
Dagstuhl-Seminar 99241

Requirements Capture, Documentation, and Validation

June, 13-18 1999

E. Börger, B. Hörger, D.L. Parnas, H.D. Rombach

2

Table of Contents

Summary...3

Abstracts of Talks in Order of Appearance ...4

Using SCR Method to Capture, Document, and Verify Computer System
Requirements ..4

Practical Formalisms ..6

An Industrial Experience: Software Quality Models for Quality Requirements at
DaimlerChrysler AG...6

Using Formal Methods in UML to Verify Requirement Properties on Specifications .7

Lessons Learnt in Transferring Formal Requirements Validation Techniques to
Industry ...7

Application of Ignorance to Find Errors in the Case Study Requirements
Specification ..7

Managing Inconsistent Specifications: Reasoning, Analysis and Action.......................9

Lightweight Validation of Natural Language Requirements.......................................10

Eliciting Requirements from Scenarios the CREWS-SAVRE Way............................10

Analysis of SCR Specifications Using Decision Procedures...11

Surfacing Ambiguity in Natural Language Requirements ..12

Design for Test – Ensuring that Specifications Guarantee Testability........................12

Anchoring the Requirements Process on Vocabulary..13

Approach to Support the Implementation of Requirements Changes14

Pattern-based Requirements Capture Applied: The SFB 501 Case Study15

Requirements Capture, Documentation, and Validation using TRIO16

A Method for Systematic Requirements Elicitation: Application to the Light Control
System..16

Execution of Abstract State Machines (ASMs) for the Light Control System............17

Software Requirements Specification of the Light Control System17

Classification of Dagstuhl Contributions..19

Working Group Reports ..22

Integrating Process, Tools, and Formal Methods ..22

The Light Control System Case Study ...26

The Richness of the Requirements Engineering Process ...28

3

Summary

The goal of the workshop, namely to bring together software engineering researchers
from academia and software engineers from industry to compare the state of industrial
practice and academic research for capturing, documenting and validating software
requirements, has been reached.

After two days of short introductory presentations (see the abstracts below), with
ample time for critical discussion, we had two days of intensive discussion in working
groups.

The three themes
• Integrating Process, Tools and Formal Methods (moderator Connie Heitmeyer),
• Requirement Engineering Process, Evolution of Requirements and Traceability

(moderator Barbara Paech),
• The Light Control Case Study (moderator E. Börger)

were selected by the participants on Tuesday evening, the results obtained were
presented to all participants during the closing session on Friday morning. Reports by
the moderators of the working groups can be found below.

The focus of the presentations and discussion was on the industrial strength of the
used methods and on their relevance for the production of large software.

To make sure that the discussion was suitably concrete, the workshop made extensive
use of a case study that could be discussed in detail. The example, taken from the
area of building automation, was a light control system. A more detailed discussion
of this system can be found below.

We thank Erik Kamsties, Antje von Knethen, and Barbara Paech for their help in
preparing the seminar and for maintaining the web page for the case study. Thanks
also to the Dagstuhl team for creating the pleasant atmosphere for our work.

Egon Börger (Universita di Pisa)
David Parnas (McMaster University, CDN)
Bärbel Hörger (DaimlerChrysler, Ulm)
Dieter Rombach (Universitaet Kaiserslautern)

4

Abstracts of Talks in Order of Appearance

Using SCR Method to Capture, Document, and Verify Computer
System Requirements1

Constance Heitmeyer Naval Research Laboratory (Code 5546), Washington, DC
20375 USA, heitmeyer@itd.nrl.navy.mil

Since 1993, our group at NRL has been developing a set of software tools [5, 3, 1] for
specifying and analyzing computer system requirements using the SCR (Software
Cost Reduction) method, a tabular method introduced in the A-7 project [6, 7]. The
tools include a specification editor for creating a requirements specification; an
automated consistency checker to detect missing cases, unwanted nondeterminism,
and other application-independent errors [5]; a simulator to symbolically execute the
specification to ensure that it captures the users’ intent [4]; and a model checker to
detect violations of critical application properties [1, 3]. Recently, groups at NASA
and Rockwell Aviation as well as our group at NRL have used the SCR method to
detect serious errors in requirements specifications of practical systems [2, 9, 3, 8].

This talk discusses the SCR approach to specifying requirements within the context of
the Parnas-Madey Four Variable Model (FVM) [10]. First, a description is given of
how our method and tools can be used to specify NAT and REQ, two relations
defined on the environmental quantities - i.e., the monitored and controlled quantities-
of the FVM. The relation NAT describes the constraints imposed on the monitored
and controlled quantities by physical laws and the system environment. The relation
REQ describes the additional constraints on the controlled quantities that the system
must enforce.

Next, an approach is sketched for capturing the required behavior after the system
designers have selected the system’s I/O devices. The system will use these devices to
sample the values of the monitored quantities and to set the values of the controlled
quantities. We propose to divide the software into three modules: the input module,
the output module, and the device-independent module. The input module uses the
values read from input devices to compute estimates of the monitored quantities,
while the output module writes the values computed by the system for the controlled
variables to the output devices. Both the input module and the output module are
examples of device-dependent modules. The third module, the device-independent
module, uses the estimates of the monitored quantities produced by the input module
to compute the values of the controlled quantities. The required behavior of the
device-independent module is described by the relation REQ. The SCR method and
tools can be used to specify, verify, and validate the input and output modules in the
same manner as they are currently used to specify, verify, and validate the two
relations, NAT and REQ.

1 This research is supported by the Office of Naval Research.

5

Finally, examples are presented which illustrate the SCR approach to requirements
specification. These examples are taken from the informal description of the light
control system used in the case study. To illustrate how the SCR method can be used
to specify the input module, we show how sensor data can be used to estimate the
value of a given monitored quantity, the quantity which indicates whether a given
room is occupied.

