Dagstuhl Seminar
on

High Level Parallel Programming:
Applicability, Analysis and Performance

Organized by

Murray Cole (University of Edinburgh)
Sergei Gorlatch (Universitat Passau)
Jan Prins (University of North Carolina)
David Skillicorn (Queen’s University at Kingston)

Schloff Dagstuhl 26. — 30.4.1999

Contents
1 Preface

2 Abstracts

Meeting the Real World Half Way
Murray Cole

Combining Template-based Task Parallelism and HPF Data Parallelism
Salvatore Orlando

P3L, FAN and Transformations
Susanna Pelagatti

High-Level Programming for Parallel Cellular Computation
Domenico Talia

SEND-RECV Considered Harmful: a New Way

To Structure and Optimize Parallelism?

Sergei Gorlatch
Using Explicit Metadata to Separate the

Performance Issues in Adaptive Applications

Paul H. J. Kelly e

Virtual BSP: Parallel Processing
on Transient Processors
Boleslaw Szymanski

SCL: Flexible library support for data-parallel languages
Gabriele Keller

Costing Parallel Programs - What Next?
C. Barry Jay

The Algebraic Path Problem Revisited
Sanjay Rajopadhye

The Network of Tasks Model
David B. Skillicorn

Abstract Parallel Machines for the Polytope Model
Nils Ellmenreich e

The Parallel Functional Language Eden
Ulrike Klusik, Rita Loogen, Steffen Priebe

BSP Cost Analysis of Skeletal Programs
Yasushi Hayashi and Murray Cole

High level BSP programming
Gaetan Hains

Parallelizing Compilation of Higher-Order Functional Programs using Skele-
tons - A Compiler for HDC
Christoph A. Herrmann and Christian Lengaver

Evaluation Strategies for Parallel Haskell
Kevin Hammond

Parallel Functional Programs Translated into Java
Ralf Ebner e

The Stampede Cluster Programming System for Interactive Multimedia Ap-
plications
Rishiyur S. Nikhil

Programming Shared-Memory Multiprocessors
Using the Cilk Multithreaded Language
Charles E. Leiserson 0 it

A Practical Solution to Programming Parallel Computers
Lawrence Snyder

The parallel programming language ForkLight
Christoph Kessler

A Coordination Language for Mixed Task and Data Parallel Programs
Thomas Rauber and Gudula Ringer

Irregular Computation in Fortran -or- Does Fortran Count as a High-Level
Programming Model?
Jan Prins

Is Nested Data Parallelism Portable?
Manuel M. T. Chakravarty

Diffusion: Calculating Efficient Parallel Programs
Zhengiang Hu, Masato Takeichi and Hideya Iwasaks

Compilation of a Specialized Language for Massively Parallel Computers
Julien Mallet

EPOS: Paving the Path for Parallel Applications
Antonio Augusto Froehlich and Wolfgang Schroeder-Preikschat

Scheduling of Data Parallel Modules
Thomas Rauber and Gudula Ringer

Piecewise Execution of Nested Parallel Programs
Wolf Pfannenstiel

3 List of Participants

ii

1 Preface

It is generally acknowledged that programming parallel computers effectively and cor-
rectly is a conceptually challenging task for all but the simplest of applications. Conse-
quently, there is widespread research interest in models and methodologies which can
assist the process. In order to provide some degree of durability, such approaches must
abstract from the detailed characteristics of specific systems, while remaining efficiently
implementable by those systems.

The previous Dagstuhl Seminar 9708 brought together a spectrum of researchers with
interests related to the “higher order” aspects of this area, ranging from those with
theoretical interests in program development to practical systems builders. The present
seminar has aimed to focus more closely on the developments in two of the areas which
emerged at the original workshop as being on the critical path to progress to include ap-
proaches which are more generally “high level” rather than specifically “higher order”.
By “high level” we mean going beyond the simple extension of sequential languages
with communications or shared data primitives, to models and languages in which the
expression of conceptual structure is encouraged and supported.

Most interest in parallel programming is motivated by the quest for dramatically im-
proved performance in processing large applications. To gain credibility with that
community, we must be able to show that our methods are competitive. The quantifi-
cation of performance is simplified by the computational structure inherent in the high
level approach. This applies equally to attempts to predict performance on the basis of
static program analysis and a small number of architecture specific parameters (more
commonly know as ”cost-modeling”) and to the benchmarking and post-hoc analysis
of the behaviour of implemented systems.

Similarly, we must be able to demonstrate convincingly that high level parallelism
enhances the applicability of the underlying technology by simplifying the expression
of real programs for real problems (rather than the sanitized and simplified examples
appropriate to the early stages of research). Paradoxically, our target audience must
also be convinced that there is no loss of expressiveness when dealing with those parallel
programming sub-tasks in which there is no well behaved structure to capture.

In summary the following questions and the many subordinate issues they raise were
addressed during the seminar:

e How well can high-level parallel programming methods match the performance
of more machine specific approaches?

e What do (and should) we mean by performance in this context?

e Can such systems be effectively cost-modelled, and if so, would this be an attrac-
tive feature to practitioners?

e Can we support such models with other conceptual tools in ways which enhance
their attractiveness?

e Can the tension between the use of abstraction and the requirement for detailed
ad-hoc control in certain problems be satisfactorily resolved?

