes the execution of operations of the objects; their internal state may
change and signals may be emitted. The activities must be finished before
the next tick occurs.

Objects are defined in classes. Classes consist of two parts:

A description of the synchronous behaviour, which defines the reaction
of objects to signals. As notation we use well known formalisms similar
to Statecharts, as also provided by the UML, for instance.

Descriptions of operations and attributes as usual.

Class definitions should be compact and comprehensible and the be-
haviour of the system should be deterministic. The synchronous part of the
language has a very formal mathematical semantics which enables proving
assertions with regard to an application.

Tools

synchronousEifel supports compilation, simulation, test, and verification of
synchronous object-oriented programmes. Behavioral descriptions may be
given in graphical or in textual form. Code generators for efficient and com-
pact code in C and Verilog are available.

Benefits

synchronousEifel combines robustness and flexibility of object-oriented con-
structions with the precision of synchronous models. It provides tools to build
safe embedded controllers which are understandable and easy to handle on
future revisions.

Partners

The work participates in the ESPRIT-projects SYRF and CRISYS. Indus-
trial partners of these projects are Aerospatiale (F), Electricite de France
(F), Elf (F), LOGIKKONSULT (S), SAAB MA (S), Schneider Electric (F),
Siemens Electrocom (D), Verilog (F). Additional cooperations exist with
Bosch and Daimler-Benz Research.

16



Generic Programming in CGAL,
the Computational Geometry Algorithms Library

Lutz Kettner
Institut fir Theoretische Informatik
ETH Zirich

CagAL, the Computational Geometry Algorithms Library, is built in an
European effort of nine research institutes. Its goal is to make the large
body of geometric algorithms developed in the field of computational ge-
ometry available for industrial applications with correct and efficient imple-
mentations in a C++ library. Major challenges are the assumptions of exact
arithmetic over real numbers and absence of degenerate situations in the in-
put data typically made in theoretical papers, while these assumptions are
usually violated in practice. Furthermore, many (theoretically) efficient so-
lutions are inherently complex. To implement and evaluate them, a library
of sound building blocks is a great advantage.

Particular design issues considered for CGAL are flexibility, correctness,
time and space efficiency, and ease-of-use. The design follows the generic pro-
gramming paradigm known from the C++ Standard Template Library (STL).
CGAL is composed of three layers: The core library provides the necessary
infrastructure for all other parts of the library, the geometric kernel contains
constant sized objects with predicates and constructions on them, and the
basic library contains geometric algorithms and data structures. Besides the
three layers, a support library provides adaptors to exact number types from
other libraries, stream 10 and visualization.

As a specific achievement in CGAL the basic library is decoupled from
the actual geometric kernel. Each algorithm and data structure in the basic
library is parameterized by a traits class. The traits class maps the types
and primitive operations used in the algorithm or data structure to the actual
types and operations provided by the geometric kernel. Default implementa-
tions for the traits classes connect the basic library to the geometric kernel
of CcAL. Traits classes for other geometric kernels are easy to implement.
The CGAL geometric kernel provides a rich set of geometric objects, either
based on Cartesian representation or on homogeneous representation of their
coordinates. They are further parameterized by a number type for the coor-
dinates. We advocate the use of number types providing exact arithmetic.

The flexibility of these different layers is achieved with template param-
eterizations. In consequence, all flexibility is resolved at compile time and
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leads to efficient implementations comparable to hand-coded algorithms.

Further references [3, 1, 2] and the CGAL library can be found at
http://www.cs.uu.nl/CGAL/. A comprehensive directory of available source
code in computational geometry is presented at http://www.geom.umn.edu/
software/cglist/.