Our approach is motivated by a new project in which we will be using the SCR
requirements method and tools to help build a helicopter trainer for the U.S. Navy. To
begin, we will develop an SCR-style requirements specification of the trainer using
our current method and tools to specify the monitored and controlled quantities and
the relations NAT and REQ. An important goal of the project is to do hardware-in-
the-loop simulation. To achieve hardware-in-the-loop simulation, our plans are to
extend the existing toolset, including the current simulator. Currently, our simulator
uses the specification to compute the values that are assigned to controlled quantities
as the monitored quantities change. Thus, it implements the device-independent
module described above. We plan to extend the simulator to read actual sensor data
and to write the computed values of the controlled quantities to actual actuators. To
do so, the current toolset will be extended to support the specification of the input and
output modules described above.

References
1. R. Bharadwaj and C. Heitmeyer. Model checking complete requirements

specifications using abstraction. Automated Software Eng. J., 6(1), January 1999.
2. S. Easterbrook and J. Callahan. Formal methods for verification and validation of

partial specifications: A case study. Journal of Systems and Software, 1997.
3. C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using

abstraction and model checking to detect safety violations in requirements
specifications. IEEE Trans. on Softw. Eng., 24(11), November 1998.

4. C. Heitmeyer, J. Kirby, Jr., and B. Labaw. Tools for formal specification,
verification, and validation of requirements. In Proc. 12th Annual Conf. on
Computer Assurance (COMPASS ’97), Gaithersburg, MD, June 1997.

5. C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency
checking of requirements specifications. ACM Trans. on Software Eng. and
Methodology, 5(3):231-261, April-June 1996.

6. K. Heninger, D. Parnas, J. Shore, and J. Kallander. Software requirements for the
A-7E aircraft. Technical Report 3876, Naval Research Lab., Wash., DC, 1978.

7. Kathryn L. Heninger. Specifying software requirements for complex systems:
New techniques and their application. IEEE Trans. Softw. Eng., SE-6(1):2-13,
January 1980.

8. J. Kirby, Jr., M. Archer, and C. Heitmeyer. Applying formal methods to an
information security device: A case study. In Proc., Symp. on Protecting NATO
Information Systems in the 21st Century, Wash. DC, October 1999.

9. S. P. Miller. Specifying the mode logic of a flight guidance system in CoRE and
SCR. In Proc. 2nd ACM Workshop on Formal Methods in Software Practice
(FMSP’98), 1998.

10. David L. Parnas and Jan Madey. Functional documentation for computer systems.
Science of Computer Programming, 25(1):41-61, October 1995.

6

Practical Formalisms

Jo Atlee, Department of Computer Science, University of Waterloo, Waterloo,
ON N2L 3G1, Canada

Several studies have shown that requirements are often unknown, misunderstood, or
miscommunicated. Our objective is a specification notation that

• has a precise semantics (preferably one that allows automated checking and
analysis),

• can be read and reviewed by both domain experts and software professionals, and
• encourages the requirements writer to consider completeness (i.e., to consider how

the system should respond to every input)

"Practical Formalisms" (a term coined by David Harel) come close to meeting these
objectives. Practical formalisms are specification notations that have a formal,
mathematical model; this ensures that a specification written in the notation has a
single interpretation. They encourage the use of abstraction and separation of
concerns to simplify and decompose a specification into a set of functions and
relations, each of which is smaller, simpler, and easier to consider than the original
problem. Also, they have diagrammatic constructs (e.g., tables and/or graphs) for
expressing the individual functions and relations in an easy-to-read and checkable
format. Example practical formalisms include SCR, CoRE, Statecharts, and RSML.

These notations and their semantics are still evolving. In fact, when we specified in
SCR a portion of the Dagstuhl Light Control System, we recognized the need for new
notation-supported abstractions:

• Parameterization - so that the behaviour for rooms of the same type can be
specified once

• Inheritance - so that the behaviour common to all room types could be specified
once, and behaviours that vary according to room type could be specified as
extensions to the common behaviour.

An Industrial Experience: Software Quality Models for Quality
Requirements at DaimlerChrysler AG

Kurt Schneider, Stefanie Lindstaedt, Thomas Beil.
DaimlerChrysler Research Center Ulm

Quality requirements are widely neglected in industrial software projects – and they
are often ignored by research. As a consequence, quality requirements do not get as
much attention in contracts and in acceptance procedures. But since software quality
is at stake, we need a systematic way to treat, trace, and advocat quality requirements.
With our quality model approach, we break down abstract quality goals (e.g.,
"efficiency, reliability, usability") to questions and finally, to testable criteria. This
approach serves several requirements demands. We used it to allow managers,
developers, and testers to negotiate and gain a common understanding. However, each

7

quality goal calls for large amounts of specific knowledge. We tackle with this
growing demand mainly by an approach of systematically learning from experiences.

Using Formal Methods in UML to Verify Requirement Properties on
Specifications

Hugues Martin, GEMPLUS, France
hugues.martin@gemplus.com

Requirements need to be understandable by all the stakeholders of the software
development process. At the same time, they need to satisfy properties such as
consistency and unambiguity. UML, using graphical representation and natural
language, provides a clear notation usable by all the stakeholders to write
understandable specifications. However, UML is a semi-formal language which does
not support automatic verification techniques on the models. One possibility would be
to integrate formal methods such as B or SDL in UML. Then it would become
possible to apply verification techniques on some parts of the model, and to preserve
the readability of the specifications. This integration needs to take into account the
maintainability of the UML model and the formal model, and to facilitate the
reusability of components by clearly identify interfaces between the different
representations.