In order to ensure that contributions remain focused on cost and applicability, and to
provide some common ground on which debate can be conducted, we circulated the
participants well in advance with two realistic problems to act as case studies: (1)
the Frequent Sets Problem in data mining, and (2) the Barnes-Hut algorithm for the
N-Body problem, Both problems are important in practice but have not been treated
well to date because of methodological limitations. Lively and deep discussions on both
problems, in particular about such evaluation criteria as succinctness, correctness and
clarity, as well as performance, contributed a lot to the success of the seminar:

e The Frequent Sets Problem is one of the basic building blocks of many data
mining algorithms. Suppose that an organization has recorded the set of objects
purchased by each customer on each visit. The goal of the frequent set problem
is to find those (smaller) subsets of objects that appear in more than a given
fraction of the sets. This information can be used to, for example, place objects
that are often purchased together near each other on the shelf. The algorithm is
also applicable in scientific domains, for example to find the ‘interesting ** parts
of complex simulations.

Given a set M (all of the possible objects that can be sold) and a bag N of
subsets of M (each element of the bag records the subset of objects purchased
by one customer in one visit), find all subsets of M that appear in more than a
fraction x of the elements of N.

The problem is trivial in the sense that there is an obvious algorithm. However,
the size of the data concerned is so large that it becomes critical to do as little
work as possible. Clever algorithms are necessary.

There have been two main approaches. The first depends on the observation that
a set can only be frequent if all of its subsets are frequent. This reduces the num-
ber of sets whose frequencies need to be checked. A summary of this approach can
be found at http://www.cs.helsinki.fi/ htoivone/pubs/toivonen.ps.gz in
Toivonen’s thesis. The other tries to use the vast mathematical literature on lat-
tices to improve the search. An example is the work of Zaki at Rochester:
http://www.cs.rochester.edu/trs/system-trs.html

The frequent set problem fits well with calculational approaches in the sense that
it is straightforward to write down a solution, but harder to transform it to an
efficient solution.

This problem was presented to Dagstuhl participants in advance of the workshop.
During the workshop, two attacks on the problem were made. Zhenjiang Hu was
able to derive a much-improved version of a functional implementation. Its per-
formance was compared to a direct implementation by Christoph Herrmann. On
some small synthetic datasets, performance improvements of an order of magni-
tude were demonstrated. Second, Charles Leiserson pointed out that an approx-
imate algorithm due to P. Gibbons and J. Matias for computing distributions in
datasets might be applicable to the problem. Discussion along this line took place
during the meeting, although no substantial progress was achieved (the approach
has since been extended and shown to work well, however).

e The N-Body Problem: given a self-gravitating system consisting of n distinct
particles characterized by their mass, initial position, and velocity, the problem
is to compute the force on each particle that is induced by the other particles.

A direct force calculation would require the computation of O(n2) interactions,
a large amount of work for particle systems encountered in practice. There exist
a variety of methods that compute approximations to the exact solution with
reasonable accuracy and with an improved asymptotic complexity.

The Barnes-Hut hierarchical force-calculation algorithm exploits the fact that, at
a distance, the combined potential of a group of particles can be approximated
by the potential of the center of mass of that group. The algorithm makes use of
a hierarchical quad-tree (or oct-tree in 3D) decomposition of the space containing
the particles, and associates with each region its center of mass. After the tree
is built, the force calculation traverses the tree top down for each particle to
accumulate the total force on the particle. Subregions are explored only if the
region’s center of mass is not sufficiently far away from the particle to be used as
an approximation.

The treeForce computation for each particle is independent and can be com-
puted in parallel. Moreover, the recursive force-computations in the tree traver-
sal are independent and can be computed in parallel. The parallelism specified
in treeForce is dynamic since the available parallelism increases with the depth
of the recursion. It is irregular because the degree of parallelism specified and
the locality of the interactions depends on the distribution of the particles.

This problem has been suggested for consideration in Dagstuhl because the al-
gorithm can be succinctly expressed in a high-level notation, yet an efficient im-
plementation is challenging. Furthermore, some comparative performance data
is available for low-level implementations.

In order to encourage critical comment on our ideas, we invited a small number of
open-minded participants who are prominent in the use of currently dominant parallel
programming technologies (such as MPI, HPF and multi-threading). Their pragmatic
perspective on our proposals was illuminating.

The 33 participants of the workshop came from 8 countries: 12 from Germany,
6 from the USA, 5 from the UK, 3 from each France, Italy and Japan, and
1 from each Australia and Canada. The organizers would like to thank everyone who
has helped to make this workshop a success.

Murray Cole Sergei Gorlatch Jan Prins David Skillicorn

2 Abstracts

Meeting the Real World Half Way

Murray Cole
University of Edinburgh, UK

Higher order skeletal parallel programming has been studied for at least ten years but a
breakthrough into the mainstream remains elusive. We speculate that our community
must be prepared to "meet the real world half way”, by embedding our concepts in
frameworks which are familiar to everyday parallel programmers. Two possible avenues
are suggested.