References
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Functional Programming with Components

James Hook
Oregon Graduate Institute
Pacific Software Research Center

Reporting on joint work with Erik Meijer and Daan Leijen of the Univer-
sity of Utrecht

The talk explores the use of Haskell as a scripting language for gluing
components in COM. It begins with a review of the descriptive role of types
in the functional paradigm. It continues with a discussion of how monads
may be used to describe an effectful domain of computation in a strongly
typed, lazy functional language such as Haskell. One thesis of the talk is
that this ability to characterize a domain of effects abstractly make func-
tional languages a good choice for scripting—particularly scripting in a multi-
paradigm environment. The talk concludes with an example where Haskell is
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used to script components in a visual microprocessor microarchitecture spec-
ification language based on Launchbury’s Hawk system. In that application
Haskell is used to script the commercial drawing package Visio. Specifica-
tions can be manipulated in Viso, textual Hawk specifications can be gen-
erated automatically, a simulation of the microprocessor microarchitecture
can be run, and Visio can be used to inspect the results of the simulation.
For more information please consult http://www.cse.ogi.edu/PacSoft and
http://www.haskell.org.

Deploying COM Components in Haskell

Erik Meijer
Department of Computer Science
Utrecht University

In the “Interim Report To The President”, president Clinton’s informa-
tion technology advisory committee recommends to fund more fundamen-
tal research in software development methods and component technology.
In particular the committee indicate that this research should be aimed at
component-based software design and production techniques.

Component-based systems are built by by glueing together preexisting
software components using scripting languages. In contrast to traditional
systems programming languages such as C and C++ that emphasize run-
time efficiency, scripting languages emphasize programmer-time efficiency by
leveraging of the development efforts put into producing the leaf components.

We argue that contemporary scripting languages such as Tcl, Perl, Java-
Script and Visual Basic are the wrong solution to the right problem and that
lazy functional languages are superior component scripting languages. We
illustrate our thesis by giving numerous examples using Haskell and COM.
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Composing Catamorphisms

S. Doaitse Swierstra
Department of Computer Science
Utrecht University

We have explained what makes Haskell is a good language for describing
Combinator Languages, i.e. languages that borrow the naming, abstraction
and typing mechanisms from the language that is being “extended” (to which
a component is being added). Since we look at sets of combinators as a lan-
gauge , we have shown how to implement them efficiently using conventional
compiler writing technology like attribute grammars. It are the availabil-
ity in Haskell of higher order domains, recursive data types, polymorphism
and type classes that makes this a smooth process. Since Haskell, being a
lazy language, gives you an Attribute Grammar system for free, the imple-
mentation of the languge extensions can be written in an attribute grammar
style.

As an introduction to the techniques involved we used parsing combina-
tors, and we finsihed with a larger example based on the design of a pretty
printing library.

How Erlang Sees the World

Joe Armstrong

Computer Science Laboratory
ERICSSON Telekom AB

The Erlang world is very simple—everything is a process and the only
way processes can influence each other is by exchanging messages. Erlang
data types are universal in the sense that all data types are either primitive
types or lists or tuples of types. These types are “self-describing” (also
known as dynamic). By inspecting the types at run-time many simple generic
algorithms are possible, for exapmle, generic pretty-printing or serialisation
of a type.
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In the talk I showed how to construct a universal server (tgmoas =
“the great mother of all servers”) which could be parameterised in different
ways. I showed a sequence of servers, tgmoas’, tgmoas”, ... which produced
servers which were fault-tolerant or could migrate in a network. Finally, I
argued that the nice properties of Erlang were due to concurrency an mes-
sage passing and that whether sequential programs were written in OO or
functional style was of secondary importance.