Lessons Learnt in Transferring Formal Requirements Validation
Techniques to Industry

Steve Easterbrook, University of Toronto
sme@cs.toronto.edu

This talk summarizes experience from a number of formal methods case studies over
the last four years at NASA. The case studies all concern the independent verification
and validation for safety critical systems. In each case, formal methods were applied
in a lightweight way to improve clarity, automate consistency checking, to animate
the requirements and validate the behavior specified. Methods used include Spin,
SCR and PVS. The main lessons are that these methods are effective at finding
important errors that are not typically found using existing inspection-based
approaches. However, the existing methods are weak at analyzing change and dealing
with refinements of specifications. The talk will also discuss a number of technology
transfer issues such as what types of expertise are needed to apply these methods,
where to apply them, and how to measure the benefits.

Application of Ignorance to Find Errors in the Case Study
Requirements Specification

Daniel M. Berry, Technion and University of Waterloo
dberry@csg.uwaterloo.ca

8

Comment: The following text is not an abstract but an email that was sent to all
participants of the Dagstuhl seminar.

My planned contribution to the Dagstuhl Seminar was to apply ignorance (as per my
‘‘Importance of Ignorance in Requirements Engineering’’) to help identify problems in
the informal specification that must be resolved before a complete and consistent
specification can be written. That is, I read the informal specification of the light
control system as someone who knows very little about such systems and had lots and
lots of questions borne of this ignorance. I attached these questions as notes to the
PDF document containing the informal specification.

My original plan was and still is to present these questions at the seminar to see if
they cause anyone to notice problems in his or her own contribution to the seminar.
Now that I have completed my contribution early, I thought that it might be useful to
distribute it to participants before the meeting so that they might use it in preparing
their contributions. However, I will want back from these participants data on how
helpful my questions were to their efforts. You see, I am trying to get some case
studies of the effectiveness of ignorance in finding and dealing with problems in
requirements. It is recognized that not all problems found in a requirements
specification are errors; some may be intentional omissions, design freedoms, etc.

We can imagine several reasons why a workshop participant might have overlooked
an issue that I raised in my comments and questions:

1. The issue is not relevant to the part of the case study used by the participant.

2. The issue was not a problem to the participant; that is, the participant understood
the specification’s intent and acted upon it.

3. The participant never intended to follow the specification

I use the general term ‘‘issue’’ for any of these issues that may be found, regardless of
its classification.

The deal under which I will give you this document and its ASCII version is the
following. You are required to have already done at least one draft of your own
contribution to the workshop. If you agree to keep track of the number, severity,
effect, cause, and classification of issues found in your own contribution as a result of
reading my ignorant notes, then you can have my document. When you are finished,
please send me a message showing me a list of all of the issues that you found as a
result of your use of my comments and questions. This list should give for each issue
its severity, its effect, its cause, and its classification. Please also include any
comments you might have on the experience of applying my ignorant questions.

If you are interested, please contact me at dberry@csg.uwaterloo.ca .

See

%A D.M. Berry
%T The Importance of Ignorance in Requirements Engineering

9

%J Journal of Systems and Software
%V 28
%N 2
%P 179-184
%D February, 1995

for more details about ignorance.

Enjoy!

Dan

PS: Here is a description of the PDF file that you will receive if you agree to the terms
above.

This PDF document contains the original case study to which I have attached notes
representing my ignorant questions. For those who do not have access to an Acrobat
Reader or who prefer to use ASCII text, there is a textual version of the specification
with the notes added. The original text is marked ">" at the beginning of their lines
and the notes are marked differently.

The blue notes contain corrections to the English. Sometimes, the act of changing the
English in a particular way disambiguates an ambiguity and disambiguates it in a way
not intended by the specifier. In the ASCII version, these notes are marked "#" at the
beginning of their lines.

The red notes contain questions that occurred to me as I was reading the specification.
Some earlier questions are superseded by later questions. Some questions end up
being answered later; however, then I believe that the specification should have been
written in a way that it answers the question at the place the question came up. In the
ASCII version, these questions have no mark at the beginning of their lines.

Managing Inconsistent Specifications: Reasoning, Analysis and
Action

Bashar Nuseibeh, Department of Computing, Imperial College,
 London SW7 2BZ, UK
ban@doc.ic.ac.uk

In practice, inconsistency is inevitable in all real large-scale specifications. Living
with inconsistency during evolutionary development is a fact of life. Therefore, there
is a need to develop formally sound techniques and practical tools that ‘tolerate’
inconsistency by allowing continued reasoning and action in the presence of
inconsistency. Specifically, we propose some techniques for analyzing inconsistent
specifications, for analyzing the impact of different development actions on
specifications - whether these actions handle specific inconsistencies or initiate some
evolutionary change, and for providing automated guidance and support for acting in
the presence of inconsistency.

10

Lightweight Validation of Natural Language Requirements

Vincenzo Gervasi, Universita’ di Pisa, Pisa – Italy
Bashar Nuseibeh, Imperial College, London - UK

We report on our experiences of using lightweight formal methods for the partial
validation of natural language requirement documents. These experiences support our
position that it is feasible and useful to perform automated analysis of requirements
expressed in natural language.

While it was not our aim to validate any particular specification, we did identify
several errors in the NASA requirements for the Pressure Monitoring System on the
International Space Station, that we used as a case study. Independent review by
NASA also uncovered most (but not all) of the same errors.

We describe the techniques we used, the errors we found, and reflect on the lessons
learned.

Eliciting Requirements from Scenarios the CREWS-SAVRE Way

Neil Maiden, City University, London

This presentation will present an overview of the CREWS-SAVRE approach to
eliciting and validating system requirements with scenarios and use cases. Scenarios
can be effective for eliciting requirements from stakeholders. Scenarios offer visions
of future system behaviour which can be simple to communicate, explore and quick to
change in response to feedback. They are "middle-level" abstractions, less formal and
complete than system specifications, but more broadly applicable to explore normal
and abnormal situations.

So why are scenarios not a software development "silver bullet"? One reason is that
there are few systematic processes to follow. Developers rarely know how many
scenarios to produce, what the content and structure of these scenarios should be, and
how they should use the scenarios elicit requirements from users. As a result, most
software developers currently use scenarios in an ad hoc, non-optimal way. I shall
present simple-to-use processes, methods and software tools to generate and use
scenarios more systematically, and hence effectively.

