
Dagstuhl Seminar

on

Instruction-Level Parallelism
and Parallelizing Compilation

Organized by

D. K. Arvind (University of Edinburgh)

Kemal Ebcioglu (IBM T. J. Watson Research Center)

Christian Lengauer (Universität Passau)

Keshav Pingali (Cornell University)

Robert S. Schreiber (Hewlett-Packard)

SchloÿDagstuhl 18. ˘ 23.4.1999

Contents

1 Preface 1

1.1 Introduction . 1

1.2 Summary of the Presentations 2

1.3 Conclusions . 6

2 Abstracts 7

Instruction-Level Parallelism and Parallelising Compilation

D. K. Arvind . 7

Vectorizing Techniques for Exploiting Instruction-Level Parallelism

Ramaswamy Govindarajan (with N. Sreraman) 8

Circuit Retiming Applied to Decomposed Software Pipelining

Alain Darte (with Pierre-Yves Calland, Guillaume Huard and

Yves Robert) . 9

Index Set Splitting

Martin Griebl (with Paul Feautrier and Christian Lengauer) . 9

Algorithmic Issues for Heterogeneous Computing Platforms

Yves Robert (with Pierre Boulet, Jack Dongarra, Fabrice Rastello

and Frédéric Vivien) . 10

Storage Allocation for Register Tiling, Instruction-Level Parallelism

and Parallelizing Compilation

Michelle Mills Strout (with Larry Carter and Jeanne Ferrante) 11

Data Dependence Analysis of Assembly Code

Eberhard Zehendner (with Wolfram Amme and Peter Braun) 12

OCEANS: Optimizing Compilers for Embedded Applications

Christine Eisenbeis . 12

Compilation Techniques for Multimedia Processors

Andreas Krall (with Sylvain Lelait) 13

Compiling for TriMedia

Lex Augusteijn . 13

The Multimedia Compilation Project ACROPOLIS

Thierry J.-F. Omnès . 14

Hardware-Software Codesign and Software Estimation

Grant Martin and Christopher Hoover 16

Microarchitectural Mechanisms for Future ILP Processors

Gurindar Sohi . 17

i

On Compiler Issues for Concurrent Multithreaded Architectures

Pen-Chung Yew . 18

The Potential of a Software-Only Thread-Level Data Speculation

System for Multiprocessors

Per Stenström (with Peter Rundberg) 18

Predicated Static Single-Assignment Form for ILP

Jeanne Ferrante (with Lori Carter, Beth Simon, Brad Calder

and Larry Carter) . 19

Computation in the Context of Transport-Triggered Architectures

Henk Corporaal . 20

Array-Tailored Analyses vs. MFP Analysis

Jean-François Collard . 21

An Automata-Theoretic Approach to Dependence Analysis

Jens Knoop (with Javier Esparza) 22

Simultaneous Speculation Scheduling

Andreas Unger (with Theo Ungerer and Eberhard Zehendner) 22

Three Associative Approaches to Automatic Parallelization

Ronald Moore (with Frank Henritzi, Bernd Klauer and Klaus

Waldschmidt) . 23

Code Generation for Automatic Parallelization in the Polyhedral

Model

Fabien Quilleré(with Sanjay Rajopadhye) 24

Optimizing Expression Evaluation for ILP

Fabien Coelho . 25

Software Pipelining with Iteration Preselection

David Gregg . 25

3 List of Participants 27

ii

1 Preface

1.1 Introduction

Parallel programming has been around for three decades and has remained a

diŒcult øeld. The biggest challenge arises when the main purpose of paral-

lelism is to increase performance, i.e., computation speed. Parallel programs

are notoriously hard to get correct and eŒcient. Although progress has

been made on the semantics and veriøcation of parallel programs in certain

domains, no practical technique for the development of reliable, portable

application parallelism for high performance has been achieved.

One approach towards this goal is to unburden the programmer from the

diŒcult task of handling parallelism and delegate this to the compiler or the

machine architecture. The research area which gives the compiler the control

over the parallelism is parallelizing compilation, the research area which lets

the machine infuse the parallelism is instruction-level parallelism (ILP).

The aim of the seminar was to bring together these two research areas, which

have developed side by side with little exchange of results. Both areas are

dealing with similar issues like dependence analysis, synchronous vs. asyn-

chronous parallelism, static vs. dynamic parallelization, and speculative exe-

cution. However, the diœerent levels of abstraction at which the paralleliza-

tion takes place call for diœerent techniques and impose diœerent optimization

criteria.

In instruction-level parallelism, by nature, the parallelism is invisible to the

programmer, since it is infused in program parts which are atomic at the level

of the programming language. The emphasis is on driving the parallelization

process by the availability of architectural resources. Static parallelization

has been targeted at very large instruction word (VLIW) architectures and

dynamic parallelization at superscalar architectures. Heuristics are being

applied to achieve good but, in general, suboptimal performance.

In parallelizing compilation, parallelism visible at the level of the program-

ming language must be exposed. The programmer usually aids the paral-

lelization process with program annotations or by putting the program to

be parallelized in a certain syntactic form. The emphasis has been on static

parallelization methods. One can apply either heuristics or an optimizing

algorithm to search for best performance. Resource limitations can be taken

1

into account during the search, or they can be imposed in a later step, e.g.,

through tiling or partitioning the computation domain.