"Frame” represents an attempt to define an imperative, block-structured skeletal lan-
guage in which the skeletons have the status of conventional control constructs and in
which ad-hoc parallelism may be introduced at the leaves of the computation.

The ”patterns” concept has attracted increasing popularity in the Software Engineering
world. Its central concern (of abstraction and sharing of ”good solutions” appears re-
lated to our own interests. We consider whether "patterns” may offer a bridge between
our communities.

Combining Template-based Task Parallelism and
HPF Data Parallelism

Salvatore Orlando
University of Venice, Italy

We present COLTypr, a run—time support specifically designed for the coordination of
concurrent and communicating HPF tasks. The version of COLTypr iimplemented on
top of MPI requires only small changes to the run—time support of the HPF compiler
used. There exists a more portable version of COLTypr, built on top of PVM, which
also permits HPF tasks to be dynamically created. Although the COLTypr API can be
used directly by programmers to write applications as a flat collection of interacting
data-parallel tasks, we believe that it can be used more productively through a compiler
of a simple high-level coordination language which facilitates programmers in structur-
ing a set of data-parallel HPF tasks according to common forms of task-parallelism.
We outline design and implementation issues, and discuss the main differences from
other approaches to exploiting task parallelism in the HPF framework. We show how
COLTypr can be used to implement common forms of parallelism, e.g. pipeline and
processor farms, and we present experimental results regarding a sample application.
The experiments were conducted on an SGI/Cray T3E using Adaptor, a public domain
HPF compiler.

P3L, FAN and Transformations

Susanna Pelagatti
University of Pisa, Italy

Structured parallel programming allows to construct applications by composing skele-
tons, i.e. recurring patterns of task and data parallelism. First academic and commer-
cial experiences with skeleton based systems has demonstrated both the benefits of the
approach and also the lack of a special methodology for systematic algorithm design
in this framework.

In this talk, I discuss the features of P3L, a skeleton-based system developed at the
university of Pisa and its industrial version SKIECL. SKIECL comes with a skeleton
integrated environment (SKIE) currently under development by QSW Ltd. Then, I
discuss a first step towards a methodology for systematic and sound software devel-
opment in skeleton system systems by describing a general transformation framework
named FAN (Functional Abstract Notation) which is to be integrated within the sys-
tems discussed before. The framework includes a new notation for expressing parallel
algorithms, a set of semantic preserving transformation rules and analytical estimates
of rules’ impact on the program performance (joint work with Sergei Gorlatch from
the University of Passau).

High-Level Programming for Parallel Cellular
Computation

Domenico Talia
ISI-CNR, Ttaly

Cellular automata provide an abstract parallel computation model that can be effi-
ciently used for modeling and simulation of complex phenomena and systems. This
talk discusses the use of cellular automata programming languages and tools for the
parallel implementation of real-life high-performance applications. Parallel cellular
languages based on the cellular automata model are a significant example of restricted-
computation programming that can be used to model parallel computation in a large
number of application areas such as biology, physics, geophysics, chemistry, economics,
artificial life, and engineering. The design and implementation of parallel languages
based on cellular automata provide efficient high-level tools for the development of
scalable algorithms and applications.

As a practical example, we discuss the design of parallel cellular programs by a language
called CARPET), introducing the main features of this language specifically designed
for the development of high-performance cellular algorithms. Furthermore, CARPET
programs performance on parallel MIMD architectures are presented.

SEND-RECYV Considered Harmful: a New Way
To Structure and Optimize Parallelism?

Sergei Gorlatch

Universitat Passau, Germany

The current difficulties in the programming for parallel and distributed systems are
mainly due to the low level of the language constructs employed. In particular, the
communication libraries like MPI and PVM are often compared with Assembler-like
languages of the 60’s, and their use is mainly explained by the high performance.

We argue that the way out of this crises of parallelism could be similar to the ”struc-
tured programming” approach taken previously in the sequential setting. Similar to
famous Dijkstra’s motto ”GOTO considered harmful”, we propose to consider individ-
ual SEND and RECEIVE primitives harmful for parallel programs. Structured parallel
programming should try and avoid using pairwise communications, and rely mostly on
the collective communication primitives like broadcast, reduce, scan, etc. We demon-
strate that many important applications can be efficiently implemented in such kind
of parallel language.

The main advantage of the new way of programming, which we call collective par-
allelism, is its formally-based, easy-to-use design methodology. We provide a set of
composition rules for programming with collective operations, and report some exper-
imental results with collective parallelism on modern parallel machines.

Using Explicit Metadata to Separate the
Performance Issues in Adaptive Applications

Paul H. J. Kelly
Imperial College, UK and University of California, San Diego, USA

Adaptive applications explicitly modify their structure in response to the evolution of
the computation, and/or of the computational environment. The key issue in building
tools to support adaptivity is the design of metadata. This talk concerns the role of
metadata both for data structures and to represent the iteration space of the compu-
tation itself. Three examples are considered: a run-time self-optimising parallel matrix
library, a library for block-irregular adaptive mesh applications with explicit metadata
manipulation, and, as an example of an application with semi-structured irregularity
both in data and in its iteration space, the Barnes-Hut n-body algorithm. This anal-
ysis leads to a focus for future research on tools which allow adaptive software to be
built from pre-existing components, with very rich opportunities for adaptive, run-time
restructuring.