The CREWS-SAVRE method and software tool has been developed as part of the
ESPRIT IV's 21903 'CREWS' project as a response to industrial requirements
engineering needs. Features of CREWS-SAVRE include: a language for specifying
use cases; automatic generation of scenarios from use cases; automatic generation of
scenario alternative courses; guided scenarios walkthroughs; patterns for automatic
scenario-requirement cross-checking; compatibility with Rational Software's
commercial RequisitePro requirements management software tool; integration with
CREWS-ECRITOIRE, which takes a structured, natural language use case, checks it
for completeness, then parses it to produce a use case specification in CREWS-
SAVRE.

11

Analysis of SCR Specifications Using Decision Procedures

Ramesh Bharadwaj, Naval Research Laboratory, Washington, DC 20375-5320
ramesh@itd.nrl.navy.mil

In recent years, model checking has emerged as a remarkably effective technique for
the automated analysis of descriptions of hardware systems and communication
protocols. To analyze software system descriptions, however, a direct application of
model checking rarely succeeds, since these descriptions often have huge (often
infinite) state spaces which are not amenable to the finite-state algorithms of model
checking. More important, model checking is rarely needed to verify most properties.
For software, therefore, theorem proving affords an interesting alternative.
Conventional theorem provers, however, are either too general or too expensive to use
in a practical setting (in terms of the required level of user sophistication, human
effort, and system resources). To be more useful in practice, a theorem proving
system should be completely automatic, and require little sophistication on the part of
its users. Additionally, in contrast to conventional theorem provers which provide
little or no diagnostic information when a theorem is not true, an industrial strength
prover should provide counterexamples along the same lines as model checkers.

In this talk I describe Salsa, a tool for the analysis of system descriptions written in a
language based on the SCR tabular notation called SAL (the SCR Abstract
Language). Salsa’s core verification engine is an unsatisfiability checker (UC) which,
given a logical formula, determines whether it is false. If the formula is not false, UC
provides a counterexample along the lines of model checkers. UC serves as the engine
for the Invariance Checker (IC) of Salsa, which may be used to check a SAL
specification for unwanted nondeterminism and missing cases, and to verify the
invariance of properties formulated by users. Salsa’s Invariance Checker handles
specifications that are too large for model checkers to analyze. This is because an
induction proof -- which forms the core of Salsa’s Invariance Checker -- corresponds
roughly to a single pre-image computation, in the chain of computations carried out
by a model checker during the generation of the fixed point. Moreover, for SCR
specifications, we never ran across a property whose proof required the computation
of the fixed point -- an induction proof (suitably strengthened with automatically
generated invariants) always sufficed.

A Salsa prototype is currently implemented in Standard ML. We are working on a
Java implementation of Salsa. Planned extensions to Salsa include the addition of
decision procedures for the rationals, the congruence closure algorithm for reasoning
about uninterpreted function symbols, and special-purpose theories such as for arrays
and lists. We would also like to reason about quantifiers. We are also working on a
compositional proof system for SAL modules, which will allow assumption-guarantee
style reasoning.

Acknowledgements: This work is supported by the Office of Naval Research. The
Salsa prototype was implemented by Steve Sims.

12

Surfacing Ambiguity in Natural Language Requirements

Erik Kamsties, Fraunhofer Institute for Experimental Software Engineering,
Kaiserslautern, Germany
kamsties@iese.fhg.de

Natural language requirements are recognized widely as incomplete, inconsistent, and
inherently ambiguous. Formal and semi-formal specification techniques have been
proposed to overcome these deficiencies. Completeness and consistency of these
specifications can be tackled to some degree mechanically by tools. However, as a
recent study shows, ambiguity rarely surfaces during the creation of a specification.
Thus - since specification techniques enforce precision - the resulting specification
becomes unambiguously wrong.

Our work aims at better process support during the creation of a specification from
informal requirements in order to surface ambiguity as opposed to simulation or
review of a specification afterwards. The value of our approach is that it can be
applied right from the beginning of the specification process preventing effort going
in the wrong direction. We have developed fine-grained process support for the SCR
requirements specification technique, however, our approach is applicable to other
specification techniques as well. Furthermore, the idea behind our approach for
dealing with ambiguity can be extended to a prescriptive defect detection technique
for natural language requirements documents. A recent case study has shown that
inspecting requirements documents for ambiguities is much more effective and
efficient than inspecting or modeling informal requirements without specific support
for ambiguity detection. The reason is that engineers are often not aware of the variety
of possible types of ambiguities.

Our future work aims at extending our approach to other specification techniques such
as the UML and evaluating it in various settings.

Design for Test – Ensuring that Specifications Guarantee Testability

Mike Holcombe, University of Sheffield, UK.

All systems and software will be subject to testing, even if there has been substantial
effort in formally verifying the design or implementation in some way. The operating
environment of most systems is complex and models invariably have to make
unrealistic assumptions in order to provide any basis for analysis.

If system testing is thus inevitable we should recognise this at the beginning of the
project.

The theme of this work is trying to identify how testing can be made more effective
by considering the issue at the requirements definition stage. Apart from the usual
clients and users of the completed system there are users of interim components and
deliverables, those involved with quality assurance and testing. We need to consider
their needs as well.

13

The approach taken is based on a formal foundation involving computational
modelling. We use a general formalism for describing systems in a convenient way,
stream X-machines, and describe the test generation algorithm derived from stream
X-machine models. The interesting aspect of this approach is that it is possible to
prove results about the effectiveness of the tests. These results are of the form:

if certain conditions relating to the specification are satisfied;
and there is a realistic estimate of the number of extra states the
implementation possesses compared to the specification;
and the implementation is constructed in a particular way from correct
components;
and the implementation passes all the tests
then the implementation is correct (it computes the same function as the
specification)

Clearly the conditions and assumptions are important. The conditions on the
specification, we call them design for test conditions are concerned with
controllability and observability. We can always arrange for our specification to have
these properties by augmenting it in particular ways. Once this has been done it is
then possible to carry out testing in a thorough way that will detect all faults providing
the other conditions are met.