1.2 Summary of the Presentations

Embedded software applications have traditionally tended to use low-level

languages and hand-crafted techniques for optimizing execution time and

memory usage. Given the scope for exploiting parallelism in embedded soft-

ware, especially in multimedia applications, and the emergence of ILP pro-

cessors, such as VLIW ones, there is a growing body of work investigating

automatic parallelization of high-level programs aimed at ILP targets. A

number of these compiler infrastructure projects were presented at the work-

shop.

The Esprit OCEANS project (Eisenbeis) is aimed at embedded VLIW ar-

chitectures, with emphasis on understanding and exploiting interactions be-

tween high-level optimizations, such as loop unrolling, and low-level ones,

such as software pipelining

The ACROPOLIS project (Omnès) at IMEC considers the impact of data

organization in embedded applications on performance metrics such as in-

struction throughput and power consumption. The latter is fast becoming

an important consideration for multimedia applications running on mobile

appliances. The approach in this project is to inform the choices in the paral-

lel compilation process of the impact of the dominant costs of data transfers

and complex data manipulations on the overall performance.

The TriMedia project (Augusteijn) at Philips has developed a compilation

environment for embedded programs written almost exclusively in C/C++,

and targeted at the 5-issue TriMedia VLIW processor. It supports predi-

cated execution and special operations for DSP algorithms, such as vector

instructions on subwords.

Vectorizing techniques for exploiting sub-word parallelism in ILP architec-

tures was the subject of two further talks from the University of Vienna

(Krall) and the Indian Institute of Sciences, Bangalore (Govindarajan); and

the method of predicated execution for exploiting ILP in the EPIC (Explic-

itly Parallel Instruction Computing) architecture was the subject of a paper

from University of California, San Diego (Ferrante).

2

The traditional instruction sets of processors have been extended to exploit

eŒciently sub-word parallelism, in which a number of short data elements

are packed in a single register and data-parallel operations are executed on

them in parallel. Examples of these so-called multimedia extensions include,

the Visual Instruction Set for the UltraSPARC processor, the AltiVec for the

PowerPC, the MMX extension for the Pentium processor, and the MAX-2

instruction set of the PA-RISC processor. At present, there is little or no

compiler support to exploit sub-word parallelism ˘ the user is expected to

handcode large parts of their application in assembly language.

Krall uses the technique of vectorization by unrolling to automate this pro-

cess. Data dependence analysis and dynamic run-time checking are used to

handle unaligned memory accesses. Govindarajan uses standard vectoriza-

tion techniques on loops which are tailored for short vector lengths.

Predicated execution is one of many approaches used to ønding instructions

that can be executed simultaneously in ILP architectures. One of the draw-

backs, however, is that predicated code presents challenges to traditional

compiler optimizations. Ferrante presented an extension to the well-known

Static Single Assignment form, called the Predicated Static Single Assign-

ment form, which, when used in conjunction with speculation and control

height reduction, enables instructions to be issued at their true data depen-

dence height.

The microarchitecture of future processors has been the subject of intense

debate and was the topic of two talks ˘ from the University of Wisconsin

(Sohi) and the University of Delft (Corporaal). Both speakers recognized

common problems ˘ future architectures have to contend with increasing

workloads and longer communication and memory latencies ˘ but they ad-

vocated quite diœerent solutions. Microarchitectures have traditionally been

based on certain observable program behaviours, such as spatial and tempo-

ral locality. Sohi advocated the need for information about program structure

˘ the data and control relationship between instructions, i.e., the relation-

ship which causes the observable behaviour ˘ to be the basis for the design

of future microarchitectures. Corporaal recognized communication as being

of primary importance in the design of future microarchitectures. In the

transport-triggered architectures, for instance, the communication between

functional units, and with the register øles, are programmed explicitly; the

computation is now a side-eœect, triggered by the communication. All com-

3

munication inside the microarchitecture is visible to the compiler, which leads

to a number of communication-level optimizations that the compiler can per-

form to increase the performance. Embedded programs can be analyzed and

implemented on a transport-triggered architecture with an optimal number

of functional units and communication pattern.

Embedded systems have requirements such as low cost and low power con-

sumption, in addition to high performance. In many cases, oœ-the-shelf pro-

cessors cannot meet the performance speciøcation. The design of embedded

systems tuned to a particular application in a given domain demands an ap-

proach which takes an integrated view of the software and hardware design

of the system. Cadence Design Systems (Martin, Hoover) presented an ap-

proach to performance estimation of software running on the processor by

using a virtual instruction set model, and a scheduling model for the real-time

operating system.

Looking beyond ILP, talks from the University of Minnesota (Yew), Chalmers

University (Stenström), and the University of Jena (Unger) presented ideas

on compilers that exploit thread-level and instruction-level parallelism. Yew

discussed the Agassiz compiler which is targeted at a concurrent multi-

threaded architecture and supports speculative execution at both the thread

and instruction level, in addition to run-time data dependence checking and

very fast communication between thread processing units. High-level pro-

gram information, such as aliases, and cross-iteration data dependences, are

passed from the thread-level compiler to the ILP one. Unlike Yew, Sten-

ström does not assume that the target architecture supports speculative ex-

ecution. His ideas for thread-level data speculation are implemented entirely

in software. The aim is to demonstrate that the overhead is acceptably low

with reasonable performance gains through the exposed parallelism. Unger

presented the Simultaneous Speculation Scheduling, which is a combined

compiler and architecture technique for multithreaded processors. The spec-

ulation is controlled entirely by the compiler and is aimed at simultaneous

multithreaded processors.

