
Systems Integration

Dagstuhl Seminar 99111

March 14–19, 1999

Paolo Ciancarini

Stefan Conrad

Wilhelm Hasselbring

ii

Preface

The integration of systems which have been developed and evolved independently
is one of today’s major challenges in computer science. In a large spectrum of
application areas the necessity of integrating (pre-) existing software systems is
present and demands for applicable solutions.

Problems of coupling and integrating heterogeneous database and informa-
tion systems are for instance investigated in the database area. Building multi-
database systems or federated database systems incorporating legacy systems is
a big challenge. Current work covers topics like schema integration, transaction
models for federated database systems, consistency enforcement in heterogeneous
systems, security models, and query processing.

On the other hand, systems integration is an important challenge for the
area of software engineering as well. Current work deals with questions of ad-
equate software architectures and design patterns, coordination languages and
models, composition of software components, development of workflow systems,
the proper use of middleware tools such as CORBA, and methodological ap-
proaches for the integration process.

The rapid development of Web-related methodologies and tools also stim-
ulates new problems, with respect to the access to Web data, the design and
maintenance of Web sites, and their integration with traditional applications.

This Seminar was initiated due to the fact that there was only a rather loose
coupling of the work done in these scientific communities, although the work of
these areas is obviously highly interrelated. Therefore, we saw the chance that
both areas can profit a lot from a mutual exchange of problems and ideas.

The Seminar brought together scientists from these two areas. A main focus
of the Seminar was set on integration on system level. However, the influence of
other integration levels (e.g., integration on schema or model level) was considered
as well. Cross-disciplinary working groups were established during the Seminar
aiming at a more detailed investigation of common problems.

Paolo Ciancarini
Stefan Conrad
Wilhelm Hasselbring

iii

iv

Contents

1 Program 1

2 Abstracts of the Talks 5

Karl Aberer
XML Broker . 5

Karl Aberer
Extensible Databases as Middleware for Flexible Information Man-
agement . 5

Paolo Ciancarini
Integrating XML with Java for Active Documents 6

Stelvio Cimato
A Methodology for the Specification of Java Components and Ar-
chitectures . 7

Wolfgang Emmerich & Anthony Finkelstein
XML and Related Technologies: Overview and Research Direc-
tions . 7

Lukas Faulstich
Integration of Semi-Structured Information Sources with Hyper-
View . 8

Michael Goedicke
Integration through ViewPoints 8

Wilhelm Hasselbring
On the Process of Systems Integration 9

Jean-Marie Jacquet
The Expressiveness of Coordination Models 10

Silvia Kolmschlag, Gregor Engels
Schema Evolution in Federated Database Systems 10

Arne Koschel
Configurable Event-triggered Services for CORBA-based, Hetero-
geneous, Distributed Information Systems 11

Ralf Kramer
Metadata: A Key Issue for Systems Integration 12

Bernd Krämer
Enhancing CORBA Object Interfaces 12

Ralf-Detlef Kutsche
Integration Plattforms for Distributed Information Systems . . . 13

v

Ulf Leser
Query Mediation in Federated Information Systems 15

Henrik Loeser
iWebDB — An Integrated Web Content Management System . . 15

Klaus-Peter Löhr
Towards Accommodation of Heterogeneity in Software Architec-
tures . 16

Felix Naumann
Quality-driven Integration of Heterogeneous Information Systems 16

Günter Preuner
Integration of Object Life-Cycles in Object-Oriented Design . . . 17

Mark Roantree
The OASIS Architecture: Legacy System Migration and Federated
Schema Construction . 18

Ingo Schmitt
Schema Integration for the Design of a Federated Database System 18

Martin Schönhoff
Global Version Management in a Federated Design Environment 19

Myra Spiliopoulou
Data Mining for Service Integration 19

Robert Tolksdorf
A Coordination Architecture for Workflows 20

Alfred Winter
Experiences with Current Methods of Integrating Hospital Infor-
mation Systems . 21

3 Working Groups: Issues and Results 23

Myra Spiliopoulou
Working Group I:
Applications & Processes . 23

Mark Roantree, Karl Aberer
Working Group II:
XML and Canonical Data Models 24

Klaus-Peter Löhr
Working Group III:
Software Architectures & Coordination 26

4 List of Participants 29

vi

1 Program

Monday, March 15, 1999

9:00 Welcome and Introduction to the Seminar

Wilhelm Hasselbring:
On the Process of Systems Integration

10:30 Coffee

10:45 Günter Preuner:
Integration of Object Life-Cycles in Object-Oriented Design

Mark Roantree:
The OASIS Architecture: Legacy System Migration and Federated
Schema Construction

12:15 Lunch

13:30 Martin Schönhoff:
Global Version Management in a Federated Design Environment

Alfred Winter:
Experiences with Current Methods of Integrating Hospital Information
Systems

15:30 Coffee & Cake

19:00 Working Group Discussion:
Applications & Processes

Tuesday, March 16, 1999

9:00 Ralf Kramer:
Metadata: A Key Issue for Systems Integration

Henrik Loeser:
iWebDB — An Integrated Web Content Management System

10:30 Coffee

10:45 Ralf-Detlef Kutsche:
Integration Platforms for Distributed Information Systems

Michael Goedicke:
Integration through ViewPoints

12:15 Lunch

1

14:00 Lukas Faulstich:
Integration of Semi-Structured Information Sources with Hyper View

Wolfgang Emmerich & Anthony Finkelstein:
XML and Related Technologies: Overview and Research Directions (I)