We consider the case study and develop a systematic method for creating an X-
machine model of the system. This relates to a communication model of the
architecture of the system. This approach to specification and testing is very amenable
to refinement and transformation techniques which enable test sets to be derived in
tandem with specifications thus providing significant savings in terms of the cost of
test set generation.

References
1. F. Ipate & M. Holcombe, Tests which are proved to find all faults. Int. Jour.

Comp. Math. 63, 159-178, 1997
2. F. Ipate & M. Holcombe, A method for refining and testing generalised machine

specifications. Int. Jour. Comp. Math. 68, 197-219, 1998.
3. K. Bogdanov, M. Holcombe, Automated Test Set Generation for Statecharts, , to

appear in Proc. FM-Trends 98 (Boppard, Germany), Springer LNCS Series.
4. M. Holcombe F. Ipate, Correct systems - building a business process solution,

Springer, Applied Computing Series,1998.

Anchoring the Requirements Process on Vocabulary

Julio Cesar Sampaio do Prado Leite
Pontificia Universidade Catolica do Rio de Janeiro, PUC-Rio
www.inf.puc-rio.br/~julio

Our work in requirements has been using the idea of a requirements baseline, a
complex set of representations that are in constant evolution, as it central framework.
A requirements baseline is a structure which incorporates descriptions about a desired
software system in a given Universe of Discourse. It is perennial. Although it is built

14

during the requirements engineering process, it keeps evolving as the software
construction evolves.

Our baseline uses natural language based representations, since one of its major
concerns is the communication with clients. Central to this strategy is the figure of a
lexicon, which anchors the meaning of the terms used in the baseline. We call this
lexicon, the Language Extended Lexicon.

The Language Extended Lexicon is a metamodel designed to help the elicitation and
representation of the language used in the macrosystem. This model is centered on
the idea that a circular description of language terms improves the comprehension of
the environment.

The Language Extended Lexicon is a representation of the symbols in the problem
domain language. The LEL is anchored on a very simple idea: "understand the
language of the problem, without worrying about understanding the problem". It is a
natural language representation that aims to capture the vocabulary of an application.

The Lexicon’s main goal is to register signs (words or phrases), which are peculiar to
the domain. Each entry in the lexicon has two types of description, as opposed to the
usual dictionary which has just one. The first type, called Notion, is the usual one and
its goal is to describe the denotation of the word or the phrase. The second type, called
Behavioral Response, is intended to describe the connotation of the word or the
phrase, that is, it provides extra information about the context at hand.

We plan to show how the use of our lexicon, on the Case Study for the Dagstuhl
Seminar, does help the elicitation task as well as provide an anchor for other
representations of the baseline. We will build a LEL based on the written information
provided by the case study and will report on the problems we have faced to produce
it. On the other hand we plan to show how the vocabulary produced is an anchor for
other requirements representations, such as scenarios and requirements sentences. We
will also present the description of the process we will use to produce the lexicon.

Approach to Support the Implementation of Requirements Changes

Antje von Knethen
AG Software Engineering, Department of Computer Science,
University of Kaiserslautern, Germany
vknethen@informatik.uni-kl.de

Most software systems have a long life time. Thus, changes to the system are
unavoidable (e.g., requirements changes). Several activities have to be performed in
the case of a requirements change. For example, the impact of a change on the
software documentation (i.e., customer requirements, developer requirements, design,
code, etc.) has to be analyzed and the software documentation has to be changed in a
consistent way.

Change activities are difficult to perform in practice because of two reasons: First, the
relations among the elements of a software documentation are not documented

15

explicitly (i.e., horizontal and vertical traceability are missing). The horizontal
relations among the elements of an artifact are implicit (e.g., among operations of a
class diagram and of state diagrams). Alike, the vertical relations among the elements
of different artifacts are not documented explicitly (e.g., among requirements in
natural language on customer requirements level and classes of a class diagram on
developer requirements level). Second, the artifacts of a software documentation are
not structured to locate "typical" changes easily (i.e., "typical" changes are not
encapsulated).

Our approach is to develop a semantic-based model (i.e., to define the elements and
relations) for horizontal and vertical traceability among the elements of customer
requirements, developer requirements, and software design. Furthermore, guidelines
are proposed on how to use the model and to structure the artifacts to encapsulate
"typical" changes.

We started to examine "typical" changes in a certain domain (building automation)
and to develop a classification scheme for these changes. We modeled the elements of
customer and developer requirements with UML (Unified Modeling Language) and
have investigated the relations among the elements of and between the artifacts.
Furthermore, the relations between different types of changes and the different
artifacts have been analyzed.
In the near future, we plan to look into the relations between developer requirements
and software design. We will describe the relations among the elements of the
artifacts with the help of OCL (Object Constraint Language). Furthermore, guidelines
will be developed on how to use the defined relations to support the different change
activities and on how to structure artifacts to encapsulate "typical" changes.

Pattern-based Requirements Capture Applied: The SFB 501 Case
Study

R. Gotzhein, M. Kronenburg, C. Peper
SFB 501, University of Kaiserslautern, Germany
email: {gotzhein, kronburg, peper}@informatik.uni-kl.de

The Case Study "Light Control System" of this Dagstuhl Seminar "Requirements
Capture / Documentation / Validation" calls for the application of rigorous methods to
the specification, inspection, and testing of requirements. To capture the requirements
of the case study, we have applied the FoReST (Formal Requirement Specification
Technique) approach. This approach serves the following objectives:

• development of a precise description of the system requirements
• customer feedback on a natural language basis
• pattern-based formalisation of requirements
• provision of a starting point for the system development team
• traceability w.r.t. the original problem description

We have developed a comprehensive requirement specification for the case study
using the FoReST approach, and have applied pattern-based technologies to formalize

16

most of the properties. The resulting documentation is of substantial size, and has
proved useful to several groups of developers. Links to the different parts of the
documentation can be found at

http://www-avenhaus.informatik.unikl.de/forest/EXAMPLES/DAGSTUHL/
DagstuhlEnglishStart.html

including the original problem description, documentation of the FoReST approach,
various perspectives of the final FoReST specification of the case study and related
publications. Postscript- as well as html-versions are available, where html-versions
provide online-navigation and traceability support. All documents have been
produced using FoReST tools.