Virtual BSP: Parallel Processing
on Transient Processors

Boleslaw Szymanski
Rensselaer Polytechnic Institute, USA

Low cost, high speed and wide availability of workstations combined with improving
bandwidth and latency of the interconnecting networks make Networks of Workstations
(NOWSs) an increasingly popular environment for parallel processing. A large number
of workstations in a NOW are idle at any given time and their unused cycles can be
used to perform additional parallel computations. A particular workstation is available
for the additional computation only when it is not being used by its owner. However,
a parallel program whose component processes synchronize during execution, stops
making any progress if even a single participating workstation becomes unavailable.
Parallel computations in such an environment must therefore adapt to the changing
computing environment to deliver acceptable performance.

In this paper we describe an extension of the Oxford Bulk Synchronous Parallel Library
to enable the BSP user to harvest idle cycles in a network of non-dedicated worksta-
tions for frequently synchronizing parallel computations. The extended library, called
the Adaptive BSP (A-BSP for short) Library employs, transparently to the user, eager
replication of data and lazy replication of computations and process migration to con-
tinuously map a set of BSP processes to currently available workstations. We describe
results of applying the A-BSP Library to two large computational problems.

SCL: Flexible library support for data-parallel
languages

Gabriele Keller
University of Tsukuba, Japan

Many high-level, data-parallel languages are collection oriented. That is, parallelism
can be expressed by applying a fixed set of possibly higher-order operations to a des-
ignated aggregate data-structure. The SCL library is designed to facilitate the im-
plementation of such languages by providing run-time support for parallel irregular
data-structures, load-balancing, and communication operations. It differs from exist-
ing libraries as it offers no monolithic parallel computations on the data-structures, as
such an approach often hinders important optimisations. Instead, it provides the com-
munication operations as building blocks, which, combined with optimised sequential
code, make up the parallel computations. The number of functions whose implemen-
tation is machine-dependent is kept intentionally small to obtain portability.

Costing Parallel Programs - What Next?

C. Barry Jay
University of Technology at Sydney, Australia

A realistic cost model for parallel programs will allow programs to be customized to
minimize costs under changing circumstances. The most pressing circumstance has
been the wide variety of hardware and architectures available, so that portability to
new platforms has been the key goal. Models such as BSP have been successful at
exploiting a small set of hardware parameters, such as latency. However, the costings
could be refined by other performance factors which are required for better accuracy.

The most important of these is knowledge of the size and shape of the data structures
which are in play. Even in the sequential case, one can find specialist libraries of
algorithms intended to match the data structures to machine properties, e.g. number
of registers. The same issues arise in the parallel setting, but magnified. Such shape
information may be obvious for the inputs, but composition of programs, or divide-and-
conquer techniques, will quickly obscure the structure. The potential of this approach
is shown by the FISh language. It supports static analysis of shapes which are then
available for use in costing. Fach program f: X — — > Y has a shape #f : X— > Y
which maps the shape of the input to that of the output.

The impact of registers, and other parameters such as cache size, etc. on performance
shows that the hardware model should be customized for each individual platform,
to take account of those parameters deemed important by the manufacturers and/or
implementers of the language primitives. This can be done by using a computational
monad to represent costs as a function of shapes and hardware parameters. Each
machine would support its own monad, using its own hardware parameters, but the
costing of composite programs would be performed in a standard way. More precisely,
each program f as above will have a cost given by costf : X— > (H— > C) %Y, which
will take the shape of the input and produce a pair, consisting of the cost function
(from hardware parameters to costs, say, time) and the shape of the result. The latter
can be used in costing the next step of the computation, and the costs added pointwise.

The Algebraic Path Problem Revisited

Sanjay Rajopadhye
IRISA, France

We derive an efficient linear SIMD architecture for the algebraic path problem. For
a graph with n nodes, our array has n processors, each with 3n memory cells, and
computes the result in 3n? — 2n steps. Our array is ideally suited for VLSI, since the
controls is simple and the memory can be implemented as FIFOs. 1/0 is straightfor-
ward, since the array is linear. It can be trivially adapted to run in multiple passes, and
moreover, this version improves the work efficiency. For any constant «, the running
time on 2 processors is no more than (a + 2)n°. The work is no more than (1 + é)né’
and can be made as close to n? as desired by increasing a.

The Network of Tasks Model
David B. Skillicorn

Queen’s University at Kingston, Canada

A parallel programming model requires good properties with respect to both soft-
ware development (clean semantics, transformation system, cost model) and execution
(reasonable efficiency). Several such models are known, for example skeleton-based
languages such as P3L, and less-structured alternatives such as BSP. These models
have a common property: their operations are machine-filling and their composition is
simple sequential composition.

The resulting structure seems too limiting for the whole range of possible high-performance
applications. It is interesting to see how much composition can be generalized while
still preserving, among other things, a compositional cost model. This is the goal of
the Network of Tasks Model.

Programs in the NOT model are acyclic networks of nodes (except for a single loop
construct) joined by directed edges representing communication. Nodes may be written
in any combination of parallel programming languages provided only that (a) a cost
expression parameterized in the number of processors is provided, and (b) the node
may be adapted to use fewer processors. Under these conditions, a technique called
work-based allocation schedules the graph so that each layer completes at roughly the
same time and the total work of the nodes is preserved by the implementation (which
makes costs transparent).