15:30 Coffee & Cake

16:00 Wolfgang Emmerich & Anthony Finkelstein:
XML and Related Technologies: Overview and Research Directions (II)

Paolo Ciancarini:
Integrating XML with Java for Active Documents

Karl Aberer:
XML Broker

Working Group Discussion:
XML & Canonical Data Models

Wednesday, March 17, 1999

9:00 Myra Spiliopoulou:
Data Mining for Service Integration

Ingo Schmitt:
Schema Integration for the Design of a Federated Database System

10:30 Coffee

10:45 Gregor Engels:
Schema Evolution in Federated Database Systems

Ulf Leser:
Query Mediation in Federated Information Systems

Felix Naumann:
Quality-driven Integration of Heterogeneous Information Systems

12:15 Lunch

14:00 Excursion (Uitstapje, Ausflug, . . .)

2

Thursday, March 18, 1999

9:00 Bernd Krämer:
Enhancing CORBA Object Interfaces

Arne Koschel:
Configurable Event-triggered Services for COBRA-based,
Heterogeneous, Distributed Information Systems

10:30 Coffee

10:45 Karl Aberer:
Extensible Databases as Middleware for Flexible Information
Management

Stelvio Cimato:
A Methodology for the Specification of Java Components and
Architectures

Jean-Marie Jacquet:
The Expressiveness of Coordination Models

12:15 Lunch

14:00 Robert Tolksdorf:
A Coordination Architecture for Workflows

Klaus-Peter Löhr:
Towards Accommodation of Heterogeneity in Software Architectures

15:30 Coffee & Cake

16:00 Working Group Discussion:
Software Architectures & Coordination

Friday, March 19, 1999

9:00 Results of the Working Groups:

Myra Spiliopoulou:
WG I: Applications & Processes

Mark Roantree, Karl Aberer:
WG II: XML and Canonical Data Models

Klaus-Peter Löhr:
WG III: Software Architectures & Coordination

10:30 Coffee

10:45 Final discussion & Closing

12:15 Lunch

3

4

2 Abstracts of the Talks

XML Broker

Karl Aberer

(joint work with Gerald Huck, Ingo Macherius und Peter Fankhauser)

The World Wide Web offers collections of information for almost every domain
of interest. They can be used interactively via HTML based graphical user inter-
faces. Systematic research however requires the combination of information from
multiple, independent sources. Our XML Broker offers tools for building such
integrated information services.

As an exemplary scenario the XML Broker was used to construct a service to
help golf players choosing a course. It integrates three independent resources: a
list of golf sites, a route planner and localized weather forecasts. A typical query
would ask for all 18-hole golf sites located up to 150 km from Birlinghoven, where
it will not rain tomorrow.

From a users’ point of view the XML Broker behaves like a database with
HTML-based interface. However, it does not provide any data by itself, but
retrieves information from internet resources on demand. The information gained
is structured in XML-documents and administered in a warehouse. It is accessible
using a declarative, XML-specific query language. Queries can be used to form
integrated views on the information modeled. Query results are XML-documents
themselves and can be processed further by XML aware applications or displayed
using a fifth-generation browser and stylesheets.

Extensible Databases as Middleware for Flexible Informa-
tion Management

Karl Aberer

Information management today requires in first place the ability to flexibly re-
structure and combine information of different origin and nature for new uses.
Extensible (object-relational and/or object-oriented) database technology is one
of the (many) important middleware technologies applied for that purpose. A
flexible data model, storage and query support and transaction services imple-
mented in a scalable and efficient way are the main assets, which have to be traded
for relatively high installation, administration and development effort and func-
tional limitations. Based on the experiences gathered from a number of projects

5

on information management based on extensible database technology, we ana-
lyze in this talk some benefits and limitations of the use of extensible database
technology for flexible information management.

Integrating XML with Java for Active Documents

Paolo Ciancarini

(joint work with F. Vitali)

While in terms of markup and support for hypertext features there is noth-
ing missing in the XML proposals that may relate to the documentation of the
software process, there is still one problem to be faced to obtain a fully usable
environment: the visualization of the documents.

Since XML elements have no predefined meaning or rendering semantics, it is
up to the visualization software to provide it. This happens by mapping the docu-
ments’ element names to the program’s element names through XSL stylesheets.
As it is clear, the sophistication of the final rendering thus is independent of
the markup, but heavily depends on the sophistication of the rendering program.
This is an extremely sensible consideration, but has its weak points: we can write
all sorts of documents in XML, but we can display only those that do not have
extreme rendering needs. In the current use, we can map XML documents onto
HTML and display them on standard WWW browsers, but specialized DTDs for
strange notation (mathematics and chemistry come to mind) require a specialized
browser to be displayed correctly.

XSL also provides a set of required visualization objects, that is, objects
that are known to be available in all XSL implementations, but these only cover
standard typographical aspects of the visualization of text, and do not provide
support for non standard requirements.

The displet approach, on the other hand, provides a generic solution to this
problem. The idea behind displets is to create a generic rendering browser that
can load and activate little independent software modules tailored to create spe-
cific visualization objects. The rendering browser would then activate these mod-
ules depending on the content of the document, and deliver all kinds of required
rendering needs. Displets (display applets) are such little software modules, de-
signed to be fully interoperable and to be activated by a generic display module.
We implement displets in Java because we have standard Java enabled browsers.

