Dagstuhl-Seminar 99241

Requirements Capture, Documentation, and Validation

June, 13-18 1999

E. Borger, B. Horger, D.L. Parnas, H.D. Rombach

Table of Contents

SUMIMBIY ..ttt e et e s b e e e b e e e s e e e nn e e e sn e e e snne e e snne e e nnnneennnneas 3

Abstracts of Talksin Order of APPEAranCe.........cccuviiieiieirie e 4
Using SCR Method to Capture, Document, and Verify ComputeSystem
REQUITEIMIENTS ...ttt ettt e e e e et et r e e e e e bb e e e e e e eeennnes 4
Practical FOrmMaliSIMSiiiiiiii e e et e e et e e e re e e e erenas 6

An Industrial Experience: Software Quality Models for Quality Requirements at
DaiMIErCRIYSIEr AGot e e e eeeeanaes 6

Using Formal Methods in UML to Verify Requirement Properties on Specifications .7

Lessons Learnt in Transferring Formal Requirements Validation Techniques to

0 U1 PP PP PPPPPT 7
Application of Ignorance to Find Errors in the Case Staly Requirements
Sy o= Tod o U1 o o 7
Managing Inconsistent Specifications: Reasoning, Analysand Action....................... 9
Lightweight Validation of Natural Language Requiremenss..............cccovvvviviiinneeeeeennns 10
Eliciting Requirements from Scenarios the CREWS-SAVRBENayc..ccceveeeeeene. 10
Analysis of SCR Specifications Using Decision Procedures...........ccccoovevvvvvnneveennnnnn. 11
Surfacing Ambiguity in Natural Language Requirementsoooovvvvviviiiinneeeeeennnnns 12
Design for Test — Ensuring that Specifications Guaranteg€estability........................ 12
Anchoring the Requirements Process on Vocabulary.........cccccoovevvvieiieeeiiinieeennnnnnn. 13
Approach to Support the Implementation of RequirementsChanges 14
Pattern-based Requirements Capture Applied: The SFB01 Case Study 15
Requirements Capture, Documentation, and Validation usig TRIO 16
A Method for Systematic Requirements Elicitation: Application to the Light Control
S S M. ettt ——————— et a e e e e 16
Execution of Abstract State Machines (ASMs) for thé.ight Control System............ 17
Software Requirements Specification of the Light Cotmol Systemccccevveennn. 17
Classification of Dagstuhl ContribULIONS..........cccuviiiriieerie e 19
WOIrKing Group REPOITS......ccueiiiieiieeiie ettt 22
Integrating Process, Tools, and Formal Methodsco.eiiiiiiiiieiiiiiieceee e, 22
The Light Control System Case StUAYceummenereeriiieeeiiinieeeeiiseeereiin e eeaniaaees 26
The Richness of the Requirements Engineering ProCess.............ccoevvvvviiiiineeeeeeenns 28

Summary

The goal of the workshop, namely to bring together softwengineering researchers
from academia and software engineers from industryngpace the state of industrial
practice and academic research for capturing, documemithgvalidating software
requirements, has been reached.

After two days of short introductory presentations (see abstracts below), with
ample time for critical discussion, we had two daysta@nsive discussion in working
groups.

The three themes

* Integrating Process, Tools and Formal Methods (modeCatonie Heitmeyer),

* Requirement Engineering Process, Evolution of Requingsnand Traceability
(moderator Barbara Paech),

* The Light Control Case Study (moderator E. Borger)

were selected by the participants on Tuesday evening, thésredtained were
presented to all participants during the closing sessionidayFmorning. Reports by
the moderators of the working groups can be found below.

The focus of the presentations and discussion was@intlustrial strength of the
used methods and on their relevance for the productiarge software.

To make sure that the discussion was suitably con¢reteyorkshop made extensive
use of a case study that could be discussed in detail. eddmaple, taken from the
area of building automation, was a light control systeA more detailed discussion
of this system can be found below.

We thank Erik Kamsties, Antje von Knethen, and Barlddaach for their help in
preparing the seminar and for maintaining the web pagehécase study. Thanks
also to the Dagstuhl team for creating the pleasantsgtineoe for our work.

Egon Bérger (Universita di Pisa)

David Parnas (McMaster University, CDN)
Barbel Horger (DaimlerChrysler, Ulm)

Dieter Rombach (Universitaet Kaiserslautern)

Abstracts of Talks in Order of Appearance

Using SCR Method to Capture, Document, and Verify Compuer
System Requirement’

Constance Heitmeyer Naval Research Laboratory (Cas), Washington, DC
20375 USA, heitmeyer@itd.nrl.navy.mil

Since 1993, our group at NRL has been developing a seftefse tools [5, 3, 1] for

specifying and analyzing computer system requirements usin@@he (Software

Cost Reduction) method, a tabular method introducedeinAti project [6, 7]. The

tools include a specification editor for creating a reguegnts specification; an
automated consistency checker to detect missing casesntgavnondeterminism,
and other application-independent errors [5]; a simulat@ytnbolically execute the
specification to ensure that it captures the usersiirfd]; and a model checker to
detect violations of critical application properties 8], Recently, groups at NASA
and Rockwell Aviation as well as our group at NRL havedute SCR method to
detect serious errors in requirements specificatiopsaztical systems [2, 9, 3, 8].

This talk discusses the SCR approach to specifying requitemthin the context of
the Parnas-Madey Four Variable Model (FVM) [10]. Firsgescription is given of
how our method and tools can be used to specify NAT and, REQ relations
defined on the environmental quantities - i.e., the mordtarel controlled quantities-
of the FVM. The relation NAT describes the constsaiimposed on the monitored
and controlled quantities by physical laws and the systevironment. The relation
REQ describes the additional constraints on the cdedrgjuantities that the system
must enforce.

Next, an approach is sketched for capturing the requiredvimehafter the system

designers have selected the system’s 1/O devices. Bhensyvill use these devices to
sample the values of the monitored quantities and tdhseetdlues of the controlled
guantities. We propose to divide the software into thredufes: the input module,

the output module, and the device-independent module. Pl imodule uses the
values read from input devices to compute estimates of trmetored quantities,

while the output module writes the values computed by thesyfor the controlled

variables to the output devices. Both the input module ancdutigut module are

examples of device-dependent modules. The third moduledetiee-independent

module, uses the estimates of the monitored quantitiekiped by the input module
to compute the values of the controlled quantities. Tiyimed behavior of the

device-independent module is described by the relation RB®.SCR method and
tools can be used to specify, verify, and validate tpatiand output modules in the
same manner as they are currently used to specify, veify, validate the two

relations, NAT and REQ.

! This research is supported by the Office of Naval Research.

Finally, examples are presented which illustrate the &@proach to requirements
specification. These examples are taken from the nmdbrdescription of the light
control system used in the case study. To illustratethewsCR method can be used
to specify the input module, we show how sensor data carsdx to estimate the
value of a given monitored quantity, the quantity whichaatds whether a given
room is occupied.