A number of talks discussed the dependence analysis of programs and their

optimization for ILP processors. The paper from the University of Jena

(Zehendner) describes a method for memory reference disambiguation on as-

sembly language code for increasing ILP. The method derives value-based

4

dependences between memory operations and is integrated in the SALTO

system. The presentation from the University of Versailles (Collard) looked

at statically deriving the probability, in the case of arrays, that two refer-

ences access the same memory location. This is useful in moving a load

speculatively above a possibly aliasing store. Mills Strout from the Univer-

sity of California, San Diego, presented a method of register tiling which

exploits data dependence analysis to reduce storage requirements in super-

scalar ILP architectures. Jens Knoop from the University of Dortmund pre-

sented an automata-theoretic approach to interprocedural data Æow analysis.

The structural behavior of the program is modelled by an appropriate push-

down system; the reaching deønitions boils down to a reachability problem

on pushdown systems.

One dominant target of parallelizing compilers is the domain of nested loop

programs. A number of presentations in the seminar came from this domain.

The computation domain of a loop nest is often modelled by embedding the

loop steps on a high-dimensional integer grid. One problem which arises is

how to use the structure of this domain to advantage for an eŒcient execu-

tion. Griebl from the University of Passau presented an algorithm to shorten

the parallel execution which uses breaks in the dependence structure of a

polyhedral computation domain. Quilleréfrom IRISA in Rennes presented a

method for the execution of domains which are unions of polyhedra. Rather

than testing at run time, whether a computation point falls into the domain

or lies outside ˘ which can lead to a lot of overhead ˘ he splits the domain

into pure polyhedra and scans these without any run-time tests. Darte from

the ENS Lyon uses a combination of loop shifting and loop compaction to

shorten the parallel execution of a program composed of separate loop nests.

Robert from the same school extends static techniques of partitioning the do-

main to the context of limited computational resources with diœerent-speed

processors.

At a lower level of abstraction, Coelho restructures mathematical expressions

to evaluate them more eŒciently. Gregg addresses the software pipelining

of loops with branches in the loop body. Moore presented work at the Uni-

versity of Frankfurt on associative architectures for the support of run-time

parallelization.

5

1.3 Conclusions

The seminar exposed the exciting developments taking place in parallel com-

puter architecture. It also exposed the heavy burdens which are being placed

in compilers by current parallel machines. The eŒcient use of performance-

increasing hardware such as cache hierarchies, pipelined functional units and

predication call for highly sophisticated analysis and code generation tech-

niques. It remains to be seen how the portability of parallel software can

be maintained in this scenario. Portability is essential. After all, a parallel

computer whose main purpose is high performance becomes obsolete after

about øve years.

An issue of the International Journal of Parallel Programming dedicated to

this seminar will appear in due course.

D. K. Arvind K. Ebcioglu C. Lengauer K. Pingali R. S. Schreiber

6

2 Abstracts

Instruction-Level Parallelism and Parallelising
Compilation

D. K. Arvind

University of Edinburgh, Scotland

The øelds of Instruction-Level Parallelism (ILP) and Parallelising Compila-

tion have developed concurrently, but with little exchange of results. Four

issues of common interest were identiøed:

• dependence analysis,

• synchronous versus asynchronous parallelism,

• static versus dynamic parallelisation,

• speculative execution.

It is argued that the design of future compilers and architectures, and the

division of responsibility between them, will be inÆuenced by a number of

factors:

• the growth of new application areas such as embedded systems

• the resulting changes in the nature and volume of the workload

• new design methods for implementing entire systems in silicon

Computers in the future will be more pervasive ˘ portable rather than teth-

ered to a desk. There will be demand for greater computational speeds

at lower energy costs. Improvements in silicon technology suggest a billion

transistor chip by the middle of the next decade. One of the design consid-

erations for future architectures is the high cost of on-chip communications.

Architectural structures which exploit information locality and decentralise

their controls will be likely winners. Also, the processor cores have to live

cheek by jowl with analogue devices operating at radio frequencies, and noisy

7

micromechanical structures. The new application areas suggest a shorter de-

sign cycle for these systems, which emphasises architectures that can be

composed quickly from pre-designed and pre-veriøed building blocks, i.e. a

design method which is compositional at the diœerent levels of abstraction,

right down to the silicon implementation. It was argued that a fully asyn-

chronous design method captures the following features:

• a network of functional units which operate concurrently and commu-

nicate asynchronously using a local protocol

• they consume a fraction of the total power of an equivalent clocked

design

• they are immune to electromagnetic interferences

• the architectures exposes øne grain concurrency

• the designs are compositional even at the silicon level

It was proposed that processing cores of future embedded systems could be

fully asynchronous ILP processors.

Vectorizing Techniques for Exploiting
Instruction-Level Parallelism

Ramaswamy Govindarajan (with N. Sreraman)

Indian Institute of Science Bangalore, India

Subword parallelism is a technique in which multiple short data elements are

packed in a single register and data-parallel operations are executed on them

in parallel. Extending the instruction set architecture to exploit subword

parallelism is becoming increasingly popular in modern processors. Despite

this popularity, compiler support for exploiting such subword parallelism is

widely absent and programmers are expected to handcode (parts of) their

application in assembly.