6

A Methodology for the Specification of Java Components
and Architectures

Stelvio Cimato

Traditional software development methodologies are insufficient to deal with the
increasing complexity and the evolving requirements of modern software systems.
Component based software development and software architecture descriptions
are design techniques which facilitate the development of new applications by
assembling reusable software components. However, such techniques and frame-
works often lack formal notations to support formal reasoning about the final
products. In this talk, we show a formal framework to develop components and
software architectures for Java applications based on the Larch approach. We
define a behavioral interface specification language for Java classes and a method-
ology to support the design of Java components and software system built of such
components.

XML and Related Technologies: Overview and Research

Directions

Wolfgang Emmerich & Anthony Finkelstein

The talk has two parts. In the first part, we present a brief overview of the
eXtensible Markup Language (XML) and related technologies. We give the mo-
tivation for the development of XML, discuss how XML document type definitions
(DTDs) can be defined. We show how hyperlinks between two instances of XML
DTDs can be defined using XLink and XPointer. We then indicate how mappings
can be defined between different XML documents using the eXtensible Style Lan-
guage (XSL). We present the Domain Object Model (DOM) and show how it can
be used to provide an application programming interface to a structured XML
document.

In the second part, we discuss how we use XML in our research. We firstly
discuss an approach to the management of consistency between distributed XML
documents. This work is motivated by the fact that an increasing number of
DTDs are specified and that these are supported by tools, such as Office 2000,
UML CASE tools and standard browsers. The approach specifies consistency
relationships and uses XSL to visualize inconsistencies between documents. In
a second project, we use XML to define application-level transport protocols.
This work is motivated by the observation that existing object-oriented middle-
ware is not well suited for transmitting bulk structured data between distributed

7

system components. We suggest an integration between XML and CORBA by
specifying interoperability between the DOM and CORBA object models. Imple-
mentations of this specification implement compilers that translate XML DTDs
into CORBA/IDL interface definitions and provide transparent use of the same
complex data structure in XML enabled and CORBA-compliant components.

Integration of Semi-Structured Information Sources with

HyperView

Lukas Faulstich

The HyperView approach to integration of semistructured information sources
is based on the graph data model CGDM and on views defined by graph-trans-
formation rules. It uses a layered architecture where each layer is a view of the
preceding layer at a higher level of abstraction. These views are computed by a
novel demand-driven rule activation strategy. At the top layer view computation
is triggered by user requests for dynamic HTML pages. The returned pages
present to the user combined and restructured data extracted from the underlying
information sources. Thus, the HyperView system acts as a virtual Web Site. In
this talk, the HyperView approach will be presented using a case study from the
field of digital libraries.

Integration through ViewPoints

Michael Goedicke

The problem to integrate software systems has at least two dimensions. One
dimension is that different components use different representation schemes not
only to represent their internal information but also for the purpose to commu-
nicate it with other components. The other dimension is that the controlflow in
different components follows different rules as well. In the case of newly created
components where the designer has full control over the internal workings of those
components the integration task can be accomplished by properly adjusting those
internal workings. However, in contemporary software development components
are often opaque and can only be influenced in a limited way. In order to over-
come the border between such components the techniques to integrate different
specification methods as developed within the ViewPoint framework can be ap-
plied as well. The idea of integration by viewpoint is to encapsulate a component

8

in viewpoint and describe the interaction between components as interaction be-
tween the encapsulating viewpoint. The inconsistencies which may arise during
the course of a component interaction can then be handled using the same mech-
anism as in the ViewPoint case. We describe briefly the idea and outline a scheme
based on graph rewriting techniques for implementing this integration idea.

On the Process of Systems Integration

Wilhelm Hasselbring

Traditionally, the integration of heterogeneous information systems proceeds in
a bottom-up process. Information stored in existing legacy systems is analyzed
with respect to potential overlaps. The overlapping areas of related information
sources are subsequently integrated. The integration of these isolated information
systems is usually realized by means of mediators, federated database systems
or such-like system architectures. Typical goals for the integration of existing
information systems are the development of global applications that access the
data from multiple sources as well as consistency management of information that
is stored in related systems. We discuss the process of integrating heterogeneous
information systems from different viewpoints:

• The process in which heterogeneous information systems are traditionally
integrated in a bottom-up way and some problems with this approach.

• The process in which heterogeneous information systems could ideally be
integrated in a top-down way to achieve more usable and scalable systems.

• A combined yo-yo approach to exploit the benefits of both strategies and to
serve as a migration path form the traditional bottom-up approach towards
an ideal top-down approach.

Our emphasis is on a discussion of the process of integrating such heterogeneous
information systems. Semantic interoperability is necessary in this context to en-
sure that exchange of information makes sense — that the provider and requester
of information have a common understanding of the “meaning” of the requested
services and data. Particularly, we emphasize on the role of domain-specific stan-
dards for managing semantic heterogeneity among dissimilar information sources
in the context of the Domain-Specific Software Architecture engineering process
which has been introduced to promote a clear distinction between domain and
application requirements.

9

The Expressiveness of Coordination Models

Jean-Marie Jacquet

A number of different coordination models for specifying inter-process communi-
cation and synchronisation rely on a notion of shared dataspace. Many of these
models are extensions of the Linda coordination model, which includes opera-
tions for adding, deleting and testing the presence/absence of data in a shared
dataspace.

We compare the expressive power of three classes of coordination models
based on shared dataspaces. The first class relies on Linda’s communication
primitives, while a second class relies on the more general notion of multi-set
rewriting (e.g., like Bauhaus Linda or Gamma). Finally, we consider a third
class of models featuring communication transactions that consist of sequences
of Linda-like operations to be executed atomically (e.g., like in Shared Prolog or
PoliS).