Our approach is motivated by a new project in which we bellusing the SCR
requirements method and tools to help build a helicopdgrer for the U.S. Navy. To
begin, we will develop an SCR-style requirements sptin of the trainer using
our current method and tools to specify the monitored anttadied quantities and
the relations NAT and REQ. An important goal of thejgxbis to do hardware-in-
the-loop simulation. To achieve hardware-in-the-loopugation, our plans are to
extend the existing toolset, including the current simula@arrently, our simulator
uses the specification to compute the values that aignadsto controlled quantities
as the monitored quantities change. Thus, it implemdmsdevice-independent
module described above. We plan to extend the simuiatoead actual sensor data
and to write the computed values of the controlled quastitieactual actuators. To
do so, the current toolset will be extended to supportgéeifcation of the input and
output modules described above.

References

1. R. Bharadwaj and C. Heitmeyer. Model checking completquirements
specifications using abstraction. Automated Software En§(1), January 1999.

2. S. Easterbrook and J. Callahan. Formal methods foricatidn and validation of
partial specifications: A case study. Journal of Systand Software, 1997.

3. C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. BEigwaj. Using
abstraction and model checking to detect safety violationsequirements
specifications. IEEE Trans. on Softw. Eng., 24(11), Nowwmil998.

4. C. Heitmeyer, J. Kirby, Jr., and B. Labaw. Tools farnial specification,
verification, and validation of requirements. In Prd@th Annual Conf. on
Computer Assurance (COMPASS 97), Gaithersburg, MD, June 1997.

5. C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Awdbed consistency
checking of requirements specifications. ACM Trans. Spftware Eng. and
Methodology, 5(3):231-261, April-June 1996.

6. K. Heninger, D. Parnas, J. Shore, and J. Kallander. 8ddtvequirements for the
A-TE aircraft. Technical Report 3876, Naval Research Mbash., DC, 1978.

7. Kathryn L. Heninger. Specifying software requirements fomglex systems:
New techniques and their application. IEEE Trans. SoEwg., SE-6(1):2-13,
January 1980.

8. J. Kirby, Jr., M. Archer, and C. Heitmeyer. Applying faihmethods to an
information security device: A case study. In Procmfyon Protecting NATO
Information Systems in the 21st Century, Wash. DC, td999.

9. S. P. Miller. Specifying the mode logic of a flight guidarsystem in CoRE and
SCR. In Proc. 2nd ACM Workshop on Formal Methods in @af¢ Practice
(FMSP98), 1998.

10.David L. Parnas and Jan Madey. Functional documentatiocofoputer systems.
Science of Computer Programming, 25(1):41-61, October 1995.

Practical Formalisms

Jo Atlee, Department of Computer Science, University cdtéNoo, Waterloo,
ON N2L 3G1, Canada

Several studies have shown that requirements are wfiemown, misunderstood, or
miscommunicated. Our objective is a specification noathat

* has a precise semantics (preferably one that allowsmai¢d checking and
analysis),

* can be read and reviewed by both domain experts and sefpn@essionals, and

* encourages the requirements writer to consider conmgiesq(i.e., to consider how
the system should respond to every input)

"Practical Formalisms" (a term coined by David Hareljne close to meeting these
objectives. Practical formalisms are specificatiomtations that have a formal,
mathematical model; this ensures that a specificatiagtiew in the notation has a
single interpretation. They encourage the use of atigin and separation of
concerns to simplify and decompose a specification ateet of functions and
relations, each of which is smaller, simpler, andega® consider than the original
problem. Also, they have diagrammatic constructs ,(¢éafples and/or graphs) for
expressing the individual functions and relations in asy-¢aread and checkable
format. Example practical formalisms include SCR, Co8fatecharts, and RSML.

These notations and their semantics are still evolvimgfact, when we specified in
SCR a portion of the Dagstuhl Light Control System, aegnized the need for new
notation-supported abstractions:

» Parameterization - so that the behaviour for rooms efsfme type can be
specified once

* Inheritance - so that the behaviour common to all rogped could be specified
once, and behaviours that vary according to room typedcbel specified as
extensions to the common behaviour.

An Industrial Experience: Software Quality Models for Quality
Requirements at DaimlerChrysler AG

Kurt Schneider, Stefanie Lindstaedt, Thomas Beil.
DaimlerChrysler Research Center Ulm

Quality requirements are widely neglected in induss@tware projects — and they
are often ignored by research. As a consequence, queityrements do not get as
much attention in contracts and in acceptance proceddBuésince software quality
is at stake, we need a systematic way to treat, taackadvocat quality requirements.
With our quality model approach, we break down abstract tgugbals (e.g.,
"efficiency, reliability, usability”) to questions and fiha to testable criteria. This
approach serves several requirements demands. We usedaibow managers,
developers, and testers to negotiate and gain a commorstamiing. However, each

quality goal calls for large amounts of specific knowledgée tackle with this
growing demand mainly by an approach of systematicaltyileg from experiences.

Using Formal Methods in UML to Verify Requirement Properties on
Specifications

Hugues Martin, GEMPLUS, France
hugues.martin@gemplus.com

Requirements need to be understandable by all the stakehaddl the software
development process. At the same time, they need isfysaroperties such as
consistency and unambiguity. UML, using graphical representadiod natural
language, provides a clear notation usable by all the stileeboto write
understandable specifications. However, UML is a semnm&l language which does
not support automatic verification techniques on the mo@sis. possibility would be
to integrate formal methods such as B or SDL in UMLefht would become
possible to apply verification techniques on some parteemodel, and to preserve
the readability of the specifications. This integratiseeds to take into account the
maintainability of the UML model and the formal modehdato facilitate the
reusability of components by clearly identify interfacbstween the different
representations.

Lessons Learnt in Transferring Formal Requirements Validation
Techniques to Industry

Steve Easterbrook, University of Toronto
sme@ocs.toronto.edu

This talk summarizes experience from a number of fomethods case studies over
the last four years at NASA. The case studies ake&onthe independent verification
and validation for safety critical systems. In eaake; formal methods were applied
in a lightweight way to improve clarity, automate dstency checking, to animate
the requirements and validate the behavior specified. ddstlused include Spin,
SCR and PVS. The main lessons are that these metredsffective at finding
important errors that are not typically found using exgstimspection-based
approaches. However, the existing methods are weak lgziamgachange and dealing
with refinements of specifications. The talk will adiscuss a number of technology
transfer issues such as what types of expertise adedhde apply these methods,
where to apply them, and how to measure the benefits.

Application of Ignorance to Find Errors in the Case $udy
Requirements Specification

Daniel M. Berry, Technion and University of Waterloo
dberry@csg.uwaterloo.ca

Comment: The following text is not an abstract but an email that was sent to all
participants of the Dagstuhl seminar.

My planned contribution to the Dagstuhl Seminar was to aigplyrance (as per my
“Importance of Ignorance in Requirements Engineepinghelp identify problems in
the informal specification that must be resolved be@mreomplete and consistent
specification can be written. That is, | read the rimfal specification of the light
control system as someone who knows very little abaah systems and had lots and
lots of questions borne of this ignorance. | attachedelguestions as notes to the
PDF document containing the informal specification.