In this work, we use standard vectorizing techniques to identify vectorizable

loops and generate in-lined MMX assembly code that exploits subword paral-

lelism. The various phases of standard vectorization techniques (dependence

8

analysis, loop distribution and øssion, strip mining, scalar expansion and

code generation) are tailored for subword parallelism which deal with short

vector lengths. We use SUIF (Stanford University Intermediate Form) for

performing vectorization. Initial experimental results on multimedia appli-

cations are also presented.

Circuit Retiming Applied to Decomposed
Software Pipelining

Alain Darte (with Pierre-Yves Calland, Guillaume Huard and

Yves Robert)

Ecole Normale Superieure de Lyon, France

The idea of decomposed software pipelining is to decouple the software

pipelining problem into a cyclic scheduling problem without resource con-

straints and an acyclic scheduling problem with resource constraints. In

terms of loop transformation and code motion, the technique can be formu-

lated as a combination of loop shifting and loop compaction. Loop shifting

amounts to moving statements between iterations, thereby changing some

loop-independent dependences into loop-carried dependences and vice versa.

Then, loop compaction schedules the body of the loop considering only loop

independent dependences, but taking into account the details of the target

architecture. In the ørst part of this talk, I recall the main theoretical re-

sults for the software pipelining problem and I survey existing heuristics,

mainly modulo scheduling, kernel recognition algorithms and compact/shift

algorithms, discussing their intuitive ideas and weaknesses. In the second

part, I focus on decomposed software pipelining: I show how loop shifting

can be optimized so as to minimize both the length of the critical path and

the number of dependences for loop compaction. Both problems (and the

combination) are polynomially solvable with fast graph algorithms, the ørst

one by using an algorithm due to Leiserson and Saxe, the second one by

designing a variant of minimum-cost Æow algorithms.

9

Index Set Splitting

Martin Griebl (with Paul Feautrier and Christian Lengauer)

University of Passau, Germany

There are many algorithms for the space-time mapping of nested loops. Some

of them even make the optimal choices within their framework. We propose

a preprocessing phase for algorithms in the polytope model, which extends

the model and yields space-time mappings whose schedule is, in some cases,

orders of magnitude faster. These are cases in which the dependence graph

has small irregularities. The basic idea is to split the iteration domain of

the loop nests into parts with a regular dependence structure and apply the

existing space-time mapping algorithms to these parts individually.

This work is based on a seminal idea in the more limited context of loop

parallelization at the code level. We elevate the idea to the model level (our

model is the polytope model), which increases its applicability by providing

a clearer and wider range of choices at an acceptable analysis cost.

Index set splitting is one facet in the eœort to extend the power of the polytope

model and to enable the generation of competitive target code.

Algorithmic Issues for Heterogeneous
Computing Platforms

Yves Robert (with Pierre Boulet, Jack Dongarra, Fabrice

Rastello and Frédéric Vivien)

Ecole Normale Superieure de Lyon, France

In the framework of fully permutable loops, tiling has been extensively stud-

ied as a source-to-source program transformation. However, little work has

been devoted to the mapping and scheduling of the tiles on physical proces-

sors. Moreover, targeting heterogeneous computing platforms has, to the best

of our knowledge, never been considered. In this talk, we extend static tiling

techniques to the context of limited computational resources with diœerent-

speed processors. In particular, we present eŒcient scheduling and mapping

strategies that are asymptotically optimal. The practical usefulness of these

10

strategies is fully demonstrated by MPI experiments on a heterogeneous net-

work of workstations.

Along these lines we also discuss some algorithmic issues when computing

with a heterogeneous network of workstations (the typical poor man’s paral-

lel computer). How is it possible to implement eŒciently numerical linear

algebra kernels like those included in the ScaLAPACK library? Dealing with

processors of diœerent speeds requires the use of more involved strategies

than purely static block-cyclic data distributions. Dynamic data distribu-

tion is a ørst possibility but may prove impractical and not scalable due

to communication and control overhead. Static data distributions tuned to

balance execution times constitute another possibility but may prove inef-

øcient due to variations in the processor speeds (e.g., because of diœerent

workloads during the computation). There is a challenge in determining a

trade-oœ between the data distribution parameters and the process spawning

and possible migration (redistribution) policies. We introduce a semi-static

distribution strategy that can be reøned on the Æy, and we show that it is

well suited to parallelizing several kernels of the ScaLAPACK library such

as LU or QR decomposition.

Storage Allocation for Register Tiling,
Instruction-Level Parallelism and Parallelizing

Compilation

Michelle Mills Strout (with Larry Carter and Jeanne Ferrante)

University of California at San Diego, USA

We look at the problem of exposing instruction-level parallelism under regis-

ter constraints. Register tiling is one technique which can be used to expose

ILP to a superscalar architecture. Typically, larger tile sizes contain more

low-level parallelism. However, the number of registers available restricts the

tile size. We apply the idea of the occupancy vector (OV) storage mapping

to register allocation in order to reduce the storage requirements in terms of

registers, thus allowing larger register tiles. The technique of determining an

occupancy vector uses data dependences and schedule information to ønd an

eŒcient storage reuse pattern. In simulations of an out-of-order processor,

11

our OV register allocation along with a wavefront parallel schedule performs

better than techniques based on scalar replacement.

Data Dependence Analysis of Assembly Code

Eberhard Zehendner (with Wolfram Amme and Peter Braun)

University of Jena, Germany

Determination of data dependences is a task typically performed on high-

level language source code in today’s optimizing and parallelizing compilers.