The final FOREST specification of the case study goes far beyond the original
problem description. This is the result of extensive feedback from the customer based
on intermediate FoReST specifications, and of questions that arose during the work of
the analysis team. All of these questions have been discussed with the customer, and
have been resolved.

Requirements Capture, Documentation, and Validation using TRIO

Angelo Gargantini
Dipartimento di Elettronica e Informazione, Politecnico di Milano - Italy
Angelo.Gargantini@elet.polimi.it

We have applied TRIO to the proposed case study. Our first goal was to specify the
case study and its requirements. TRIO is a first order temporal logic augmented with
temporal operators which permit to formalize the value of temporal dependents
variables at several time instants. TRIO allows precise timing requirements (such as
those in the case study), and its temporal operators are very expressive and have been
suitable to expresss the temporal requirements in the case study. The architecture of
the system has been specified using TRIO object oriented features. TRIO allows the
use of classes, inheritance, genericity and other object oriented constructs and
concepts. It is also endowed with an expressive graphic representation. Our second
goal has been the validation of parts of the specification by means of history
checking, that takes a possible history of the system checking whether they are correct
or not.

A Method for Systematic Requirements Elicitation: Application to
the Light Control System

Maritta Heisel, University of Magdeburg, Germany
 joint work with
Jeanine Souquieres, LORIA, Unviversity of Nancy 2, France

We applied a systematic method for requirements elicitation to the light control case
study. The method consists of several brainstorming steps where the vocabulary is

17

fixed, the requirements are stated in natural language, and events and system
operations are identified. Then, the requirements are formalized, and possible
interactions between them are investigated.

The method is expressed using agendas, a concept to explicitly represent software
development knowledge. An agenda consists of a number of steps to be performed,
and validation conditions that help detect errors early in the development process.

Executing the agenda on the light control case study revealed that the vocabulary was
not used coherently, that the glossary was partially inadequate, that functional and
non-functional requirements were confused, and that requirements were missing,
ambiguous or incoherent.

It turned out that the method was adequate to deal with the case study. We were able
to identify a coherent subset of the given vocabulary, to resolve some of the
incoherences between requirements and to point out open problems that should be
solved before a realization of the system should be undertaken.

The systematic approach helped us faking ignorance, as proposed by Dan Berry.

Execution of Abstract State Machines (ASMs) for the Light Control
System

Joachim Schmid, Siemens, Munich, Germany

Abstract State Machines have been used to specify the case study "Light Control
System". The ASM-approach allows one to specify systems at different levels of
abstraction. One can start with a high level description (understandable by the
customer) and refine it (defining all used functions) to a detailed version which is
executable by a tool. It seems that functional programming and ASM are a good
combination to achieve this goal.

AsmGofer is an extension of Gofer wich allows one to define functions and ASM-
rules with the full power of functional programming. The system also supports
building graphical user interfaces, so one can combine the (executable) ASM-
specification with an animation showing information about the ASM-state. The tool
has also been used for making Boerger/Schulte’s ASM for the Java Virtual Machine
executable.

Software Requirements Specification of the Light Control System

Egon Börger, Elvinia Riccobene, Joachim Schmid
Universita' di Pisa, Pisa – Italy

We propose a rigorous model for the informally given requirements of the light
control system in terms of ASMs (Abstract State Machines).

18

We describe the physical architecture by conditions on the signature and by
definitions on the auxiliary (mostly static) functions of the machine. The operational
behavior of the control system is expressed in terms of transitions rules. The resulting
"ground model" can be inspected by the customer to check which interpretation of the
(partly ambiguous and incomplete) informal requirements it reflects.

By refinement techniques we obtain from the ground model an "executable model".
This model can be run by an ASM simulator and is useful to execute suitable
scenarios defined as test cases for the requirements.

19

Classification of Dagstuhl Contributions

The participants that have developed or currently develop RE methods were asked for
a classification of their work. The applied classification scheme was based on Pamela
Zave’s classification of research efforts in requirements engineering (ACM
Computing Surveys, vol.29, no.4, p.315-321, 1997).

14 participants returned the questionnaire. The RE methods developed by these
participants are listed below along with additional comments made on the
questionnaire form:
• Achatz, Klaus

Process automation techniques (no abstract available)
• Berry, Daniel

Application of Ignorance (see abstract on page 7)
• Börger, Egon

Abstract State Machines (see page 17)
• Bharadwaj, Ramesh and Heitmeyer, Constance

SCR and the Four Variable model (see abstracts on page 4 and 11).
Additional comments: code can be generated from SCR requirements
specifications. The SCR tool can be integrated with PVS, Spin, SMV, and others.

• Gervasi, Vincenzo
Multiple views on natural language requirements (see page 10)

• Heisel, Maritta
Method for systematic requirements elicitation (see page 16)

• Hoffmann, Matthias
Tool-based requirements management of informal requirements by e.g., DOORS,
RequisitePRO, etc. (no abstract available)
Additional comments: the approach allows for defining metrics, ease to find
relevant information, and ease to add project members.

• Holcombe, Mike
X-Machines (see page 12).
Additional comments: The approach allows for proofs of the test effectiveness. A
book “Correct Systems” is available from Springer. Presumption of the approach
is that a domain analysis has been made.