My original plan was and still is to present these qaastiat the seminar to see if
they cause anyone to notice problems in his or her owmilmatmvn to the seminar.

Now that | have completed my contribution early, Iugbt that it might be useful to

distribute it to participants before the meeting so thay might use it in preparing
their contributions. However, | will want back fromefe participants data on how
helpful my questions were to their efforts. You sk@am trying to get some case
studies of the effectiveness of ignorance in finding dedling with problems in

requirements. It is recognized that not all problems foumdairequirements

specification are errors; some may be intentionaksimns, design freedoms, etc.

We can imagine several reasons why a workshop participgyit have overlooked
an issue that | raised in my comments and questions:

1. The issue is not relevant to the part of the case sisely by the participant.

2. The issue was not a problem to the participant; thahésparticipant understood
the specifications intent and acted upon it.

3. The participant never intended to follow the specifigatio

| use the general term “issue’ for any of these isdhas may be found, regardless of
its classification.

The deal under which | will give you this document and i&CHN version is the
following. You are required to have already done at least draft of your own
contribution to the workshop. If you agree to keep trackhef number, severity,
effect, cause, and classification of issues found in geur contribution as a result of
reading my ignorant notes, then you can have my documérgn you are finished,
please send me a message showing me a list of dleagsues that you found as a
result of your use of my comments and questions. ThisHisuld give for each issue
its severity, its effect, its cause, and its classifon. Please also include any
comments you might have on the experience of applyinggnorant questions.

If you are interested, please contact me at dberry@catgtioo.ca .
See

%A D.M. Berry
%T The Importance of Ignorance in Requirements Engimger

%J Journal of Systems and Software
%V 28

%N 2

%P 179-184

%D February, 1995

for more details about ignorance.
Enjoy!
Dan

PS: Here is a description of the PDF file that you meiteive if you agree to the terms
above.

This PDF document contains the original case study techMhhave attached notes
representing my ignorant questions. For those who ddnan# access to an Acrobat
Reader or who prefer to use ASCII text, there isxtutd version of the specification

with the notes added. The original text is marked ">'hatlieginning of their lines

and the notes are marked differently.

The blue notes contain corrections to the English. $iomas, the act of changing the

English in a particular way disambiguates an ambiguitydisambiguates it in a way

not intended by the specifier. In the ASCII versidese notes are marked "#" at the
beginning of their lines.

The red notes contain questions that occurred to m&vas teading the specification.

Some earlier questions are superseded by later questimmme @iestions end up

being answered later; however, then | believe thaspeeification should have been
written in a way that it answers the question atptlhee the question came up. In the
ASCII version, these questions have no mark at thenbeg of their lines.

Managing Inconsistent Specifications: Reasoning, Analysis and
Action

Bashar Nuseibeh, Department of Computing, Imperial College,
London SW7 2BZ, UK
ban@doc.ic.ac.uk

In practice, inconsistency is inevitable in all realg&scale specifications. Living
with inconsistency during evolutionary development is a dddife. Therefore, there
is a need to develop formally sound techniques and prattiold that ‘tolerate’
inconsistency by allowing continued reasoning and action e pglesence of
inconsistency. Specifically, we propose some technidoesnalyzing inconsistent
specifications, for analyzing the impact of different @lepment actions on
specifications - whether these actions handle speaifignisistencies or initiate some
evolutionary change, and for providing automated guidance andrsdppacting in
the presence of inconsistency.

Lightweight Validation of Natural Language Requirements

Vincenzo Gervasi, Universita’di Pisa, Pisa — Italy
Bashar Nuseibeh, Imperial College, London - UK

We report on our experiences of using lightweight formathmds for the partial
validation of natural language requirement documents. Téwgseriences support our
position that it is feasible and useful to perform auteshanalysis of requirements
expressed in natural language.

While it was not our aim to validate any particular speation, we did identify
several errors in the NASA requirements for the $tnes Monitoring System on the
International Space Station, that we used as a case. stuthpendent review by
NASA also uncovered most (but not all) of the samersrro

We describe the techniques we used, the errors we foundeffext on the lessons
learned.

Eliciting Requirements from Scenarios the CREWS-SAVRENay

Neil Maiden, City University, London

This presentation will present an overview of the CRESWYRE approach to
eliciting and validating system requirements with scesaaiod use cases. Scenarios
can be effective for eliciting requirements from stalders. Scenarios offer visions
of future system behaviour which can be simple to commigieaplore and quick to
change in response to feedback. They are "middle-lebskractions, less formal and
complete than system specifications, but more broguicable to explore normal
and abnormal situations.

So why are scenarios not a software development "diwket"? One reason is that
there are few systematic processes to follow. Devetoparely know how many
scenarios to produce, what the content and structutesé scenarios should be, and
how they should use the scenarios elicit requirementa fisers. As a result, most
software developers currently use scenarios in an adrweoptimal way. | shall
present simple-to-use processes, methods and softwaee tto@enerate and use
scenarios more systematically, and hence effectively.

The CREWS-SAVRE method and software tool has been ajgs@las part of the
ESPRIT Vs 21903 'CREWS' project as a response to industrial requirements
engineering needs. Features of CREWS-SAVRE include: a language for specifying
use cases, automeatic generation of scenarios from use cases; automatic generation of
scenario alternative courses; guided scenarios walkthroughs; patterns for automatic
scenario-requirement cross-checking; compatibility with Rational Software's
commercial RequisitePro requirements management software tool; integration with
CREWS-ECRITOIRE, which takes a structured, natural language use case, checks it
for completeness, then parses it to produce a use case specification in CREWS-
SAVRE.

10

Analysis of SCR Specifications Using Decision Procedures

Ramesh Bharadwaj, Naval Research Laboratory, WashinDt©r20375-5320
ramesh@itd.nrl.navy.mil

In recent years, model checking has emerged as a remad{tddtive technique for
the automated analysis of descriptions of hardware sgstmd communication
protocols. To analyze software system descriptionsehier, a direct application of
model checking rarely succeeds, since these descriptides bave huge (often
infinite) state spaces which are not amenable to the{state algorithms of model
checking. More important, model checking is rarely needeagtrify most properties.
For software, therefore, theorem proving affords an resteng alternative.
Conventional theorem provers, however, are either tnergéor too expensive to use
in a practical setting (in terms of the required leveluser sophistication, human
effort, and system resources). To be more useful astipe, a theorem proving
system should be completely automatic, and requite $itiphistication on the part of
its users. Additionally, in contrast to conventionaddirem provers which provide
little or no diagnostic information when a theorem @ true, an industrial strength
prover should provide counterexamples along the samedse®del checkers.