Schema Evolution in Federated Database Systems

Silvia Kolmschlag, Gregor Engels

(presented by Gregor Engels)

In the last years, the coupling of operational and management information sys-
tems has become more and more important. For example, data warehouses
and electronic commerce systems offer a uniform interface to different company
databases. The heterogeneity of databases should be hidden to the user. This
leads to the concept of Federated Database Systems.

A Federated Database System (FDBS) couples autonomous heterogeneous
database systems to allow uniform and transparent access to the federated data
of the component database systems (CDBS) via a common global interface, the
federated schema. Global applications are able to work on data of the coupled
CDBS whereas local applications are still able to run. But a schema is not defined
fixedly. Caused by changing requirements of applications and users, a schema
has to react on the new requirements to make the FDBS flexible, extensible, and
reusable. Therefore, schema evolution in an FDBS has to be supported.

Schema evolution in an FDBS requires to consider schema updates on the
local schemata of the coupled CDBS on one hand and on the federated schema
of the FDBS on the other. Therefore we distinguish between local and global
schema evolution. Schema evolution on these schema levels have mutual impacts
on each other. Because the federated schema of an FDBS is constructed from
the local schemata of the CDBS by schema integration, a schema evolution on

10

one schema level can effect the respectively other schema level and also the data
level. The whole integration of the system is influenced.

The administrator of a system based on an FDBS needs support for developing
an FDBS furtheron. In this work, schema evolution on the local as well as on the
global schema level of an FDBS is investigated. For realising schema evolution
we present two strategies that differ in the transparency of schema evolution for
the other schema level and in the effect on the data. Therewith, we are able to
support the FDBS administrator evolving an FDBS.

Configurable Event-triggered Services for CORBA-based,

Heterogeneous, Distributed Information Systems

Arne Koschel

Todays distributed information systems are often collections of existing informa-
tion sources and, as such, heterogeneous. Technical integration and access to
heterogeneous sources is supported by CORBA for servers combined with Web
technology for clients. Additional need however, is comfortable active function-
ality, e.g., for active user notification about information changes relevant to their
work. Active functionality well known from Active DBMS-style ECA rules has
proven useful for this purpose. Such active functionality, however is a gap in cur-
rent CORBA functionality. To fill this gap for CORBA and to enhance the proven
ADBMS-style active functionality for new heterogeneous, distributed worlds is
the goal here. The talk thus contributes the concept, design, architecture, and
implementation details of C2offein (Configurable Corba-based functionality for
event-triggered information and notification), a service set contributing Active
DBMS-style active functionality to CORBA-based systems. Moreover, since dif-
ferent enterprise applications need various kinds of active functionality, C2offein
is widely configurable in its application specific definable architecture and overall
functionality. The great benefit of such an approach is its flexibility and ”smart-
ness” compared to monolithic approaches like those traditionally used, e.g., in
Active DBMS. In contrast to monolithic systems, C2offein’s configurability offers
the possibility of only investing effort and money for that active functionality
which is really necessary for an individual application.

11

Metadata: A Key Issue for Systems Integration

Ralf Kramer

In distributed information systems, we are faced with two fundamental questions:

1. How do users find the information they are looking for?

2. How can we facilitate interoperability of services in such systems?

The basic claim of this talk is that metadata are the key issue to solve these
problems and, hence, for systems integration. We use federated environmental
information systems (EIS) as the application background as they are highly het-
erogeneous, both technically and semantically. Metadata can simply be defined
as data about data. With respect to EIS, there is a whole variety of relevant
metadata standards, including GELOS, CDS, ISO/TC 211, and the XML-based
RDF. We explain their relationships. Based on the I3 reference architecture, we
develop the general architecture for federated EIS in which metadata-based cat-
alogue system provide information services. Semantic integration is identified as
one of the main challenges whereas Web technologies greatly facilitate technical
interoperability. Thesaurus federations provide an approach to solve problems
imposed by heterogeneous vocabularies. The importance of taking into account
both static and dynamic aspects when integrating systems is illustrated using
the European Environmental Information Services Project (EEIS). A brief RDF
example concludes the presentation.

Enhancing CORBA Object Interfaces

Bernd Krämer

Communication middleware such as CORBA implementations and DCOM sup-
port the integration of software components implemented in different program-
ming languages to distributed applications. Standardized component interface
descriptions, interaction protocols, and communication mechanisms allow these
applications to interoperate transparently in heterogeneous operating environ-
ments. For certain types of applications, however, the information expressible in
IDL interface specifications are not sufficient to support a reliable component inte-
gration. Important properties of security-, safety-critical or reactive components
such as functionality, dynamic behavior, timing, or synchronization constraints
cannot be documented formally, let alone checked automatically.

12

In this work we propose solutions for adding declarative specifications of such
properties to component interfaces and automatically synthesizing code that in-
struments corresponding dynamic checks. Independently from the concrete syn-
tax and semantics of such specification elements, we present a collection of design
patterns that allow the designer to seamlessly integrate the synthesized code with
the code frames generated by standard IDL compilers. We study these approaches
along the concrete example of extending CORBA IDL with synchronization con-
straints and evaluate several implementations, solely based on standardized fea-
tures of the CORBA standard.