The simple semantics of NOT graphs makes it possible to define a refinement calculus
derivation methodology for them. In particular, it is straightforward to handle residuals
on graphs, which is of particular importance when software reuse is a concern.

The primary difference between the NOT model and other task graph approaches of
the same general kind (e.g. COLT, Skie, 2L) is their granularity. NOT programs are
intended to have quite large nodes and to preserve no state between them; whereas
these other models have nodes that are like those of conventional skeleton languages.

Abstract Parallel Machines for the Polytope Model
Nils Ellmenreich

Universitat Passau, Germany

Since scientific algorithms are often easily expressible in a functional language and
they are often used for huge problem sizes, we propose an approach to statically par-
allelize this class of algorithms. The method, polyhedral parallelization, was adapted
to the functional setting. For the code generation, we chose a tree of Abstract Parallel
Machines (APMs), each being specified in the non-strict functional language Haskell.
Each node in the tree represents a design decision, probably leading to different APMs.
Program transformation ports code from one APM to the next. In future work, APM
code will be translated down to native parallel code.

The Parallel Functional Language Eden

Ulrike Klusik, Rita Loogen, Steffen Priebe
University of Marburg, Germany

Eden is a Haskell-based functional language which provides process abstractions and in-
stantiations for the explicit definition of dynamically evolving process networks. Treat-
ing parallelism explicitly with declarative features promises runtime advantages in com-
parison to more conventional approaches to parallel functional programming, where
annotations are used to indicate implicit parallelism and a process notion is only im-
plicit. Eden process systems are distributed, there exists no shared memory or global
address space. Processes communicate via head-strict communication channels.

Eden has been implemented by modifying the Glasgow Haskell compiler. The runtime
system is based on the GUM system, the runtime system of Glasgow parallel Haskell,
but incorporates substantial changes and extensions. A simple case study with the
bitonic merge sort algorithm shows that the pulsating process system produced by the
divide and conquer version of this algorithm can easily be replaced by a stable process
system in which the data pulsates. Measurements with the Eden system show runtime
benefits for the stable process tree.

BSP Cost Analysis of Skeletal Programs

Yasushi Hayashi and Murray Cole
University of Edinburgh, UK

The skeletal approach to parallel programming advocates the use of program con-
structors, or “skeletons”, which abstract useful patterns of parallel computation and
interaction. This is held to ease the burden on the programmer, who is freed to think
in terms of these higher-level strategies while being absolved of responsibility for their
detailed implementation. When embedded in a purely functional language opportuni-
ties naturally arise for program development in the transformational style in which an
initial obviously correct version is refined by a sequence of meaning-preserving rewrites
into a more efficient, but semantically equivalent form.

The program transformation process has long been recognised as a suitable target
for automated support. The bulk of work has focused on the fundamental question
of the semantic soundness of each step, with responsibility for choosing steps and
for judging their effect on performance left to the programmer’s intuition. Support
for cost-prediction is hampered by its intractability in the general case. In response,
C.B. Jay et al. defined a cost calculus for a simple shapely functional language Vec,
targeting the PRAM and its cost model as the underlying parallel machine. we are
developing a similar framework but choose the more realistic BSP model as the target
architecture. This requires us to account for communication costs which are ignored
by the PRAM. These costs impact upon the implementation choices made by the
(hypothetical) Vec to BSP compiler and consequently upon the structure of the cost
calculus which reflects them. The talk outlines the issues which must be addressed, and
describes the implementation mechanism and the new cost calculus itself. An example
of its application is presented.

10

High level BSP programming

Gaetan Hains
Universite d’Orleans, France

We argue against the use of concurrent semantics in MPI4C programs for implementing
parallel algorithms. A language design called BSML (Bulk Synchronous ML) is outlined
and formalised by the BS-lambda theory. A library implementation of BSML shows the
agreement of timings with the BSP model: in most cases to within 50often to within
10defined with barrier fusion semantics. It is shown that BS-lambda extended with
this operation is non-confluent. Network-recursive definitions and nested parallelism
therefore appear difficult to include in the pure-functional part of this framework.

Parallelizing Compilation of Higher-Order
Functional Programs using Skeletons - A Compiler
for HDC

Christoph A. Herrmann and Christian Lengauer

Universitat Passau, Germany

We present a compiler for the functional language HDC, which aims at the generation
of efficient code from high-level programs. HDC, which is syntactically a subset of
the widely used language Haskell, facilitates the clean integration of skeletons with a
predefined efficient parallel implementation into a functional program. Skeletons are
higher-order functions which represent program schemata that can be specialized by
providing customizing functions as parameters. The only restriction on customizing
functions is their type; they can be composed of skeletons again. With HDC, we
focus on the divide-and-conquer paradigm, which has a high potential for efficient
parallelization.