In this talk | describe Salsa, a tool for the analg$isystem descriptions written in a
language based on the SCR tabular notation called SAt §BR Abstract
Language). Salsas core verification engine is an gisdiility checker (UC) which,
given a logical formula, determines whether it isdal If the formula is not false, UC
provides a counterexample along the lines of model chedd€ serves as the engine
for the Invariance Checker (IC) of Salsa, which mayused to check a SAL
specification for unwanted nondeterminism and missing scaged to verify the
invariance of properties formulated by users. Salsasriaivee Checker handles
specifications that are too large for model checkers &dya®. This is because an
induction proof -- which forms the core of Salsa’s Invace& Checker -- corresponds
roughly to a single pre-image computation, in the chainoofiputations carried out
by a model checker during the generation of the fixed pdiareover, for SCR
specifications, we never ran across a property whosd grquired the computation
of the fixed point -- an induction proof (suitably strengé with automatically
generated invariants) always sufficed.

A Salsa prototype is currently implemented in Standard Me are working on a
Java implementation of Salsa. Planned extensionsalsa $hclude the addition of
decision procedures for the rationals, the congruenseir@daalgorithm for reasoning
about uninterpreted function symbols, and special-purposeidbesuch as for arrays
and lists. We would also like to reason about quantifiéh&e are also working on a
compositional proof system for SAL modules, which wilba& assumption-guarantee
style reasoning.

Acknowledgements: This work is supported by the Office ai/@l Research. The
Salsa prototype was implemented by Steve Sims.

11

Surfacing Ambiguity in Natural Language Requirements

Erik Kamsties, Fraunhofer Institute for Experimentalt®afe Engineering,
Kaiserslautern, Germany
kamsties@iese.fhg.de

Natural language requirements are recognized widely as pletaminconsistent, and
inherently ambiguous. Formal and semi-formal specificatexhniques have been
proposed to overcome these deficiencies. Completemebsc@nsistency of these
specifications can be tackled to some degree mechanmmaltgols. However, as a
recent study shows, ambiguity rarely surfaces during theticreof a specification.

Thus - since specification techniques enforce precisidre résulting specification

becomes unambiguously wrong.

Our work aims at better process supphunting the creation of a specification from
informal requirements in order to surface ambiguityoaposed to simulation or
review of a specification afterwards. The value of approach is that it can be
applied right from the beginning of the specification psscpreventing effort going
in the wrong direction. We have developed fine-grained gsosapport for the SCR
requirements specification technique, however, our apprsaepplicable to other
specification techniques as well. Furthermore, the idda@an8eour approach for
dealing with ambiguity can be extended to a prescriptivectiglietection technique
for natural language requirements documents. A recase study has shown that
inspecting requirements documents for ambiguities is muoche effective and
efficient than inspecting or modeling informal requiremesithout specific support
for ambiguity detection. The reason is that enginaerften not aware of the variety
of possible types of ambiguities.

Our future work aims at extending our approach to otheifgiaion techniques such
as the UML and evaluating it in various settings.

Design for Test — Ensuring that Specifications Guarante@estability

Mike Holcombe, University of Sheffield, UK.

All systems and software will be subject to testingereif there has been substantial
effort in formally verifying the design or implementatiin some way. The operating
environment of most systems is complex and models invgribble to make
unrealistic assumptions in order to provide any basis f@lysis.

If system testing is thus inevitable we should recognise ahihe beginning of the
project.

The theme of this work is trying to identify how testirgnde made more effective
by considering the issue at the requirements definitiogestApart from the usual
clients and users of the completed system there are okéterim components and
deliverables, those involved with quality assurance anthgedtVe need to consider
their needs as well.

12

The approach taken is based on a formal foundation imgphcomputational
modelling. We use a general formalism for describing systiena convenient way,
stream X-machines, and describe the test generationthigoderived from stream
X-machine models. The interesting aspect of this appr@athat it is possible to
prove results about the effectiveness of the t@tisse results are of the form:

if certain conditions relating to the specificatioe aatisfied;

and there is a realistic estimate of the number ohestates the
implementation possesses compared to the specification;

and the implementation is constructed in a partionky from correct
components;

and the implementation passes all the tests

then the implementation is correct (it computes #raesfunction as the
specification)

Clearly the conditions and assumptions are importane €anditions on the
specification, we call them design for test cond#ioare concerned with
controllability and observability. We can always agarior our specification to have
these properties by augmenting it in particular ways.eQhes has been done it is
then possible to carry out testing in a thorough waywhlatletect all faults providing
the other conditions are met.

We consider the case study and develop a systematic an&thacreating an X-
machine model of the system. This relates to a commiorncanodel of the
architecture of the system. This approach to specificatmohtesting is very amenable
to refinement and transformation techniques which enabiesé¢s to be derived in
tandem with specifications thus providing significant savimggerms of the cost of
test set generation.

References

1. F. Ipate & M. Holcombe, Tests which are proved to findfallts. Int. Jour.
Comp. Math. 63, 159-178, 1997

2. F. Ipate & M. Holcombe, A method for refining and testgeneralised machine
specifications. Int. Jour. Comp. Math. 68, 197-219, 1998.

3. K. Bogdanov, M. Holcombe, Automated Test Set Generdtorstatecharts, , to
appear in Proc. FM-Trends 98 (Boppard, Germany), SpringelSLBiies.

4. M. Holcombe F. Ipate, Correct systems - building airmss process solution,
Springer, Applied Computing Series,1998.

Anchoring the Requirements Process on Vocabulary

Julio Cesar Sampaio do Prado Leite
Pontificia Universidade Catolica do Rio de Janeiro, PU&-R
www.inf.puc-rio.br/~julio

Our work in requirements has been using the idea of a esgeits baseline, a
complex set of representations that are in constemitition, as it central framework.
A requirements baseline is a structure which incorporat&sigdons about a desired
software system in a given Universe of Discourses pierennial. Although it is built

13

during the requirements engineering process, it keeps evohanthea software
construction evolves.

Our baseline uses natural language based representatioces, osie of its major
concerns is the communication with clients. Centvahis strategy is the figure of a
lexicon, which anchors the meaning of the terms usetierbaseline. We call this
lexicon, the Language Extended Lexicon.

The Language Extended Lexicon is a metamodel designedpdheetlicitation and
representation of the language used in the macrosystéim. model is centered on
the idea that a circular description of language temmsoves the comprehension of
the environment.

The Language Extended Lexicon is a representation o$ytmols in the problem
domain language. The LEL is anchored on a very simma: idunderstand the
language of the problem, without worrying about understandmgrbblem”. It is a
natural language representation that aims to captusetiabdulary of an application.

The Lexicons main goal is to register signs (words oagés), which are peculiar to
the domain. Each entry in the lexicon has two tygetescription, as opposed to the
usual dictionary which has just one. The first typdledaNotion, is the usual one and
its goal is to describe the denotation of the word empifrase. The second type, called
Behavioral Response, is intended to describe the commotat the word or the
phrase, that is, it provides extra information abouttheext at hand.

We plan to show how the use of our lexicon, on theeCatsidy for the Dagstuhl
Seminar, does help the elicitation task as well as proaige anchor for other
representations of the baseline. We will build a LE&dobon the written information
provided by the case study and will report on the problembave faced to produce
it. On the other hand we plan to show how the vo@alyroduced is an anchor for
other requirements representations, such as scenarioscam@ments sentences. We
will also present the description of the process weus# to produce the lexicon.