Less work has been done in the øeld of data dependence analysis on assembly

language code, but this area will be of growing importance ˘ in particular, for

increasing ILP. A central element of a data dependence analysis in this case

is a method for memory reference disambiguation which decides whether two

memory operations must/may access the same memory location. We de-

scribe a new approach for determination of data dependences in assembly

code. Our method is based on a sophisticated algorithm for symbolic value

propagation, and it can derive value-based dependences between memory op-

erations instead of address-based dependences only. We have integrated our

method into the Salto system for assembly language optimization. Experi-

mental results show that our approach greatly improves the accuracy of the

dependence analysis in many cases.

OCEANS: Optimizing Compilers for Embedded
Applications

Christine Eisenbeis

INRIA Rocquencourt, France

The objectives of the OCEANS ESPRIT project is to investigate and develop

advanced compiler insfrastructure for embedded VLIW processors. This

combines high- and low-level optimisation approaches within an iterative

12

framework for compilation. We present three kinds of results that have been

obtained thanks to the OCEANS compiler framework. First, one allows to

trade-oœ globally between code size and code performance for a set of code

pieces of the same program. Second, one compares diœerent versions of high-

level loop unrolling and low-level software pipelining. Third, one analyzes

the interaction between loop unrolling and loop tiling by exploring the space

of a range of possible unrolling and blocking factors.

Compilation Techniques for Multimedia
Processors

Andreas Krall (with Sylvain Lelait)

University of Vienna, Austria

The huge processing power needed by multimedia applications has lead to

multimedia extensions in the instruction set of microprocessors. Examples

of these extended instruction sets are the Visual Instruction Set of the Ultra-

SPARC processor, the AltiVec instruction set of the PowerPc processor, the

MMX extensions of the Pentium, and the MAX-2 instruction set of the HP

PA-RISC processor. Currently, these extensions can only be used by pro-

grams written in assembly language, through system libraries or by calling

specialized macros in a high-level language. Therefore, these instructions are

not used by most applications.

We propose two code generation techniques to produce native code using

these multimedia extensions for programs written in a high-level language:

classical vectorization and vectorization by unrolling. Vectorization by un-

rolling is simpler than classical vectorization, since data dependence analysis

is reduced to acyclic control Æow graph analysis. Furthermore, we address

the problem of unaligned memory accesses. This can be handled by both

static analysis and dynamic run-time checking. Preliminary experimental

results for a code generator for the UltraSPARC VIS instruction set show

that speedups of up to a factor of 4.8 are possible, and that vectorization by

unrolling is simpler but as eœective as classical vectorization.

13

Compiling for TriMedia

Lex Augusteijn

Philips Research Eindhoven, The Netherlands

The TriMedia processor is a 5-issue slot VLIW, equipped with 128 32-bit

registers, predicated execution and special operations for DSP algorithms,

like vector instructions on subwords. The TriMedia is programmed almost

exclusively in C and C++, hardly on the assembly level. The C/C++ com-

pilation process consists of two parts: the core compiler and the scheduler,

communicating via an intermediate format called decision trees. These dtrees

are trees of basic blocks, containing a data Æow graph of operations. The

core compiler performs global register allocation and computes the partial

order of operations in the data Æow graph, the scheduler schedules them into

a total order, obeying the resource constraints of the machine, while per-

forming local register allocation. In order to exploit the potential for ILP,

the compiler attempts to generate large decision trees with few dependencies.

Techniques applied to achieve this are:

• grafting (tail duplication), which copies basic blocks in order to enlarge

dtrees,

• loop unrolling and function inlining,

• extensive alias analysis,

• if-conversion, which introduces predicated execution and phi-nodes in

the dtrees.

Proøling is used to control both these transformations in the compiler and

speculation in the scheduler. At the level of the program, restrict pointers

are used to support the alias analysis of the compiler and the whole TriMe-

dia instruction set is available via built-in functions, the so-called custom

ops. The compilation has been validated for correctness and performance by

standard benchmark suites like Plumhall, Nullstone, Spec92 and Spec95, as

well as a program generator that generates self-testing random C programs.

14

The Multimedia Compilation Project
ACROPOLIS

Thierry J.-F. Omnès

IMEC, Belgium

For most advanced real-time multimedia processing applications (video, imag-

ing, telecommunication), the manipulation of complex data has a major or

even dominant eœect on the cost of the global system, also when compiled to

(parallel) multimedia processors like the Philips TriMedia, TI C60 or C80,

Chromatic/Mpact, and even on general-purpose processors with multimedia

extensions like the Intel MMX. This is mainly due to the large impact of the

memory organization and the global data transfer between processor storage

and data path units on the cycle count and system power consumption.

Currently, due to design time restrictions, the system designer usually has

to select ˘ on an ad-hoc basis ˘ a single promising path in the huge decision

tree from abstract speciøcation to more reøned C speciøcation, which is then

input to the conventional (parallel) compiler environments. To alleviate this

situation, there is a need for more support during the compilation and also

for fast and early feedback at the algorithm level without going all the way

to the ønal code. When the design space has been suŒciently explored at a

high level and when the most promising candidate has been identiøed, also

the ønal choice has to be coded in the transformed (C) speciøcation.