• von Knethen, Antje
Traceability Approach (see page 14).
Additional comment: the proposed approach addresses also the problem of
support for requirements changes.

• Leite, Julio
Language Extended Lexicon (see page 13)
Additional comment: the proposed approach addresses also the problem of change
management.

• Maiden, Neil
CREWS-SAVRE method (see page 10)
Additional comment: the proposed approach helps also to get more complete
requirements.

• Nuseibeh, Bashar
View points and inconsistency management (see page 9)

20

• Parnas, David
4-Variable-SCR-Method (no abstract available).

The following table shows the detailed classification of RE methods made by the
participants.

Problems that are solved by a method,
status of the method, and
presumptions of the method

A
ch

at
z

B

er
ry

 B
ör

ge
r

B
ha

ra
dw

aj
B

B
ha

ra
dw

a
 G

er
va

si

 H
ei

se
l

 H
of

fm
an

n
 H

ol
co

m
be

 v
.K

ne
th

en
 L

ei
te

 M
ai

de
n

 N
us

ei
be

h

 P
ar

na
s

Problems in elicitation and description of
customer requirements
Understanding the context of software á á á á á á
Overcoming communication barriers á á á á á á á á
Allocating requirements among the system and
the environment

á á á á á á á á

Converting vague goal to specific properties or
behavior of the system

á á á á á

Understanding priorities á á á á
Making customer requirements measurable á á
Estimating cost, risk, and schedule á
Problems in Specification of System
Requirements
Reconciling and integrating different views á á á á á á á á á
Evaluating different alternatives for the
satisfaction of user requirements

á á á á

Obtaining complete, consistent, and unambiguous
specification which can serve as basis for design

á á á á á á

Making system requirements measurable á á
Validating system requirements against customer
requirements

á á á á á

Problems in usage of the system specification
during software development
Identification of defects in the design
specification

á á á á

Identification of defects in the system code á á á
Enabling traceability of requirements á á á á á á á á á
Developing a design specification á á á á á á
Deriving test cases á á á á á á
Deriving test oracles á á á á
Status of the method
Applicable in industry á á á á á á á á á á
Supported by tool á á á á á á á á á
Applicable in research environments á á á á á á á á
Usable by others (e.g., user manual exists) á á á á á á á
Context of the method
Applicable in every RE process á á á á á á á á á á
Dependent on specific methods solving other
problems

! !

I I
I I -I I I I -I I I I

I I
I I -I I I I -I I I I

I I I I I I I I I I I I

I I I I I I I I I I I I

21

Remarks:
• Originally, the form was designed for distribution before the seminar as a means

to facilitate discussions during the presentation of participants. It turned out that it
is not useful as questionnaire for self-estimation afterwards, because most terms
used in the questionnaire allow for various interpretations, e.g., ‘context’.

• Furthermore, a checkmark has a different meaning depending on the participant
answering the questionnaire. It can mean for instance “solved”, “addressed”, or
“enables a solution”. This is because some problems mentioned in the
questionnaire cannot be solved completely such as “overcoming communication
barriers”.

• We would recommend two approaches for future work on characterizing research
efforts in RE. Either allow for room for discussions on terminology and on self-
estimations (e.g., “can you explain why do you think that your approach solves the
problem of overcoming communication barriers?”) or use a more solution-
oriented schema that can be interpreted in a more uniform way without
discussions (e.g., which types of requirements can be specified: structural,
functional, behavioral requirements).

22

Working Group Reports

Integrating Process, Tools, and Formal Methods
Constance Heitmeyer, Naval Research Laboratory, Washington, DC (with input from
Jo Atlee, Ramesh Bharadwaj, Mats Heimdahl, Mike Holcombe, and David Parnas)

Problem: given an approach to specifying requirements, including a set of tools,
describe a process for building a requirements specification.

Framework: Four Variable Model

Approaches Tools
• SCR
• ASMs
• RSML
• X-Machines
• TRIO
• UML?
• ...

• SCR*
• McMaster TTS
• Ontario Hydro
• RSML tools
• Tablewise
• TRIO Hist. Checker
• ASM tools
• STATEMATE
• Rational Rose
• B-Tools

• Theorem Provers
• Model Checkers
• Consistency

Checkers
• Test Case Generators
• Symb. Math. Tools
• MATLAB
• Simulators
• Invariant Generators
• Code Generators
• Slicers/Dep. Graphs
• DOORS

Criteria For Evaluating A Requirements Specification

FUNCTIONAL
• any implementation that satisfies the spec will work

- i.e., the implementation is acceptable to the customer
• any implementation that works will satisfy the spec
• “ as simple as possible but not simpler”

NON-FUNCTIONAL
• easy to understand
• easy to maintain
• organized for finding information quickly
• interpretable (i.e., executable)
• costs less to produce than it is expected to save
• trustable
• provides enough information to design for ease of change

23

~

P
ro

ce
ss

 F
or

 C
on

st
ru

ct
in

g
A

 S
ys

te
m

 R
eq

ui
re

m
en

ts
 S

pe
ci

fic
at

io
n

1.

Id
en

tif
y

a
nd

 d
es

cr
ib

e
th

e co
nt

ro
lle

d
qu

an
tit

ie
s b

y
ho

w
 t

he
y

ca
n

be
 m

e
as

ur
ed

 (
e.

g.
,

ra
ng

e
o

f v
a

lu
es

,
et

c.
).

2.