Approach to Support the Implementation of Requiremens Changes

Antje von Knethen

AG Software Engineering, Department of Computer Science,
University of Kaiserslautern, Germany
vknethen@informatik.uni-kl.de

Most software systems have a long life time. Thusngks to the system are
unavoidable (e.g., requirements changes). Several a&giVviive to be performed in
the case of a requirements change. For example,ntpact of a change on the
software documentation (i.e., customer requirements |@serequirements, design,
code, etc.) has to be analyzed and the software daotatio® has to be changed in a
consistent way.

Change activities are difficult to perform in practi@cause of two reasons: First, the
relations among the elements of a software documentaire not documented

14

explicitly (i.e., horizontal and vertical traceabjlitare missing). The horizontal
relations among the elements of an artifact are aigle.g., among operations of a
class diagram and of state diagrams). Alike, the véntdations among the elements
of different artifacts are not documented explici{s.g., among requirements in
natural language on customer requirements level and slasse class diagram on
developer requirements level). Second, the artifacts sdftware documentation are
not structured to locate "typical* changes easily (i'gpical* changes are not
encapsulated).

Our approach is to develop a semantic-based model (i.defitze the elements and
relations) for horizontal and vertical traceabilitpn@ng the elements of customer
requirements, developer requirements, and software ddsigthermore, guidelines
are proposed on how to use the model and to structurartifects to encapsulate
"typical” changes.

We started to examine "typical’ changes in a certain dofffuilding automation)
and to develop a classification scheme for these chagesodeled the elements of
customer and developer requirements with UML (Unified MiodeLanguage) and
have investigated the relations among the elements ofbatwdeen the artifacts.
Furthermore, the relations between different typescliinges and the different
artifacts have been analyzed.

In the near future, we plan to look into the relatioesMeen developer requirements
and software design. We will describe the relations gmihe elements of the
artifacts with the help of OCL (Object Constraint Larggja Furthermore, guidelines
will be developed on how to use the defined relations to supmodifferent change
activities and on how to structure artifacts to encapsutgpical” changes.

Pattern-based Requirements Capture Applied: The SFB 501 &3e
Study

R. Gotzhein, M. Kronenburg, C. Peper
SFB 501, University of Kaiserslautern, Germany
email: {gotzhein, kronburg, peper}@informatik.uni-kl.de

The Case Study "Light Control System” of this DagstubimBar "Requirements

Capture / Documentation / Validation" calls for the aggiion of rigorous methods to

the specification, inspection, and testing of requirdmero capture the requirements
of the case study, we have applied the FOReST (FarRmglirement Specification

Technique) approach. This approach serves the following olgecti

» development of a precise description of the systemnements
» customer feedback on a natural language basis

* pattern-based formalisation of requirements

» provision of a starting point for the system developnieain

» traceability w.r.t. the original problem description

We have developed a comprehensive requirement specificatiotme case study
using the FOReST approach, and have applied pattern-bakedltgges to formalize

15

most of the properties. The resulting documentatioaf isubstantial size, and has
proved useful to several groups of developers. Links to tfiereht parts of the
documentation can be found at

http://www-avenhaus.informatik.unikl.de/forest/ EXAMPLES/DAGUHL/
DagstuhlEnglishStart.html

including the original problem description, documentationhef FOReST approach,
various perspectives of the final FOReST specificatibthe case study and related
publications. Postscript- as well as html-versions &eslable, where html-versions
provide online-navigation and traceability support. All documehtive been

produced using FOReST tools.

The final FOREST specification of the case study goesbé&yond the original
problem description. This is the result of extensive bael from the customer based
on intermediate FOReST specifications, and of questiatsarose during the work of
the analysis team. All of these questions have beens$isd with the customer, and
have been resolved.

Requirements Capture, Documentation, and Validation usig TRIO

Angelo Gargantini
Dipartimento di Elettronica e Informazione, Politecnicd/lano - Italy
Angelo.Gargantini@elet.polimi.it

We have applied TRIO to the proposed case study. OumgbiEtwas to specify the
case study and its requirements. TRIO is a first orlaporal logic augmented with
temporal operators which permit to formalize the vabfetemporal dependents
variables at several time instants. TRIO allows peetising requirements (such as
those in the case study), and its temporal operatergeay expressive and have been
suitable to expresss the temporal requirements in e stady. The architecture of
the system has been specified using TRIO object oridatgdres. TRIO allows the
use of classes, inheritance, genericity and other objeenhted constructs and
concepts. It is also endowed with an expressive grappiesentation. Our second
goal has been the validation of parts of the spedibisaby means of history
checking, that takes a possible history of the systeunking whether they are correct
or not.

A Method for Systematic Requirements Elicitation: Applcation to
the Light Control System

Maritta Heisel, University of Magdeburg, Germany
joint work with
Jeanine Souquieres, LORIA, Unviversity of Nancy 2, France

We applied a systematic method for requirements elaitdab the light control case
study. The method consists of several brainstorming sidese the vocabulary is

16

fixed, the requirements are stated in natural language, ements and system
operations are identified. Then, the requirements arendlized, and possible
interactions between them are investigated.

The method is expressed using agendas, a concept to texpbpresent software
development knowledge. An agenda consists of a numbdegs $0 be performed,
and validation conditions that help detect errors eartile development process.

Executing the agenda on the light control case studyaledehat the vocabulary was
not used coherently, that the glossary was partiallgeigaate, that functional and
non-functional requirements were confused, and that egaints were missing,
ambiguous or incoherent.

It turned out that the method was adequate to deal waticake study. We were able
to identify a coherent subset of the given vocabuldoy,resolve some of the
incoherences between requirements and to point out opérems that should be
solved before a realization of the system should bemaken.

The systematic approach helped us faking ignorance, assgpy Dan Berry.

Execution of Abstract State Machines (ASMs) for the Ligt Control
System

Joachim Schmid, Siemens, Munich, Germany

Abstract State Machines have been used to specify thestadbe "Light Control

System". The ASM-approach allows one to specify systamdifferent levels of
abstraction. One can start with a high level descrip{omderstandable by the
customer) and refine it (defining all used functions) to ailddtarersion which is

executable by a tool. It seems that functional programraimdy ASM are a good
combination to achieve this goal.

AsmGofer is an extension of Gofer wich allows onedédine functions and ASM-

rules with the full power of functional programming. Thgstem also supports
building graphical user interfaces, so one can combine(¢kecutable) ASM-

specification with an animation showing information abthe ASM-state. The tool
has also been used for making Boerger/Schulte’s ASMhiorJava Virtual Machine
executable.

Software Requirements Specification of the Light Contol System

EgonBorger, Elvinia Riccobene, Joachim Schmid
Universita’' di Pisa, Pisa— Italy

We propose a rigorous model for the informally given requirements of the light
control system in terms of ASMs (Abstract State Machines).