The most important skeletons we use are explained. We describe the compiler phases,
especially the higher-order elimination as the most important phase, on a simple exam-
ple. Then, the generic implementation of skeletons is presented on the example of map,
for three different parallel models. We discuss the example of polynomial product us-
ing Karatsuba’s schema. Our experimental results are the basis of a comparison of the
sequential code for this example with the code generated by the Glasgow Haskell com-
piler ghc-4.01. We concluded with an example program for the Frequent Set problem,
which illustrates the large variety of possible skeleton usages.

11

Evaluation Strategies for Parallel Haskell

Kevin Hammond
University of St. Andrews, UK

This talk introduces evaluation strategies, higher-order functions that can be used to
separate algorithmic from behavioural code.

An evaluation strategy has type: type Strategy a = a -> (), and is defined to
have some effect on the argument of type ”a”, through shared graph. Basic strategies
are used to control sequential evaluation degree, so that for example the "rnf” strategy
will cause reduction of an expression to full normal form. Since evaluation strategies
are completely normal functions, they can be naturally composed, nested, returned as
program results, passed to other functions etc.

An evaluation strategy can be applied with the "using” function, which separates the
two components of the program.

using :: a -> Strategy a -> a
x ‘using‘ s = s x ‘seq‘ x

For example,

parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap strat f xs = map f xs ‘using‘ parList strat

The algorithm is "map f xs”, the behaviour is ”parList strat”, where ”strat” parame-
terises "parMap”. So parMap rnf reduces all the results of the map in parallel to full
normal form. parMap (parList rnf) would create two levels of nested parallelism
etc.

Evaluation capture many common programming paradigms, including divide-and-conquer,
pipelining, bounded buffers, and SPMD. They act as a dual to the skeleton approach:
skeletons are parameterised on control, whereas strategies parameterise the algorithm.
Efficient skeletons could be used to implement particular strategies, or strategies could
be used to specify the semantics of particular skeletons.

Evaluation strategies have been used successfully in a number of large parallel Haskell
programs, including the 47000 line Lolita natural language processor, and reasonable
speedups have been obtained. This talk shows how they can be applied to the Dagstuhl
n-body challenge application.

We are now looking at ways to extend strategies to new settings such as Java, and to
apply new ideas such as shape, cost models or type-based reasoning.

12

Parallel Functional Programs Translated into Java

Ralf Ebner
TU Miinchen, Germany

The functional coordinating language FASAN was designed for distributed numerical
applications that are based on recursive algorithms with hierarchical data structures.
The execution model of a FASAN program is a dynamic data flow graph. It avoids
unnecessary synchronization and ensures data locality as well as direct communication
channels between function calls using the concept of "data wrappers”.

A first C- and PVM-based implementation of FASAN was successful w.r.t. execu-
tion time and speedup. But the resulting programs were difficult to debug since the
programmer was faced with the internals of the data flow runtime system.

The actual implementation does not construct the data flow graph explicitly but rather
uses features of Java to simulate its behavior. For this purpose, it maps parallel
function calls to threads and distributed function calls to remote method invocations
(RMI). Elements of data structures and result parameters of functions get stored in
wrappers subclassing Java’s ”UnicastRemoteObjects”. The wrappers serve as global
references, as keys in object caches improving data locality, and as monitors that delay
synchronization until actual calls to selector functions occur.

Implementations of the Barnes-Hut algorithm and of the adaptive recursive substruc-
turing method for finite element simulations have demonstrated the usability of the
new FASAN system, but still suffer from poor performance of RMI, which hopefully
will be improved according to recommendations of the Java Grande Forum Report.

The Stampede Cluster Programming System for
Interactive Multimedia Applications

Rishiyur S. Nikhil
Compaq Cambridge Research Laboratory, USA

Stampede is a C-based parallel programming system with: (1) high-level support for
writing applications involving streams and dynamic parallelism, and (2) ability to run
transparently on an SMP or a cluster of SMPs. We describe an example intelligent
computer vision application, Stampede’s implementation, and performance.

13

Programming Shared-Memory Multiprocessors
Using the Cilk Multithreaded Language

Charles E. Leiserson
MIT, USA

Cilk is a language being developed in the MIT Laboratory for Computer Science with
the goal of making parallel programming easy. Cilk minimally extends the C program-
ming language to allow interactions among computational threads to be specified in
a simple and high-level fashion. Cilk’s provably efficient runtime system dynamically
maps a user’s program onto available physical resources using a “work-stealing” sched-
uler, freeing the programmer from concerns of communication protocols and load bal-
ancing. In addition, Cilk provides an abstract performance model that a programmer
can use to predict the multiprocessor performance of his application from its execution
on a single processor. Not only do Cilk programs scale up to run efficiently on multiple
processors, but unlike existing parallel-programming environments, such as MPI and
HPF, Cilk programs “scale down”: the efficiency of a Cilk program on one processor
rivals that of a comparable C program.

In this talk, I provide a brief tutorial on the Cilk language. I explain how to program
multithreaded applications in Cilk and how to analyze their performance. I illustrate
some of the ideas behind Cilk using the example of MIT’s championship computer-chess
programs, *Socrates and Cilkchess. T also briefly sketch how the software technology
underlying Cilk works.

See http://supertech.lcs.mit.edu/cilk for more background on Cilk and to down-
load the Cilk-5.2 manual and software release.