Integration Plattforms for Distributed Information Sys-
tems

Ralf-Detlef Kutsche

“Systems Integration” as the general topic of the seminar has an extremely broad
variety of concepts, methodologies and enabling technologies in its background,
which split up into quite different, however related areas, according to the view-
points, aspects and specific goals in a given context and requirements of an inte-
gration task.

This talk focuses on the particular aspects relevant in integrating distributed,
heterogeneous information sources into large, federated information systems, in
our terms also called: information infrastructures. Since one of the main tasks in
software development in this area today is the reflection of the customer needs in
integrating their well-established legacy solutions into larger contexts, the evolu-
tion of large information infrastructures must be considered as basic requirement,
in our terms: “continuous software engineering”.

Information infrastructures can be characterized by three (almost) orthogonal
dimensions:

1. the technical dimension, covering the aspects of distribution over space via
different networks, protocols, etc., and also the aspects of heterogeneity in
hardware, operating systems, application software etc.;

2. the organisational dimension, dealing with complex responsibilities in en-
terprises like industrial companies, government, public administration, etc.,
where coping with the required autonomy in systems operation, adminis-
tration, content provision, business process management is important;

3. the semantic dimension, where heterogeneity in data models, data structure
and granularity as well as the important questions of semantic overlaps in

13

information resources, inducing redundancy, inconsistency etc. must be
handled.

Along the classical separation of SWE into the layers of analysis, design, im-
plementation and running system, we mainly address the tasks of analysis and
design. Our methodological approach is based on four principles, namely:

• uniform modelling of legacy and new components, using appropriate com-
binations of modelling and specification languages, trying to establish a
maximum of uniformity in syntax and semantics;

• using metainformation on several abstraction levels in a domain oriented (by
modeling metainformation explicitely and using metadata standards from
the respective application domains) and, additionally, generic way (as using
general metadata approaches, formats and representation techniques);

• using the reference model of Open Distributed Processing (RM- ODP) as
a conceptual framework, particularly the viewpoint driven separation of
concerns (N.B. The classification given above explicitely refines to the ODP
viewpoints: enterprise v. (2), information v. (2, 3), computational v. (1,
3), engineering v. (1) and technology v. (1));

• evolution based on the integration platforms philosophy, to be explained in
more detail now.

The term of an integration platform can be considered as a general notion of han-
dling particular integration tasks in an organized, potentially transparent way. In
a more technological and engineering view, taking systems interoperation as one
of the predominant tasks in systems integration, we shall consider object- oriented
interoperation platforms like CORBA or DCOM. In order to deal with persis-
tence as most relevant aspect of information systems, standards like the SQL
language standard, like the ODMG object database standard or the underlying
object model and structure of persistence services can be considered as platforms,
supporting information integration. The same applies to document standards, to
metadata standards or even to the metalevel (metamodels) of existing modeling
languages like the Unified Modeling Language UML - they all provide platforms
to allow for easier exchange, understanding and processing of relevant ”entities”
in an integration scenario. Finally, very important, the software process itself
takes considerable advantage from following strict guidelines in using patterns,
particularly in design, as by the well-known design pattern catalogues, but also
in the analysis process, or with respect to global component architectures.

Future work in more detailed description of patterns, to be used in integration
platforms, will be one key in succeeding with our concern of the evolution of large
information infrastructures.

14

Query Mediation in Federated Information Systems

Ulf Leser

We propose a method for the translation of queries in a scenario of independently
existing and evolving component schemas. The translation algorithm is based on
query correspondence assertions, which are set-equations between two queries
against different schemas.

We develop our method for the purpose of building flexible and highly evolv-
able mediator-based information systems. We describe physical data sources
through a relational export schema (assuming the existence of a wrapper), and
aim at querying the federation through a relational, global schema. The task of a
mediator is to translate a global query in semantically equivalent sets of queries
against the export schemas, which in our cases uses semantic descriptions of the
export schemas with respect to the global schema in the form of QCAs.

Since QCAs are essentially rules, our method offers a high level of ”declara-
tivity”. Evolution of sources (or mediators) can often be encountered by simply
changing rules, thus avoiding changes in affected schemas.

iWebDB — An Integrated Web Content Management Sys-
tem

Henrik Loeser

Since its emergence, the Web, i.e., the number of users, of Web sites, and the
amount of accessible data resp. the number of documents is constantly increasing.
While in the first time, information providers, e.g., institutions, and enterprises,
have offered only ”statical” documents, they, today, have migrated their Web
sites to so-called Web Information Systems offering latest information and peri-
odically updated documents. If different persons or groups maintain these Web
documents, manipulations must be coordinated in order to keep document con-
tents and hyperlinks consistent. Moreover, document validity must be managed,
and generating statical documents triggered by changes to production data must
be provided in order to keep the offered information up-to-date. In addition,
a seamless integration of file-system-based data must be supported to the users
to allow the employment of user-preferred editing tools. In my talk, I present
iWebDB, a Web Content resp. Document Management System (WCMS/WDMS)
integrating its functionality into an object-relational DBS. Thus, HTML docu-
ments are treated as first class DB citizens, and problems, such as inconsistent
local hyperlinks, outdated documents, and obsolete index data, can be avoided.

15

Towards Accommodation of Heterogeneity in Software Ar-
chitectures

Klaus-Peter Löhr

As there is no universal agreement on what constitutes a software component, the
least common denominator may be the possibility of modelling components as
state machines. Talking about states and state transitions allows us to abstract
from the actual nature of the component’s interaction with its environment. It is
therefore suggested to use interface descriptions as known from object-oriented
languages as the syntactical basis for component specification. As this is not

meant to prescribe a specific interaction style (such as ”imperative code can
invoke operations exported by a component”), the term abstract interface is sug-
gested. An abstract interface specifying two events in and out might hide, e.g., a
Unix filter program. This goes beyond CORBA IDL language mapping because
the program does not follow the invocation style of interaction.