17

We describe the physical architecture by conditions an slgnature and by
definitions on the auxiliary (mostly static) functioosthe machine. The operational
behavior of the control system is expressed in ternsansitions rules. The resulting
"ground model" can be inspected by the customer to check whepretation of the
(partly ambiguous and incomplete) informal requiremensfiects.

By refinement techniques we obtain from the ground modékaecutable model".

This model can be run by an ASM simulator and is usefuéxecute suitable
scenarios defined as test cases for the requirements.

18

Classification of Dagstuhl Contributions

The participants that have developed or currently develojmé&hods were asked for
a classification of their work. The applied classifion scheme was based on Pamela

Zave's classification of research efforts in requirements engineering (ACM
Computing Surveys, vol.29, no.4, p.315-321, 1997).

14 participants returned the questionnaire. The RE methods developed by these
participants are listed below along with additional comments made on the
guestionnaire form:
* Achatz, Klaus
Process automation techniques (no abstract available)
* Berry, Daniel
Application of Ignorance (see abstract on page 7)
* Borger, Egon
Abstract State Machines (see page 17)
» Bharadwaj, Ramesh and Heitmeyer, Constance
SCR and the Four Variable model (see abstracts on page 4 and 11).
Additional comments. code can be generated from SCR requirements
specifications. The SCR tool can be integrated with PV'S, Spin, SMV, and others.
* Gervasi, Vincenzo
Multiple views on natural language requirements (see page 10)
* Heisal, Maritta
Method for systematic requirements elicitation (see page 16)
¢ Hoffmann, Matthias
Tool-based requirements management of informal requirements by e.g., DOORS,
RequisitePRO, etc. (no abstract available)
Additional comments: the approach allows for defining metrics, ease to find
relevant information, and ease to add project members.
* Holcombe, Mike
X-Machines (see page 12).
Additional comments. The approach allows for proofs of the test effectiveness. A
book “Correct Systems” is available from Springer. Presumption of the approach
isthat a domain analysis has been made.
* von Knethen, Antje
Traceability Approach (see page 14).
Additional comment: the proposed approach addresses also the problem of
support for requirements changes.
» Leite, dulio
Language Extended L exicon (see page 13)
Additional comment: the proposed approach addresses also the problem of change
management.
* Maiden, Neil
CREWS-SAVRE method (see page 10)
Additional comment: the proposed approach helps also to get more complete
requirements.
* Nuseibeh, Bashar
View points and inconsistency management (see page 9)

19

¢ Parnas, David

4-Variable-SCR-Method (no abstract available).

The following table shows the detailed classification of RE methods made by the

participants.

Problems that are solved by a method,
status of the method, and
presumptions of the method

Achatz

Berry

Borger
Bharadwa

Gervas

Heisel

Haoff mann
Holcombe
v.Knethen

| eite

Maiden

Nuseibeh
Parnas

Problems in elicitation and description of
customer requirements

Understanding the context of software

<\
<\

Overcoming communication barriers

Allocating requirements among the system and v*

the environment

SANAN
RSN

<%

Converting vague goal to specific properties of
behavior of the system

ASIENENEN

Understanding priorities

SNERNERNEN

ASEENERENENEN

Making customer requirements measurable

AN

Estimating cost, risk, and schedule

Problems in Specification of System
Requirements

Reconciling and integrating different views

ASAN
ASAN
ASAN

Evaluating different alternatives for the
satisfaction of user requirements

Obtaining complete, consistent, and unambiguows

specification which can serve as basis for desi

Making system requirements measurable

Validating system requirements against customer

requirements

AN

Problems in usage of the system specification
during software development

Identification of defects in the design
specification

Identification of defects in the system code

Enabling traceability of requirements

Developing a design specification

ASAN

ASAN

Deriving test cases

<\

Deriving test oracles

ANENENENENERN
ANENENENENERN

SANAN

NARNANA

Status of the method

Applicable in industry

Supported by tool

ASAN

AN

Applicable in research environments

RSN

Usable by others (e.g., user manual exists)

ANENENAN
ANENENAN
ANENENAN

ANANENAN

ANANENAN

NARNAN

Context of the method

Applicable in every RE process

<\
<\
<\

<\

<\

Dependent on specific methods solving other
problems

TS

20

Remarks:

* Originally, the form was designed for distributibefore the seminar as a means
to facilitate discussionduring the presentation of participants. It turned out that it
is not useful as questionnaire for self-estimation ateds, because most terms
used in the questionnaire allow for various interpretations, e.g., ‘context’.

» Furthermore, a checkmark has a different meaning depending on the participant
answering the questionnaire. It can mean for instance “solved”, “addressed”, or
“enables a solution”. This is because some problems mentioned in the
guestionnaire cannot be solved completely such as “overcoming communication
barriers’.

* We would recommend two approaches for future work on characterizing research
efforts in RE. Either allow for room for discussions on terminology and on self-
estimations (e.g., “can you explain why do you think that your approach solves the
problem of overcoming communication barriers?’) or use a more solution-
oriented schema that can be interpreted in a more uniform way without
discussions (e.g., which types of requirements can be specified: structural,
functional, behavioral requirements).

21

Working Group Reports

Integrating Process, Tools, and Formal Methods

Constance Heitmeyer, Naval Research Laboratory, \Wgisin, DC (with input from
Jo Atlee, Ramesh Bharadwaj, Mats Heimdahl, Mike Holemmalnd David Parnas)

Problem: given anapproach to specifying requirements, including a settodls,

describe grocessfor building arequirements specification.

Framework: Four Variable Model

Approaches Tools

« SCR SCR* Theorem Provers

e ASMs McMaster TTS Model Checkers

« RSML Ontario Hydro Consistency

e X-Machines RSML tools Checkers

« TRIO Tablewise Test Case Generato

e UML? TRIO Hist. Checker Symb. Math. Tools

. ASM tools MATLAB
STATEMATE Simulators
Rational Rose Invariant Generators
B-Tools Code Generators

Slicers/Dep. Graphs
DOORS

Criteria For Evaluating A Requirements Specification

FUNCTIONAL

* any implementation that satisfies the spec will work

- i.e., the implementation is acceptable to the customer

* any implementation that works will satisfy the spec

» “assmpleaspossible but not simpler”

NON-FUNCTIONAL

* easy to understand

e easy to maintain

» organized for finding information quickly

* interpretable (i.e., executable)

» costs less to produce than it is expected to save

* trustable

» provides enough information to design for ease of change

22

rs

ee

0] Om._w_ N

uoleRl O 8yl Aioeds g

sindino
pue Sa|gelfeA Po|[0Juod JO SSIeWISS Usamisq uolkpl palinbal :1NO a
So|gelfeA PaJoliuow JO S9TeWIISe pue sindul usamiag uoired paldinbal NI