Therefore, based on our large experience in hardware oriented memory man-

agement (see Atomium project), we are developing a tuned methodology,

formal models and system-level compilation techniques which are intended

as a precompilation stage to the conventional (parallel) compiler environ-

ments. In addition, we are working on prototype tools and an environment

supporting the most error-prone and critical tasks in this data storage and

transfer exploration and optimisation. Promising results have been achieved

by applying this approach manually to a number of complex real-life video

and image processing algorithms.

15

Hardware-Software Codesign and Software
Estimation

Grant Martin and Christopher Hoover

Cadence, USA

Two recent trends in electronics design are converging: technology-driven

integration which is leading to complete Systems-On-Chip (SOC) devices

for embedded systems; and advances in systems design which support the

hardware-software codesign process for embedded devices. The design method-

ology is further changing towards integration platform-based design approaches

to reduce design time for SOC.

The presentation describes some recent R&D work at Cadence which is de-

veloping a new methodology and technology for hardware-software codesign.

This approach is particularly interesting when combined with the integra-

tion platform concept to create design vehicles for rapid derivative creation,

although it is more general and can be applied to the creation of whole

new architectures. The methodology relies on the modeling of applications

behaviour using a compositional approach which allows the integration of

models from diœerent computational domains. In an orthogonal manner,

candidate architectures consisting of functional resources (which may be IP

blocks or virtual components) and communications resources are captured.

An explicit mapping between behaviours and architectural resources is used

to drive a performance analysis process, which then guides designers towards

optimising the architecture and choice of components to meet system design

requirements.

Mapping behaviours to components which are programmable processors im-

plies that the functions will be implemented as software tasks. The per-

formance implications of this mapping (latency, throughput) are estimated

using an abstract virtual instruction set model for the target processor, a

scheduling model for the real-time operating system, and a partial compi-

lation of the tasks into the virtual instruction set. The tasks are simulated

at native workstation speed, but their estimated performance on the target

processor is derived during the simulation and used as the basis for per-

formance analysis. For intensive data manipulation tasks, e.g., running on

16

a DSP, a diœerent approach using precharacterized kernel functions is used

with a static schedule. Characterization methods for these techniques are

brieÆy described.

Microarchitectural Mechanisms for Future ILP
Processors

Gurindar Sohi

University of Wisconsin at Madison, USA

Microarchitectural techniques of the next decade will have to be more eŒcient

and scalable, in order to handle growing workloads and longer communication

and memory latencies. New techniques will have to be developed for these

scenarios, and a new underlying basis will be needed for these techniques.

To date, microarchitectural mechanisms have been based on observable em-

pirical behaviour of a program, e.g., temporal and spatial locality. For future

mechanisms, a new basis will be needed. We believe that information about

program structure, the data and control relationships between instructions,

i.e., causal relationships which cause the observed empirical behaviour can

be used as a powerful framework for new techniques. We argue that pro-

gram structure information has several inherent advantages over frameworks

that associate information either with instructions in isolation or with data.

We present summaries of four novel methods that apply program structure

information to memory system problems ranging from dynamic scheduling

of memory operations and optimizing data cache bandwidth to prefetching

recursive data structures and optimizing cache coherence protocols.

17

On Compiler Issues for Concurrent
Multithreaded Architectures

Pen-Chung Yew

University of Minnesota, USA

Supporting concurrent execution of multiple threads on a single chip is a

promising approach to boosting performance beyond existing superscalar ar-

chitectures. Concurrent multithreaded architectures (CMAs) take advantage

of the compilation techniques and run-time hardware support to exploit both

instruction-level and thread-level parallelism, thus allowing a wider instruc-

tion issue rate per clock cycle.

New compiler techniques are needed to exploit both thread-level and instruction-

level parallelism on such architectures for general-purpose applications (e.g.,

SPEC benchmark programs). They require the compiler to go beyond ex-

ploiting ILP in the innermost loops as in traditional ILP compilers. CMAs

support speculative execution at both the instruction and the thread level.

They also provide run-time data dependence checking and very fast commu-

nication between thread processing units. Such architectures allow do-while

loops and do-across loops to be exploited very eŒciently at any loop nesting

level.

The Agassiz compiler, currently being developed at the University of Min-

nesota, is an integrated parallelizing compiler targeting CMAs. It has a paral-

lelizing compiler as its front-end for both C and Fortran, and an optimizing

compiler based on gcc as its back-end to exploit ILP. A well deøned data

structure is used to export high-level program information such as aliases,

cross-iteration data dependences, and interprocedural information from the

front-end parallelizing compiler to the back-end ILP compiler.

In this talk, we present some compiler techniques needed to exploit thread-

level parallelism in SPECint95 programs on CMAs, and show their perfor-

mance data using simulations.

18

The Potential of a Software-Only Thread-Level
Data Speculation System for Multiprocessors

Per Stenström (with Peter Rundberg)

Chalmers University, Sweden

Because parallelizing compilers cannot statically detect all dependences, a

lot of parallelism cannot be exploited. Thread-level data speculation sys-

tems detect data dependences at run time and allow threads that the com-

piler would conservatively deem dependent to be speculatively executed in

parallel. Only if a dependence violation is detected must the speculatively

executed threads be terminated. Previously proposed speculation systems

require quite aggressive changes to memory hierarchies in multiprocessors.