A Practical Solution to Programming Parallel
Computers

Lawrence Snyder
University of Washington, Seattle, USA

To program parallel computers well, i.e. so applications realize high performance across
all parallel platforms, it is essential to be able to compare alternate solutions to sub-
computations. This implies there must be a faithfully implemented performance model
available to programmers with which to make the comparisons.

ZPL, an implemented and freely available data parallel array language, is a witness
to the feasibility of this idea. The performance model presented by ZPL is known
as the what-you-see-is-what-you-get model. The approach is described with running
examples of ZPL code.

14

The parallel programming language ForkLight

Christoph Kessler

Universitat Trier, Germany

ForkLight is an imperative, task-parallel programming language for massively parallel
shared memory machines. It is based on ANSI C, follows the SPMD model of paral-
lel program execution, provides a sequentially consistent shared memory, and supports
dynamically nested parallelism. While no assumptions are made on uniformity of mem-
ory access time or instruction-level synchronicity of the underlying hardware, ForkLight
offers a simple but powerful mechanism for coordination of parallel processes in the
tradition and notation of PRAM algorithms: Beyond its asynchronous default execu-
tion mode, ForkLight offers a mode for control-synchronous execution that relates the
program’s block structure to parallel control flow. This directly maps to parallel divide-
and-conquer implementations. We give an overview of the implementation of ForkLight
by a source-to- source compiler. The run-time system uses a very small target machine
interface consisting of only seven core routines for shared memory access and process
management, that are currently implemented using P4. We also report implementation
results for the N-body problem. We observe very good scalability on the SB-PRAM
even for very small problem sizes. Finally we briefly introduce some key features of the
BSP language NestStep, namely nesting of supersteps and a BSP-compliant virtual
shared memory implementation.

A Coordination Language for Mixed Task and Data
Parallel Programs

Thomas Rauber and Gudula Riinger

Universitat Halle and Universitat Leipzig, Germany

We present a coordination model to derive efficient implementations using mixed task
and data parallelism. The model provides a specification language in which the pro-
grammer defines the available degree of parallelism and a coordination language in
which the programmer determines how the potential parallelism is exploited for a spe-
cific implementation. Specification programs depend only on the algorithm whereas
coordination programs may be different for different target machines in order to obtain
the best performance. The transformation of a specification program into a coordi-
nation program is performed in well-defined steps where each step selects a specific
implementation detail. Therefore, the transformation can be automated, thus guaran-
teeing a correct target program. A cost model is used to ensure that the transformations
result in an efficient program. We demonstrate the usefulness of the model by applying
it to solution methods for differential equations. We show that for different parallel
machines, different execution schemes lead to the most efficient parallel program.

15

Irregular Computation in Fortran -or- Does Fortran
Count as a High-Level Programming Model?

Jan Prins
University of North Carolina, Chapel Hill, USA

Computations over non-uniform and/or recursive data structures such as nested se-
quences and variable-depth trees can be found at the heart of many efficient algorithms.
However, irregular computations such as these pose complex performance challenges
as the source of parallelism and reference patterns are not known a priori.

We are exploring the efficient implementation of such algorithms on various shared-
memory multiprocessors. Our approach is to express irregular computations in fully
parallel form using the data abstraction and parallel loop facilities found in modern
Fortran dialects (Fortran 90 or Fortran 95), and to transform the parallel loops to
optimize the performance for particular target processors. The transformations are (1)
loop serialization, (2) loop scheduling via OpenMP directives, (3) loop range splitting
and (4) flattening of nested parallel loops. We use Fortran because (1) it is widely
used as a performance-oriented programming language and consequently tends to have
high quality compilers and implementations, and (2) the language is closed under the
transformations used, in particular Fortran supports the primitives introduced in the
flattening transformation.

In this talk the implementation of the Barnes-Hut n-body algorithm on an SGI Ori-
gin 2000 is described. Using all four transformations above we were able to improve
single-processor performance of the tree-force calculation by a factor of 6 and obtain
a superlinear speedup (due to cache effects) on parallel runs up to 16 processors. The
performance appears to match or exceed that reported in the literature, although this
is a difficult claim to make since the B-H algorithm has many parameters affecting
performance, most of which are unreported in the literature.

Is Nested Data Parallelism Portable?

Manuel M. T. Chakravarty
University of Tsukuba, Japan

Research on the high-performance implementation of nested data parallelism has, over
time, covered a wide range of architectures. Both scalar and vector processors as
well as shared-memory and distributed memory machines were targeted. The Nepal
Compilation System integrates this technology, in an attempt to provide a portable
parallel programming system. Essential are two program transformations, flattening
and calculational fusion, which even out irregular parallelism and increase locality of
reference, respectively. The resulting program is mapped to C plus calls to a portable,
light-weight collective-communication library. First experiments on scalar, vector, and
distributed-memory machines support the feasibility of the approach.