<«—| 1noa NId |<&—

zocT
=

o)
"1NO apue NI gAyeds ¢

SaJe)RIul 801A9p 3y} A}10ads ‘si ey L

O +— 1NnoO <4+— O | €¢— NI <+— N

'suoiepJ | NO pue N|ayl Ayoeds T

UONedNadg SjusWalinbay aIeM)jos v BUNINIISU0)) J04559001d

0Jp ‘'sabueyd wasAs Api| ‘Aijice|reAe ‘(Jg LIN) ANjigeled B Inpayds
“1Bbpnq ‘sonseIdeeyd eoIsAyd Jeyio pue yBem “Be ‘seniuenb ps|joiuoo
puUe pa.o1iuow JO SWUB] Ul PaIeIs 8Q 10uUURd eyl Sluawialinbal wesAs Aj10eds 1
LU011200| Pa11109dS 8Y) WoJj 188} OT |} 01 pssu salddns ayy,, “Be -
"salllluenb pajjoau0d 8yl uBUIRIISU0d Aoeinoorio/pue Buluikjioads ‘qg
salnuenb pajoyuow ayl Jo A101sIy ay) Jo suonouny ‘'a°l
SHSSE|2 apesn ‘asIou0d 2ads ay) axew o)
"S9|qelIeA pajjoJuod pue
paJojuowW 8yl Usamiagiolle|al palirdgagliosap ‘a|qeLieA pajjouod yoes 104 eg
‘painseaw aq ued Aayl moy Againiuenb pasonuoay) aquasap pue Ajnuap| ‘g
‘(*018 ‘sanjen Jo abuel
“B'3) painseaw ag ued Aayl moy Agannuenb pajjonucyl aqiosap pue Ajnuap| ‘T

uGmedINadsS Siuallaiinbay WaISAS v BUNONASU0)) 104559001d

4. Specify software requirements that cannot be statesinms of inputs and outputs,
e.g., likely changes to the 1/0 devices.

NAT
M C

| SYSTEM [
M —— /M

N | actuators
: Sensors

ouT

inputs L——» SOFTWARE outputs

- ~
- ~
- -~
- ~
- -~
- -
- ~
- ~
- -~
- -
- -
- ~
- -~
- -~

- -~

-

INPUT M | DEVICE-INDEP. | C OUTPUT
—»| MODULES || SOFTWARE | mobuLes [

Verification And Validation Of The System And Software Requiements

Verify and validate the individual pieces

« REQ
- DN
. D OUT

Verify and validate the end-to-end system behavior
* Are the (estimates of) controlled quantities delivered on time?
. Do the estimates of the controlled quantities satisfy the accuracy requirements?

24

Summary

Given anapproache.g., ASM, SCR, or RSML) argbftware tooldor developing
requirements, we have defined @ocess for constructing a requirements
specification based dParnas’ Four Variable Model.
* The requirements specification consists of two parts
e asystem requirements specification
* asoftware requirements specification
* Theprocessisan idealization of the actual process that may occur in practice
* Thestepsin the process may take place in adifferent order.
* One may use the process to build some parts of the specification first and then
go back and repeat the process to produce other parts.

A Rational Process For Building System And Software Requirements:
How To Fake It!

25

The Light Control System Case Study

The group, consisting of 13 participants all of who imeoway or the other had
worked on the proposed case study before coming to theasemet on Wednesday,
June 16, for three hours in the morning and three hoursenatternoon. The
discussion focussed on clarifying the following questions:

1. What is the content of the work which has been done ubmgarious methods
for the case study?

2. What was the most problematic feature encountered duvengvork on the case
study and which feature of the used method fits the cadyg best?

3. Quantification of effort and benefit of the work on tase study.

A more detailed discussion then centered around questibost the customer
feedback, the traceability, the process model, andtiestpport.

The detailed answers to the questions are largely availaiolegh the abstracts of the
authors who presented a talk to the seminar (see thractbdtefore). We try to give a
short resume here. To this purpose the methods whichbegveused to deal with the
case study are indicated below (in alphabetical ordeggther with mentioning (in
this order) the work which has been done, the documentatihich has been
provided (in number of pages), the time it took to do thekwmr person days). All
participants except one felt that the most problemattufre of the work on the case
study was the impossibility of having a feedback from doener, given the lack of
precision and of consistency of the informal requireisien

Agenda first draft of a specification for offices afterefeedback from the customer,
analysing the interaction between requirements andnfindiissing requirements. 20
pages, 10 days.

Abstract State Machines (ASM) complete abstract specification (ground model
which separates the physical environment from the comtndl is structured for
foreseeable requests for change) and a refined executabiicapien. 20 pages, 8
days, tool: asmgofer simulator.

FOREST: complete (reusable and structured) specification whirtinmzes the gap
between customer and designer, with final feedback frath acceptance by the
customer. 150 pages, 40 days. Tool: editor and documentrdiaatiifferent views.

Ignorance: list of questions before feedback from the customeseming the
definition of a lexicon and offering help for rapid prototygi 7 pages, 2 days.

Language Expanded Lexicon (LEL) partial lexicon (triggering more information
for a satisfactory complete lexicon) and 1 scenarianeéfbefore feedback from the
customer. 25 pages, 4 days. Tools: lexicon editor, sceeditor, crc-card generator
from lexicon and scenarios.

26

Natural language Parsing (NLP) incomplete first draft specification. 15 pages, 1
hour. Tools: text generator, graph representation andstensy checker.

SCR (USA} four-variable-model, designed for ease of change, foffide including
fault tolerance, 5 pages, 3 days. Tool environment.

SCR (CND): specification for 1 office including malfunction and pities. 8 pages,
5 days.

Statemate almost complete executable specification for orfieef10 pages, 3 days.
Tool: Statemate.

TRIO: almost complete executable specification for orfeceaf 20 pages, 5 days.
Tools: model generator and history checker.

X-machines Analysis of requirements with respect to an abstragtlel, series of

refinements including design for test issues (test setrgbon). 18 pages, 5 days.
Tool: test generator.

27

The Richness of the Requirements Engineering Process

Barbara Paech, FhG IESE (with input from Stefanie Lindstaedt, DaimlerChrysler)

The Scope of the RE-Process

The participants of the working group had quite diverse backgroamdisnterests.
Therefore, we started out by creating a common view on the RE-Process. The result
of this effort is captured in the following picture:

e.g. Constraints e.g.
wishes, ideas domain/task difficult or politics
knowledge ex. system impossible to culture
change domain knowledge
resources
Input
to be transformed
through the Output
process to be used by other
systemseng. tasks
RE-Process/ Tasks | ——— —
e. g.
customer spec.
Goals e.g. developer spec. models
for the process or the agreement understandable prototypes risk

output spec. reusable spec. consistent assessm.
spec measurable requ.

repeatable process affordable

process

The RE-process (and each individual task within that ps)dssdriven by inputs,

goals, and constraints and produces some output. The driving forces can be
distinguished into forces on the solution space which are transformed through the
process (inputs, e.g. customer wishes, existing systems), forces on the solution space
which are impossible or difficult to change (constraints, e.g. politics, system type) and
forces on the RE-process and its outputs (goals, e.g. agreement, reusable process,
consistent specification). The domain knowledge, for example, is partly input (like
user tasks knowledge) and partly constraint (like physical laws). All these driving
forces are typically not evident at the beginning of the process, but have to be elicited,
negotiated and analyzed within the process.