We propose a software-only approach to design speculation systems. Each

load and store that is potentially involved in a dependency invokes highly

tuned code sequences that remove or detect potential dependences. Through

simulation and analytical modeling techniques of a prototypical implemen-

tation of such a system, we show that our approach to thread-level data

speculation imposes acceptably low overheads and may result in reasonable

performance gains through the parallelism that is exposed.

Predicated Static Single-Assignment Form for
ILP

Jeanne Ferrante (with Lori Carter, Beth Simon, Brad Calder

and Larry Carter)

Uuniversity of California at San Diego, USA

In the quest for faster processors, new architectures that can issue multiple

instructions per cycle have been developed. The EPIC (Explicitly Parallel

Instruction Computing) architecture is an example of such a design with a

special feature called Predicated Execution. Predicated Execution helps the

compiler meet the challenge of ønding instructions that can be executed si-

multaneously. However, code that has been predicated presents challenges to

performing traditional compiler optimizations. In this work, we present the

Predicated Static Single-Assignment form (PSSA) to aid in the analysis and

19

optimization of predicated code. PSSA is an extension of traditional Static

Single-Assignment form, which has been used as the basis for more eŒcient

and powerful optimizations on previous architectures. We show that PSSA

can be used in conjunction with speculation and control height reduction to

enable instructions to be issued at their true data dependence height, as-

suming a machine with unlimited resources. We are currently implementing

these algorithms in the Trimaran system.

Computation in the Context of
Transport-Triggered Architectures

Henk Corporaal

Delft University of Technology, The Netherlands

Billions of embedded systems are sold annually. Processors for these systems

often have speciøc requirements like low cost, high performance and low

power consumption. Oœ-the-shelf processors can not always fuløl these re-

quirements simultaneously. Using a templated processor architecture, which

can be tuned for a certain application (domain) oœers a solution. This paper

highlights such a templated architecture, called transport-triggered architec-

ture (TTA). This architecture combines extreme Æexibility, modularity and

scalability, while being simple (and therefore easy to generate automatically)

and oœering good acost-performance ratio. The TTA resembles a VLIW (very

long instruction word) architecture, but its programming model is completely

diœerent. Instead of specifying the operations to be performed by the func-

tion units, TTA programs explicitly specify the transports between function

units, and the transports of data from/to the register øles. The operations

occur as a side eœect of these transports.

Giving the compiler control about all the internal data transports, opens a

number of new types of (transport-level) optimizations. These optimizations

are exploited by our compiler. They result in a register traŒc reduction

of at least 50%. As a result the number of register ports can be reduced

substantially. Furthermore, the connectivity between function units (needed

for bypassing results) can be reduced with up to 80%, depending on the type

of application. This has been reported in earlier papers.

20

After an introduction to TTAs and their characteristics, two important top-

ics are discussed in this talk. First, a new scheduling method, exploiting the

available ILP (instruction-level parallelism) and the TTA-speciøc optimiza-

tions, is described. The new aspect of this scheduling method is its integrated

register allocation. We will compare results from this method with both early

register allocation (i.e., before scheduling) and late register allocation. It will

be shown that integrated allocation is superior when registers are scarce or,

equivalently, when applications show a high register pressure.

Second, we discuss how to tune the architecture for a certain application (do-

main). A framework has been developed allowing a quantitative search of the

design space, and giving the so-called Pareto points in the cost-performance

space. This framework assumes a given set of function units, supporting a

certain set of, usually, basic RISC-like operations. Although the framework

supports more complex operations as well, the designer has to decide which

complex operations to include. To support this decision, a tool has been

designed which can detect arbitrary patterns in any data dependence graph.

There is no restriction on the number of inputs and outputs of the patterns,

and patterns do not have to be tree-shaped (as is the case for many other

pattern detectors). It will be shown that by adding about 20% extra op-

erations, which are simple combinations of two basic operations, the total

number of operations can be reduced by 40% for a large set of applications.

Array-Tailored Analyses vs. MFP Analysis

Jean-François Collard

University of Versailles, France

In this presentation, I describe two analyses that are tailored for arrays. The

goal of the former is to derive statically the probability that two references

access the same memory location. Based on this probability, the compiler

may decide to move a load speculatively above a possibly aliasing store. In

this work, support for speculative loads is provided by HP PlayDoh.

The latter analysis derives reaching deønitions on array elements. In addi-

tion, the analysis is able to pinpoint precisely which instance of which write

reference actually deønes the value. This analysis is contrasted with MFP

analyses and with analyses based on integer linear programming.

21

An Automata-Theoretic Approach to
Dependence Analysis

Jens Knoop (with Javier Esparza)

University of Dortmund, Germany

In this talk, we present an automata-theoretic approach to the interprocedu-

ral variant of the reaching deønitions problem, a speciøc kind of dependence

analysis. Fundamental for this approach are recent results on abstract reach-

ability problems in inønite state systems, in particular, pushdown systems.

We demonstrate that these results, which have been discovered in the course

of extending the automata-theoretic approach to model checking from ø-

nite state systems to inønite state systems, have immediate applications in

interprocedural data Æow analysis, in particular, reaching deønitions analy-

sis. Modelling the structural behaviour of an interprocedural program by an

appropriate pushdown system, the reaching deønitions problem boils down

to a reachability problem on pushdown systems. We demonstrate that this

approach can be extended uniformly to a setting with procedures and pa-

rallel threads, which improves on previous related approaches. Even though

the research in this øeld is at its very beginning, e.g., the extension to sub-

scripted variables is a matter of future research, this exemplarily highlights

an immediate beneøt of applying automata techniques.