Using abstract interfaces implies that different interaction styles can be used
on both sides of an interface. The glue code to be provided when assembling a
system from components may thus be chosen from the full range of languages,
from imperative to more declarative languages to architectural description lan-
guages. This would allow for heterogeneous architectures (which use different
styles in different subsystems), alleviate integration of legacy systems and sup-
port component-based development.

If accommodating heterogeneity across abstract interfaces would require man-
ual construction of all kinds of wrappers, not much would be gained. Therefore,
the goal of this research is to define mappings to and from an abstract interface
style for several interaction styles and to investigate the construction of tools for
automatic wrapper generation.

Quality-driven Integration of Heterogeneous Information
Systems

Felix Naumann

(joint work with Ulf Leser and Johann Christoph Freytag)

Integrated access to information that is spread over multiple, distributed, and
heterogeneous sources is an important problem. While much work has been done
on query processing and choosing plans under cost criteria, very little is known
about the important problem of incorporating the information quality aspect into
query planning.

16

The talk described a framework for multidatabase query processing that fully
includes the quality of information in many facets, such as completeness, time-
liness, accuracy, etc. We seamlessly include information quality into a mul-
tidatabase query processor based on a view-rewriting mechanism. We model
information quality at different levels: First, we perform quality-driven source
selection and continue only with the best sources. Second, we compute query-
dependent information quality of the view definitions that describe the content of
sources. Finally we determine the overall quality of plan alternatives by aggregat-
ing these information quality scores to find a set of high-quality query-answering
plans.

Integration of Object Life-Cycles in Object-Oriented De-

sign

Günter Preuner

The design of object-oriented database schemas comprises the definition of struc-
ture and behavior of object types. For representing the behavior of objects, we use
life-cycle diagrams that show for each object type which sequences of activities
can be invoked on its instances.

In large systems, the database schema cannot be designed by a single person
but will require the cooperation with potential future users of the database. These
users know the application domain from everyday work with paper forms and thus
know to specify those parts of structure and behavior of object types that are
relevant for their work. Thus, different users know different parts of the life-cycle
diagrams in detail, roughly, or even not at all.

This talk presents the core of a method to integrate views of life-cycle dia-
grams. In this method, first correspondences between object types are identified
and object types are defined in the integrated schema. The life-cycle diagrams
of these object types are defined based on the life-cycle diagrams in the views.

17

The OASIS Architecture: Legacy System Migration and
Federated Schema Construction

Mark Roantree

Healthcare systems have often been used to demonstrate multidatabase pro-
totypes as they contain a wide range of information systems for specific tasks
within the organisation. Recently a number of emerging technologies have en-
abled healthcare institutions to build their own layers of interoperability. One
example is the use of wrapper technology to extract a universal relation from
MUMPS based legacy systems. For this reason, some healthcare IT departments
are discovering migration solutions whereas before they were content simply to
transfer information between systems. In this paper, we present an architecture
which attempts to offer the basis for either approach.

Schema Integration for the Design of a Federated Database

System

Ingo Schmitt

Integrating heterogeneous schemata with overlapping class extensions and types is
an essential task in federated database design. In this scenario conflicting inheri-
tance hierarchies have to be merged. Inheritance hierarchies often occur explicitly
in object-oriented databases as well as implicitly in relational databases. In the
presented approach, the problem of integrating different inheritance hierarchies
is transformed to the theory of formal concept analysis. Hence, mechanisms of
that theory can be used to derive a concept lattice which can then be regarded
as the integrated schema.

After having investigated the power and complexity of concept analysis al-
gorithms a better algorithm was presented tailored to the problem of schema
integration. The new algorithm has polynomial complexity and helps to opti-
mize the resulting hierarchy with respect to certain quality criteria, e.g. number
of classes and null values. An example demonstrates the practicability of the
approach to integrate heterogeneous schemata.

18

Global Version Management in a Federated Design Envi-
ronment

Martin Schönhoff

Integrated engineering environments, based on federated database technology,
are a means to control the integrity of and dependencies between product data
created in many different engineering applications. Continuing the engineers’
tradition of keeping different versions of drawings and documents, most engi-
neering applications support the management of different versions of a product
and its parts. Consequently, federations in engineering environments should pro-
vide version management on their global layer in order to support homogeneous
global access to versions from different local systems and to provide system-wide
consistency of versioned data.

The talk introduces a simplified federated turbine design environment to
present the problems which are specific to global version management in a feder-
ated system. It then investigates and evaluates these problems as well as concepts
to their solutions in the context of the example environment. Finally, a generali-
sation of selected solutions for a wider range of application domains is discussed.

Data Mining for Service Integration

Myra Spiliopoulou

Providers of web-based services are interested in monitoring the usage of their
services in combination with those of other providers. The providers of services
invoked together frequently may decide to cooperate and replace these services
by a jointly developed “integrated” service that offers additional features.

We propose data mining to discover services appropriate as a basis for com-
pany cooperation. In particular, we model the activities of a user application as
a sequence of service invocations recorded in a log. We then can apply our pat-
tern discovery miner WUM to find groups of sequences that satisfy semantical,
structural and/or statistical constraints. Those constraints are defined by the
mining expert to reflect what is “interesting” enough for a company to launch a
cooperation upon, according to the company’s strategic policies.