Depending on the forces and the required output, RE-processes have quite different
characteristics. So, a process starting with a vague (product) idea of the customer and
aiming at a detailed customer specification will typically be a mutual learning
process between customer and developer, dominated by elicitation and negotiation
tasks, while a process driven by a quite detailed customer specification (developed by
the customer or in a separate project) aiming at a developer specification is typically
dominated by analysis. Typically, a contract separates these two types of processes.
However, even without a contract there is an important kind of border between the
two processes due to the effects of change. Change of requirements is easier in the

28

first part than in the second. Typically the detailegtomer requirements reach a
state of complexity and settledness that changing oseveral ones of them requires
a lot of effort, time, and money. Thus, on that borither willingness of the RE-
participants to accept change decreases.

Examples of Industrial RE-Processes

Based on this common understanding we looked at spec#ftances of industrial
RE-processes and their problems. One problem we discussasévieral hours was
the situation of pre-development and series-production graupsimlerChrysler. A
pre-development group typically gets a new, vague idea fiesearch (e.g. avoid
sliding of the car when braking). The task of pre-develept is then to build a first
prototypical system which can work in a car. Afterwats prototype is given to a
series-production group. The task of this group is now tenpdeiment the system
cleanly and to consider the additional constraintssyiséem has to meet like specific
control units used, etc. The problem is, that much ofdésign rationale of the
prototype is lost when it is given to series-productiontigoengineers basically have
to re-engineer the prototype. The question is now: hokvgessible to capture the
important design decisions for reuse in series-productidghowt hindering the
creativity and spontaneity of the pre-development engneeno develop the
prototypes?

During the discussion 4 ways of dealing with this problerfased:

1. The series people could elicit the design rationale fitee pre-development group
after the prototype has been constructed.

2. The pre-development people should document each designodediging the
prototype development.

3. Mix people from pre-development and series-productiord seme people from
pre-development with the prototype to series-production/@midave some series
people already involved in the pre-development.

4. Combine all three approaches: people in pre-developmdeticgbme notes on
their rationale, reflection workshops are held peraltiic in which pre-
development tries to make their rationale and expergrexplict. On such
workshops people from series-production might be preseei{@dly when the
prototype becomes more and more mature) and should documeekndwledge
elicited. The intend is to use the pride of the pre-devetofze motivate them to
talk about their experiences. The whole process ofréilection workshops
should be driven by the informational needs series-prodults.

Obviously, options 1 to 3 by themselves are not feashidevever, the combination
of them described in option 4 (which could be varied in sgverys) tries to
combine their merits in a most helpful way.

Another pressing problem DaimlerChrysler faces is thestegpre of how to deal with
quality requirements. Already in his presentation onfiisé day of the seminar Kurt
Schneider (DaimlerChrysler) illustrated how quality mededn be used. However,
this approach is not entirely satisfying and the hope waget pointers to research
work dealing with this problem. Discussing this topic itdree apparent that there is
no ready to use approach available. In order to break typiedity requirements like
usability and reliability down into testable requiremeatst of domain knowledge is

29

required. This knowledge needs to be collected and reust#wtsa can already be
applied in early RE-process phases like in the creaffioime contract.

RE-Techniques

Having explored the problem dimension of RE-processes weedtam the second
day from the solution viewpoint and looked at differechteques applicable during
the RE-process. The following picture shows a quite isgive list of techniques for
the different RE-tasks which, however, is far from besognplete. It just reflects a
quick brainstorming of the participants.

‘ R equirements Engineering ‘

‘ R equirements Andysis ‘ R equirements Management ‘

S cenarios

Viewpoaints

SA EROMT UML

Vdiidation / Chonge- L Traong
Verification Monagement
. . Version control | (:=doaum.
omcton | s | ot froprccs
— —- \) ond relation
Elidfation I nfq- Negofiation Documen— virtud environ. Mgt fechniques| 1o the produch)
pretfation fation modal check (e.g.. impact on.)
Works hops h in design rationde

Interviews Ethnography | RAD (i | T00ls (OORs,| MNeremProng ,
(unstruct, str.) . MS Word, Excel ¢ oo tions (e (yperlinks
Profocd Analys| AHT Developm,) PBR) o .
Loddering MCDA S tondarcs totve fables , matrix
Cadsoarting prioritization p;o O;ygg’
Rdle plays Expert Convers| (©orffolio) Glossary ?ngg;,u ' Enfify-Re.
Terminclogy P
(Glossary efc) | USTM (stcke-
CRC-Carcs holder cndlysis) Iﬁﬁin
Brainstorming | templates) ;)
Metopian viewpaint-onalysis
Contextud Des

We tried somewhat harder to identify techniques for hagdihon-functional
requirements, but besides general techniques for capturingctusing, and
documenting knowledge (in particular quality features) andresolving conflicts
between them nothing much seems to be around. A conjecasemade that the
reason for this is the general attitude of treating fametional requirements as being
secondary to the functional ones. The discussioreonniques also made clear that
the most fundamental skills of a requirements engiasecommunication skills.

The picture also shows that some techniques are moreagdmen others - the most
general ones are listed separately. These techniqué® @pplied to many tasks, but
they still have aspects which make them particulsuited for a specific tasks. So,
e.g. scenarios are certainly a way to document requiresmieut their main benefit is
in the elicitation tasks. Also, analysis methods [RA& are mainly sold as a
documentation means, however, there are specific usdglesse techniques for e.g.
elicitation purposes.

While it is quite easy to give a rough categorizatiotheftechniques according to the
RE-tasks and the forces mentioned above, we found ie dnaitd to describe the

30

situations in detail in which a particular technique isnadst benefit. Thus, it is
difficult to give general recommendations for techniqgtesndustrial requirements
engineers, since the choice depends on many impli¢dgriac

RE-Process Improvement

Comparing this result with the result of the problentuassions from the first day, it
seems that improvement of industrial RE-processeshigeed by first designing an
appropriate organizational solution and only then filling the technical details
based on the specific factors of the company.

The working group ended with a characterization of thgomachievements of the
RE-community in the last years. The participants tiedtt important points are the
focus on elicitation, the shift from requirements modgto requirements design and
the overall increasing recognition of the importance BfiRindustry.

Also, it was emphasized that Requirements EngineeridgSarftware and Systems

Engineering are getting reunited in several ways:

- there is an integration of architecture and design issuethe requirements
specification,

- a lot of S(W)E-tasks which one would normally not view RE-tasks (e.g.
evaluating project descriptions) contribute to the requirgsnengineering process
and benefit from RE-techniques,

- alot of outputs from the RE-process can be used for 8i(W)E-tasks than only
design (e.g. using scenarios for test case generation),

- requirements engineering is a continuous process withils({W)E-process and
does not end with the delivery of the software systerated.

Altogether, the group agreed that there is a rich sissoés and techniques associated
with the RE-process becoming more and more valuabley&ierms and software
engineering as a whole.

This report was compiled by Erik Kamsties, Fraunhof@EEGermany.

31