Simultaneous Speculation Scheduling

Andreas Unger (with Theo Ungerer and Eberhard Zehendner)

University of Jena, Germany

In this talk, we introduce Simultaneous Speculation Scheduling (S 3) ˘ a com-

bined compiler and architecture technique that enables speculative execution

of more than one program path if the program does not contain enough par-

allelism to utilize the processing potentials of a multithreaded processor.

22

The S 3 technique can be used to treat control dependences as well as data

dependences, in particular loop-carried data dependences. Speculation is

controlled by the compiler. Therefore, the compiler inserts instructions for

thread-handling into the program, organizes the data exchange among the

threads, avoids incorrect calculations by performing a static register renam-

ing, and generates instructions to test for the correctness of the alternative or

the parallel execution threads. The generated threads are directly mapped

on the hardware threads of a multithreaded processor. The S
3 technique

can target any multithreaded architecture that achieves a fast thread inter-

action. Our methodology aims in particular at simultaneous multithreaded,

nanothreaded, and microthreaded processors. We discuss the architectural

characteristics of SMT processors that are essential for the S 3 technique,

and the instructions that are assumed to be implemented for thread han-

dling. We compare Simultaneous Speculation Scheduling to other static as

well as dynamic speculation techniques.

Three Associative Approaches to Automatic
Parallelization

Ronald Moore (with Frank Henritzi, Bernd Klauer and Klaus

Waldschmidt)

University of Frankfurt, Germany

The essence of the automatic parallelization problem is ønding a mapping

of computation and data onto parallel components. This talk reviews three

architectures which use associative hardware to support run-time distribu-

tion schemes. The associative hardware routes messages between distributed

objects, independently of the momentary locations of those objects. This

supports dynamic distribution even under volatile run time conditions. The

presence of associative routing has important implications for the relationship

between compiler and architecture.

The ørst of the three architectures, called ADARC (Associative DataÆow

ARChitecture), introduced an Associative Crossbar Network (ACN). Certain

limitations inherent in this architecture placed novel requirements on the

run-time scheduler. Despite these limitations, empirical results for certain

applications were encouraging.

23

The lessons learned from ADARC have inspired two successor architectures,

one focused on the uniprocessor world, and one designed for multiprocessors.

The uniprocessor architecture investigates whether ADARC-like associative

routing can be used to increase the eŒciency while decreasing the complexity

of superscalar architectures. The multiprocessor architecture uses a hybrid

approach where static program partitioning is combined with an adaptive

run-time distribution protocol. This protocol extends COMAs’ (Cache-Only

Memory Architectures) ability to distribute data dynamically to allow addi-

tionally a similarly transparent, adaptive distribution of computation.

Code Generation for Automatic Parallelization
in the Polyhedral Model

Fabien Quilleré(with Sanjay Rajopadhye)

IRISA, France

Automatic parallelization in the polyhedral model is based on aŒne transfor-

mations from an original computation domain (iteration space) to a target

space time domain, often with a diœerent transformation for each variable.

Although an often ignored step child of this process, code generation has a

signiøcant impact on the quality of the ønal result. It involves a trade-oœ

between code size and control simpliøcation/optimization. Previous methods

are based on loop splitting, but have non-optimal behaviour in the presence

of parametrized programs. Moreover, the only methods to date which handle

equalities do so in a very naïve manner, and the trade-oœ involves heuris-

tics. We present a general parametrized method for code generation and also

discuss the trade-oœ between code size and control overhead. Our method,

which is based on dual representations of polyhedra, uses a simple recursion

on the dimensions of the domains. It is constructive and, therefore, allows

precise trade-oœs.

24

Optimizing Expression Evaluation for ILP

Fabien Coelho

CRI-ENSMP, France

This presentation focuses on the use of algebraic properties, such as com-

mutativity and associativity, applied to mathematical expressions computed

within programs so as to enhance their performance. These transformations

can have a signiøcant impact on performance, up to a factor of 3, because the

number of operations is changed (e.g., by factorization) and a more balanced

expression tree can give more opportunities to use parallel functional units.

As the problem is highly combinatorial, and the resolution criterion must be

change from one hardware target to another, two parametric greedy heuris-

tics are presented to factorize expressions and to detect special instructions

such as combined multiply-add. Then, other opportunities for optimizing

code with algebraic transformations, so as to improve invariant code motion

or common expression elimination, are presented. In particular, trade-oœ and

interaction between these transformations are discussed.

Software Pipelining with Iteration Preselection

David Gregg

Technical University of Vienna, Austria

The software pipelining of loops containing multiple paths is a very diŒcult

problem with no general solution. The approach which seems most likely to

feasibly achieve a close to optimal schedule is to pipeline by moving opera-

tions across the loop entry. Several algorithms use this approach with good

results.

The main problem is to decide which operations to move across the loop head

and how many times. Existing algorithms use a greedy approach based on

25

acyclic scheduling. Greedy algorithms may move operations too much creat-

ing unnecessary code growth and register pressure, while wasting execution

resources.

We break software pipelining into a two-stage process. In the ørst stage,

we decide which operations should be moved across the loop entry based on

inter- and intra-iteration dependences. In the second stage, we schedule the

resulting loop with an acyclic algorithm. Separating the two problems allows

us to pipeline less greedily, while using a stronger acyclic algorithm.

26

3 List of Participants

27