WUM discovers interesting patterns within a log of records over a time period.
An equally important aspect is the evolution of those patterns over time. Are
two services used together constantly, or are there bursts of joint usage? How is
each service used outside the time intervals of high activity? To help answering
such questions, we are currently specifying the important features that describe
service interactions in form of time series.

19

A Coordination Architecture for Workflows

Robert Tolksdorf

The combination of workflow systems and the Internet is hoped to be beneficial for
both domains of technology. We propose an architecture based on emerging Web
technology that allows for a flexible coordination of workflows over the Internet.

We understand each step in a workflow as the rewriting of a document into
another one by some activity. In our architecture, the documents are marked up
following some application dependent XML-DTD.

We introduce a workflow engine that is able to process the description of an
activity for a step. The activity can be an automatic one which simply processes
the document, an external one that invokes an external application, a user step
which is not computer supported at all, or a meta-step that transforms some
activity description.

In our architecture, an XSL processor is the component of choice to trans-
form an XML-based document into another one. According to the kind of step
described, different XSL-rules are supplied to the engine.

The overall workflow is defined as a graph in which activity in nodes can be
performed when the documents required on the incoming arcs are available to
be transformed into other documents. In our architecture, they are stored in a
distributed document space that can be accessed using Linda-like primitives.

In order to be executed by the XSL engines, the workflow graph has to be
compiled in a series of steps of the named kinds plus coordination steps. In our
architecture, we take the Workflow Process Description Language as defined by
the Workflow Management Coalition as the linguistic basis for the expression
of the workflow graph. We implement a respective XML-DTD to represent the
workflow as an XML document. The named transformation of the graph into
steps thus is subject to processing by an XSL engine guided by a set of meta-
rules. These rules define how the coordination constructs embedded in the graph
are compiled into primitive coordination steps.

Our architecture combines standard Web technology with publicly available
implementations with workflow by concentrating on coordination aspects. It
provides a high degree of flexibility by decomposition of the workflow graph and
a highly decoupled architecture. Subworkflows can be easily moved, delegated
and distributed. The use of explicit representation of workflows and coordination
rules allows for changes in the graph as well as in its interpretation.

Our vision is to provide an open, easily accessible, wide area workflow system
in which people exchange the descriptions of the processes that they use in a
highly distributed and flexible manner.

20

Experiences with Current Methods of Integrating Hospital
Information Systems

Alfred Winter

A Hospital information system (HIS) is that subsystem of a hospital, which is
comprising all information processing actions and the concerned human or me-
chanical actors in their role as information processors. HIS must encompass
information as well as medical knowledge, computer-supported as well as non-
computer-supported information processing, all divisions, all buildings, and all
categories of staff of the hospital. Even for the computer-supported part of the
HIS no vendor can offer a software product which covers it all. Instead of de-
veloping appropriate software for their own it is the main task of the hospital
information system management to combine or “glue” together commercially
produced softwareproducts.

Thus HIS usually consist of a considerable amount of autonomous application
systems with (partly) redundant data bases (A(n)-architecture) [3].

As a means for integration communication servers [1] are used to provide asyn-
chronous message exchange. Messages should conform to communication stan-
dards as HL7 [2]. Nevertheless there are some disadvantages: even standardised
communication interfaces are expensive, complex transactions (e.g. appointment
scheduling) are hardly to realise, fast and synchronous communication (retrievals
in databases) is hardly possible and replication of data is sometimes impossible
(e.g. with radiographic pictures).

[1] Gräber S. (1996). Communication Services for a Distributed Hospital In-
formation System. Methods of Information in Medicine. 35(3), 230-341.

[2] Ohe K., Kaihara S. (1996). Implementation of HL7 to client-server hospital
information system (HIS) in the University of Tokyo Hospital. J Med Syst.
20(4), 197-205.

[3] Winter A. (Hrsg.) (1996). Rahmenkonzept für die Weiterentwicklung des
Klinikuminformationssystems des Universitätsklinikums Leipzig. Univer-
sitätsklinikum der Universität Leipzig: Leipzig.

21

22

3 Working Groups: Issues and Results

Working Group I:

Applications & Processes

Myra Spiliopoulou

Working Group 1 addressed issues under the general title “Applications & Pro-
cesses” in the context of systems’ integration. A deep terminological discussion
on the notions of process, application etc was decided to be of limited useful-
ness, while defining a precise notion of the term “integration” is indispensable.
Two orthogonal categorizations were agreed upon. The first covers the phases of
analysis, design and implementation/run-time. The second distinguishes between
high-level interworking, interoperation and low-level interconnection. The level
of integration agreed upon was that of interoperation.

The notion of integration is goal-oriented. Depending on the goal, communi-
cation is a means for integration. At any case, integration may not focus solely
at structural issues; semantic problems must also be resolved.

Integration of specifications is the first step to systems’ integration. Beyond
data, behaviour must be integrated. There is a variety of models for describ-
ing them. Mapping those models to a universal canonical model is not always
appropriate. In this context, XML is not a solution to the integration problem.

The final issue concerned the cost of integrating a large system, whereby the
term “large” is ambiguous. It is recognized that the cost of integration cov-
ers expenses for equipment, installation and maintenance, training of the users
and time. Ad hoc solutions are less costly than the establishment of a feder-
ated DBMS. A reliable budget estimation for a FDBMS is very difficult, for the
integration of software it is almost impossible.