On the Implementation of the ZeTa System
(in Java, Pizza, OPAL, ML, ::: )

Wolfgang Grieskamp
FB 13 Informatik
TU Berlin

The talk reports on the implementation of the ZeTa system, an open
environment for the integration of tools for formal methods, developed in
course of the ESPRESS project (http://uebb.cs.tu-berlin.de/ zeta).
ZeTa is build in a multi-paradigmatical programming environment, where
existing tool components written in (or accessible by) languages such as C,
OPAL, and ML need to be combined and extended. The “gluing language”
used to this end is Java/Pizza. Using Pizzas facilities for modeling data ex-
change formats and implementing language processors in a functional style,
and using Javas facilities for building process wrappers, for accessing C code
via the JNI, and for automatic generation of language bindings by reflec-
tion, turned out to be a feasible approach. However, the complexity of a
multi-paradigmatical setting is considerable high. So the tendency was to
implement new functionality directly in the gluing language itself, i.e. in
Java/Pizza. The experiences show that the transition to Java/Pizza is easy
for object-oriented as well functional programmers, since Pizza supports an
integration of both styles.
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Discussion Session

Moderated by Philip Wadler

The word ‘component’ is used to denote a wide range of different things,
and the tendency to stretch its meaning is perhaps exacerbated in a workshop
that contains ‘component’ in its title. Just as Eskimos need fifty words for ice,
perhaps we need many words for components. The following were suggested
(though not everyone in the group agreed to all of what follows).

Component (typical example: COM)

Can be used in object form, without access to source
Can be used from a variety of programming languages
Communicate by methods, each method with a signature

Dynamically linked
Process (typical example: Erlang)

Runs concurrently with other processes
Processes communicate by means of a protocol

Process may be sent messages from processes in other languages
or on other machines

Module (typical example: Modula)

Unit of independent compilation

Used for namespace control
Functor (typical example: ML)

A module parameterised by other modules

Based on sophisticated type theory
Composent (typical examples: Demeter, Aspect-oriented programming)

A unit of functionality weaved together with other units
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Lines of code adjacent in a composent may be far removed in the
program woven from the composent

Requires access to the source code

The word ‘composent’ was a new one, coined by Wadler and adopted by
Lieberherr and Mezini.

Joe Armstrong argued that processes can be superior to components. A
key research issues for processes is to devise ways of specifying protocols,
analogous to the use of method signatures in a component. Erlang processes
are successful because of a number of features not shared by other concurrent
paradigms, such as threads: there may be many processes (typically, about
ten per phone call, up to 20,000 running concurrently on one machine); there
is no shared memory; messages are structured trees (Erlang data structures,
roughly similar to Lisp S-expressions or XML trees); processes can monitor
each other for errors.

Wadler also briefly spoke about Reynolds’s Parametricity Theorem: every
function in a functional language with polymorphic types must satisfy a
theorem derived from the type. For instance, every function of type

List a—— List a

satisfies the theorem

a List a —— List a
f map f map f
b List b——— List b

for any function f from type a to type b, where (map f) is the function
that applies f elementwise to a list with elements of type a to yield a list with
elements of type b. Details can be found in the reference below.

References

[1] Philip Wadler, Theorems for Free, 4’th International Conference on Func-
tional Programming and Computer Architecture, London, September
1989.
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Experiences with Generic Programming
for Complex Graph Algorithms

Matthias Miiller-Hannemann (joint work with Alexander Schwartz)
FB 3 Mathematik
TU Berlin

We present a case study on the design of an implementation of a funda-
mental combinatorial optimization problem: weighted b-matching. Although
this problem is well-understood in theory and efficient algorithms are known,
only little experience with implementations is available. This study was moti-
vated by the practical need for an efficient b-matching solver as a subroutine
in our approach to a mesh refinement problem in computer-aided design
(CAD). The intent of this talk is to demonstrate the importance of flexibility
and adaptability in the design of complex algorithms, but also to discuss how
such goals can be achieved for matching algorithms by the use of design pat-
terns and, in particular, generic programming (static polymorphism) within
C++. We finally report on our experiences and discuss them in the light of
our initial goals.