16

Diffusion: Calculating Efficient Parallel Programs

Zhenjiang Hu, Masato Takeichi and Hideya Iwasaki
University of Tokyo, Japan

Parallel primitives (skeletons) intend to encourage programmers to build a parallel
program from ready-made components for which efficient implementations are known
to exist, making the parallelization process easier. However, programmers often suffer
from the difficulty to choose a combination of proper parallel primitives so as to con-
struct efficient parallel programs. To overcome this difficulty, we shall propose a new
transformation, called diffusion, which can efficiently decompose a recursive definition
into several functions such that each function can be described by some parallel primi-
tive. This allows programmers to describe algorithms in a more natural recursive form.
We demonstrate our idea with several interesting examples. Our diffusion transforma-
tion should be significant not only in development of new parallel algorithms, but also
in construction of parallelizing compilers.

Compilation of a Specialized Language for
Massively Parallel Computers

Julien Mallet

Irisa/Inria, Rennes, France

We propose a specialized language based on program skeletons encapsulating data and
control flow for which an accurate cost analysis of the parallel implementation exists.
The compilation process deals with the automatic choice of the data distributions on the
processors through the accurate cost guaranteed by the source language. This allows
to obtain an automatic compilation with an efficient parallel code (the distributions
representing a global choice of parallel implementation).

The compilation process is described as a series of program transformations, each
transformation mapping one intermediate skeleton-based language into another. The
target language is an SPMD-like skeleton-based language straightforwardly translating
into a sequential language with calls to communication library routines. The main
compilation steps are : the size analysis, the in-place updating transformation, the
explicitation of the communications and the data distributions choice.

The approach can be seen as a cross-fertilization between techniques developed within
the FORTRAN parallelization and skeleton communities.

17

EPOS: Paving the Path for Parallel Applications

Antonio Augusto Froehlich and Wolfgang Schroeder-Preikschat
GMD-FIRST and Universitat Magdeburg, Germany

Every time more applications demand performance levels that can only be achieved
by parallelization. In order to properly support them, new operating systems and
tools are to be conceived. Our experiences developing runtime support systems for
parallel applications convinced us that adjectives such as ”generic” and ”all purpose”
do not fit together with ”high performance”, whereas different parallel applications have
quite different requirements regarding the operating system. Even apparently flexible
designs, like micro-kernel based operating systems, may imply in waste of resources
that, otherwise, could be used by applications.

The promotion of configurability has been properly addressed by the PURE operating
system. PURE is designed as a collection of configurable classes that can be seen as
building blocks to assemble application-oriented operating systems. Approaches like
this, although doing much for performance, reusability and maintainability, usually are
not enough to support application programmers, since the number and the complexity
of available building blocks grows quickly with the system evolution. In such a context,
selecting and configuring the proper building blocks becomes a nightmare and yields
a gap between that what the operating system offers and that what the applications
expect.

EPOS aims to deliver, whenever possible automatically, a customized runtime support
system for each parallel application. In order to achieve this, EPOS introduces three
main concepts: 1 - adaptable, scenario independent system abstractions that result
from composing PURE building blocks into application-ready abstractions. These
abstractions are designed to be as much independent from the execution scenario as
possible. 2 - Scenario adapters that adapt existing system abstractions to a given
execution scenario, for instance, by making an existing thread abstraction ready to
run in a SMP configuration. 3 - Inflated interfaces that export the system abstraction
repository by gathering several different implementations of each system abstraction
in a single, well-known interface.

An application designed and implemented following the guidelines behind these con-
cepts can be submitted to a tool that will proceed syntactical and data flow analysis to
extract an operating system blueprint. This blueprint is then refined by dependency
analysis against information about the execution scenario acquired from the user via
visual tools; and then submitted to another tool that will generate the application-
oriented operating system. With this approach, EPOS shall diminish the gap that
usually separates operating systems from parallel applications.

18

Scheduling of Data Parallel Modules

Thomas Rauber and Gudula Riinger

Universitat Halle and Universitat Leipzig, Germany

Algorithms from scientific computing often exhibit a two-level parallelism based on
potential task and data parallelism. We consider the parallel implementation of those
algorithms on distributed memory machines. The efficient parallel implementation
depends on several design decisions including the execution order of the tasks and
the building of subgroups of processors for a group parallel execution. This gives rise
to a multiprocessor task scheduling problem. The task structure is described in a
directed acyclic graph where the nodes represent data parallel modules and the edges
represent data dependencies mainly caused by multidimensional data structures. After
a normalization step, phases of independent modules are scheduled one after another.
We propose two algorithms: a greedy algorithms which first decides on the execution
order of tasks and then on the group sizes and a dynamic programming approach which
determines a module execution plan in one step.

Piecewise Execution of Nested Parallel Programs

Wolf Pfannenstiel

Technische Universitat Berlin, Germany

Flattening nested parallel programs can lead to high memory requirements of the trans-
formed programs because all the parallelism is exposed at once. Piecewise execution
is a special kind of serialisation that computes only vector pieces of constant size at a
time. This reduces memory requirements but comes at the price of a runtime overhead
for managing the computation across the pieces and more complicated implementation.
However, piecewise execution can be combined with other optimisation techniques like
fusion and tupling transformations. It can be applied to memory-critical parts of a
program (e.g. matching pairs of generators and accumulators) such that other parts
are not affected. This property holds for a “formal specification” of program transfor-
mations as well as for the multi-threaded execution model that is proposed here. First
experiments on a small example program show that piecewise execution and fusion
techniques mix well and lead to the best measured running times on a Cray T3E.

19

3 List of Participants

20