23

Working Group II:
XML and Canonical Data Models

Mark Roantree, Karl Aberer

(presented by Karl Aberer)

The focus of the workgroup was to discuss whether or not XML could function
as a canonical data model for systems integration, or if it could in some way,
support an existing canonical model. The workgroup identified a number of
different themes under which to discuss the model:

• XML’s relationship with Java/C++

• XML’s relationship with CORBA

• Query Languages for XML

• XML’s role in integrating data and services

• Attaching semantics to XML

• Can XML be a CDM, or is it just a model for data transfer?

XML’s relationship with Java/C++ Java can make use of the Domain
Object Model (DOM) to interact with XML. The main point to emerge was that
it makes no sense to combine XML with Java, as this defeats the purpose of
a language like XML which should be visible as an information transportation
medium.

paragraphXML’s relationship with CORBA
This topic sparked quite a lot of debate and the Boeing Project which employs

Orbix and XML to integrate a large number of disparate systems provided a good
reference point.

For large scale projects such as the Boeing Project it was generally agreed
that CORBA could act as the main communicating technology, but it was felt
that some high level technologies such as XML also has a role to play (where it
made no sense to use CORBA). One of the problems pointed out by the group
was the requirement to create Document Type Definitions (DTDs) for every time
of object to be transported. Although it was felt that DTDs could be specified
for entire domains, it was agreed that there would be many cases where DTDs
would need to be constructed for isolated objects.

The concept of XML replacing IDL was also raised but quickly dropped as
being non-viable. CORBA has a specific role for defining behaviour and managing
the integration of behaviour, an area where XML was lacking.

The failure of SGML was also raised, and questions were asked as to whether
or not XML could avoid the mistakes (complexity) of SGML. Finally, XML was
highlighted as a possible replacement for CGI.

24

Query Languages for XML Details of upto four communities defining dif-
ferent query languages were provided, with XQL and XMLQL being the most
prevalent current query language proposals. Microsoft is supporting XQL, XWL
update facilities can be expected from the providers.

What emerged from this topic is that there are query languages currently
available for XML (a good thing) but no query language has emerged as a stan-
dard (bad thing). In fact, different query languages currently offer different types
of output as a result of XML queries (documents, elements sets, restructured
documents).

XML’s role in integrating data and services The focus of this theme was
on DTDs. The question of strategy was raised: do we merge two DTDs or can
we simply map the same document to different DTDs? The idea of the query
language being used to solve the integration issue (possibly through the use of
constraints) was also raised.

Can a generic DTD like XMI be used to exchange schemata? In general, it
was felt that using XML would make it easier to exchange schemata but that the
same issue of semantics still exists: it has just moved to another platform. In
fact, it was felt that DTDs were not as rich as database schemas.

Attaching semantics to XML This topic focused on the idea of extending
XML to include semantics or some form of rules. The group felt that this was a
bad idea, as it wasn’t possible to achieve properly. We were also reminded that
SGML’s reason for failure was its complexity. If XML is to succeed, it should use
its simplicity as a key strength.

Can XML be a CDM, or is it just a model for data transfer? The
(almost) unanimous feeling is that XML cannot be a CDM, but should be used
where it is strongest: the transfer of data.

25

Working Group III:
Software Architectures & Coordination

Klaus-Peter Löhr

As this was the last of the three workshops, there was a strong feeling among the
participants that we should walk away with some general insight into the overall
theme of the seminar. So after surveying several topics that had been suggested
for discussion, we decided to focus on patterns of integration.

The unevitable quest for a precise definition of terms (pattern, integration)
was quickly resolved for “pattern” — to mean a recurring structure in space and
time that is revealed by abstraction of some kind. Understanding “integration”
turned out to be harder. There were widely varying opinions on what constitutes
an “integrated system” or a “system resulting from integration”, ranging from
loosely coupled systems to supersystems where the individual components are no
longer recognizable.

An agreement was reached that there are three — largely orthogonal — im-
pediments to integration: heterogeneity, distribution and autonomy. Different de-
grees of integration will exhibit different degrees of masking heterogeneity, hiding
distribution and accommodating autonomy. So a more or less integrated system
would be placed somewhere in a three-dimensional space, and the distance from
the origin would be a measure of integration.

Typical approaches to coping with heterogeneity, distribution and autonomy
were identified to follow four important patterns:

(Heterogeneity:)

1. Homogenization: Introduce a new, well-chosen ”canonical” entity in
addition to the given heterogeneous entities. Define mappings between
these and the new entity. Support those mappings by providing wrap-
pers, mediators, adaptors and similar devices.

2. Direct accommodation: Define pairwise mappings between the partic-
ipating entities. Support those mappings by providing bridges for all
pairs where accommmodation is indeed required.

(Distribution:)

3. Remote invocation via proxies : This well-known approach is the ba-
sis for several middleware systems and can achieve a high degree of
invocation transparency.

(We would have loved to come up with a pattern for choosing appropriate
middleware in a systematic way. Unfortunately, we didn’t; so the issue is
left as a topic for further research :-)

26

(Autonomy:)
(This pattern was not developed in the working group; it was suggested in
the following plenary discussion.)

4. Higher authority : Existing authorities agree to give up part of their
autonomy in order to allow for some coordination exercised by a higher
authority.

While each of these observations is not radically new, the members of the working
group liked the “integrated view” on systems integration that was achieved.

27

28

4 List of Participants

29