Components and Generative Programming

Krzysztof Czarnecki Ulrich W. Eisenecker
Daimler Chrysler AG FH Heidelberg

Most software-engineering methods focus on single-system engineering.
This also applies to object-oriented methods. In particular, developing for
and with reuse are neither explicit activities nor are they adequately sup-
ported. Furthermore, there is no explicit domain scoping, which would de-
lineate the domain based on the set of existing and possible systems. Cur-
rent methods also fail to differentiate between intra-application and inter-
application variability. In particular, inter-application variability is often
implemented using dynamic variability mechanisms, even if static ones would
be more efficient. Analysis and design patterns, frameworks, and components
struggle for improving reuse and adaptability, but do not provide a complete
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solution. For example, despite the fact that frameworks are created in sev-
eral iterations, there is still a high chance that they contain unnecessary
variation points, while important ones are missing. Domain Engineering
overcomes the deficiencies of single-system engineering. It includes a domain
scoping activity based on market studies and stakeholder analysis. Analyzing
commonalities, variabilities, and dependencies lies at the heart of domain en-
gineering. The results of domain engineering (i.e. engineering for reuse) are
reusable assets in the form of models, languages, documents, generators, and
implementation components. These results represent the input to applica-
tion engineering (i.e. engineering with reuse). An extremely useful means for
capturing features and variation points are feature diagrams, which were orig-
inally introduced by the FODA method (Feature-Oriented Domain Analysis).
They are augmented by additional information including short descriptions
of features, dependencies, rationales for features, default values, etc. Two
kinds of languages are then derived from feature models, namely domain
specific configuration languages and implementation components configura-
tion languages. The former is used to describe the requirements for a specific
system from an application-oriented point of view. The latter is used to de-
scribe the implementations of systems in terms of composing components.
Configuration knowledge is used to map from requirements specifications to
configurations of implementation components.

Manual coding of implementation configurations for a large number of
variants is a tedious and error prone process. Therefore, generative program-
ming introduces configuration generators translating requirements specifi-
cations into optimized configurations of implementation components. An
adequate support for implementing such generators requires the ability to
define domain-specific languages and representations (e.g. graphical repre-
sentations), domain-specific optimizations, type systems, and error detection.
Furthermore, it is important to be able to implement domain-specific debug-
ging and editing facilities for entering, manipulating, and rendering program
representations, as well as domain-specific testing and profiling facilities. A
library of domain abstractions which also contains code extending a program-
ming environment in the above-mentioned areas is referred to as an active
library.
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Component Ware: The Big Picture

Marc Sihling
Institut fur Informatik
TU Minchen

One vision of componentware is of a new way of programming applica-
tions. New, because programming would simply be several, seperately de-
veloped components together for cooperation. Although there is an emerg-
ing component market and the infrastructure needed for interoperation is
existant, this vision has not yet become reality. After an introduction to
“connection-based programming” I present a formal system model which in-
troduces types as means of architectural composition. In this view, a type
captures structural as well as behavioral specifications of a component. Based
on appropriate definitions, like subtyping, a foundation for connection based
programming is laid and advanced features such as component migration or
framework components can be easily reasoned about.

Concluding Discussion

Moderated by Karsten Weihe

Lessons
Erlang — a single abstraction
— good for lots of things
C++ templates — control the process
— complexity of software development process
Meta programming is powerful!
— (functional programming — can we “steal” configuration libs)

Configuration space — How to extend beyond trees
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Issues

Transparent migration to dist. environment
— must be designed in from the start
Component issues are relative to component assembly process
Refactoring — non-semantic preserving transformations
Where to put domain specific knowledge
Relationship to development process
Compile/run-time phase distinction
— is inadequate for global networks (multi stage programs)

How to handle dynamic reconfiguration and adaption — multi context
analysis

Level

Glueing Black box
Functions White box

Goals of component tech
Hiding — protect properties
reflection — provide meta information
finding the right abstractions

interoparability — fits into process of component assembly

Contrasts/Tradeoffs
Syntax VS. Semantics
(Meta progr) (Partial Eval)
Machanism VS. Policy
Meta progr. Semantics directed
Flexible, but Rigid, but sound dangerous
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Impact?
Identify roles of programming

— component creator

— component user
provide analysis
power tools for the average programmer
design repository

educating students
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