Id
en

tif
y

a
nd

 d
es

cr
ib

e
th

e m
o

ni
to

re
d

qu
an

tit
ie

s b
y

ho
w

 t
he

y
ca

n
be

 m
ea

su
re

d.
3a

 F

o
r

ea
ch

 c
o

nt
ro

lle
d

va
ri

a
bl

e,
 d

es
cr

ib
e

th
e

re
qu

ire
d

re
la

tio
n b

et
w

ee
n

th
e

m
o

ni
to

re
d

 a
nd

 c
o

nt
ro

lle
d

va
ria

bl
e

s.
-

to
 m

ak
e

th
e

sp
ec

 c
o

nc
is

e,
 u

se

m
o

de
 c

la
ss

es,
i.e

.,

fu
nc

tio
ns

 o
f t

he
 h

is
to

ry
 o

f t
he

 m
o

ni
to

re
d

qu
an

tit
ie

s
3b

.
S

pe
ci

fy
 tim

in
g

an
d/

o
r a

cc
ur

ac
y

co
ns

tr
a

in
ts o

n
th

e
co

nt
ro

lle
d

qu
a

nt
iti

es
.

-
e .

g.
,

“t
he

 s
up

pl
ie

s
ne

ed
 t

o
fa

ll
10

 f
ee

t
fr

om
 t

he
 s

pe
ci

fi
ed

 lo
ca

tio
n”

4
S

pe
ci

fy
 s

ys
te

m
 r

eq
ui

re
m

en
ts

 t
ha

t
ca

nn
ot

 b
e

st
at

ed
 in

 t
er

m
s

of
 m

on
ito

re
d

an
d

co
nt

ro
lle

d
qu

an
ti

ti
es

, e
.g

.,
w

ei
gh

t
an

d
ot

he
r

ph
ys

ic
al

 c
ha

ra
ct

er
is

ti
cs

, b
ud

ge
t,

sc
he

du
le

, r
el

ia
bi

lit
y

(M
T

B
F)

, a
va

ila
bi

lit
y,

 li
ke

ly
 s

ys
te

m
 c

ha
ng

es
, e

tc
.

P
ro

ce
ss

 F
or

 C
on

st
ru

ct
in

g
A

 S
of

tw
ar

e
R

eq
ui

re
m

en
ts

 S
pe

ci
fic

at
io

n

1.

S
pe

ci
fy

 t
he

 I
N

 a
nd

 O
U

T
 r

el
at

io
ns

.

2.

S
pe

ci
fy

 D
_I

N
 a

nd
 D

_O
U

T
.

D
_I

N
:

re
qu

ir
ed

 r
el

at
io

n
be

tw
ee

n
in

pu
ts

 a
nd

 e
st

im
at

es
 o

f
m

on
ito

re
d

va
ri

ab
le

s
D

_O
U

T
:

 r
eq

ui
re

d
re

la
tio

n
be

tw
ee

n
es

ti
m

at
es

 o
f

co
nt

ro
lle

d
va

ri
ab

le
s

an
d

ou
tp

ut
s

3.

S
pe

ci
fy

 t
he

 R
E

Q
 r

el
at

io
n.

IN
I

M T
ha

t
is

, s
pe

ci
fy

 t
he

 d
ev

ic
e i

nt
er

fa
ce

s

IN
C

O
O

U
T

D
_I

N

I .
D

_O
U

T
.

C ~
O

~

M~

R
E

Q
M

~
~

C
~

0

i

i
t

24

4. Specify software requirements that cannot be stated in terms of inputs and outputs,
e.g., likely changes to the I/O devices.

Verification And Validation Of The System And Software Requirements

Verify and validate the individual pieces
• REQ
• D_IN
• D_OUT

Verify and validate the end-to-end system behavior
• Are the (estimates of) controlled quantities delivered on time?
• Do the estimates of the controlled quantities satisfy the accuracy requirements?

M
NAT

M C

D_OUT

OUTPUT
MODULES

D_IN REQ
~

IN

SOFTWARE

SYSTEM

OUT

outputs

sensors

actuators

...

inputs

SOFT

...

INPUT
MODULES

DEVICE-INDEP.
SOFTWARE

C
~

M
~

REQ

1·--- 1 ◄
~ ···►

r
... ►

--- --· ------ ------ --- ----- F-----:1 1--►1 ~I
································► ···► ·································►

25

Summary

• Given an approach (e.g., ASM, SCR, or RSML) and software tools for developing
requirements, we have defined a process for constructing a requirements
specification based on Parnas’ Four Variable Model.

• The requirements specification consists of two parts
• a system requirements specification
• a software requirements specification

• The process is an idealization of the actual process that may occur in practice
• The steps in the process may take place in a different order.
• One may use the process to build some parts of the specification first and then

go back and repeat the process to produce other parts.

A Rational Process For Building System And Software Requirements:
How To Fake It!

26

The Light Control System Case Study

The group, consisting of 13 participants all of who in some way or the other had
worked on the proposed case study before coming to the seminar, met on Wednesday,
June 16, for three hours in the morning and three hours in the afternoon. The
discussion focussed on clarifying the following questions:

1. What is the content of the work which has been done using the various methods
for the case study?

2. What was the most problematic feature encountered during the work on the case
study and which feature of the used method fits the case study best?

3. Quantification of effort and benefit of the work on the case study.

A more detailed discussion then centered around questions about the customer
feedback, the traceability, the process model, and the tool support.

The detailed answers to the questions are largely available through the abstracts of the
authors who presented a talk to the seminar (see the abstracts before). We try to give a
short resume here. To this purpose the methods which have been used to deal with the
case study are indicated below (in alphabetical order), together with mentioning (in
this order) the work which has been done, the documentation which has been
provided (in number of pages), the time it took to do the work (in person days). All
participants except one felt that the most problematic feature of the work on the case
study was the impossibility of having a feedback from a customer, given the lack of
precision and of consistency of the informal requirements.

Agenda: first draft of a specification for offices after one feedback from the customer,
analysing the interaction between requirements and finding missing requirements. 20
pages, 10 days.

Abstract State Machines (ASM): complete abstract specification (ground model
which separates the physical environment from the control and is structured for
foreseeable requests for change) and a refined executable specification. 20 pages, 8
days, tool: asmgofer simulator.

FOREST: complete (reusable and structured) specification which minimizes the gap
between customer and designer, with final feedback from and acceptance by the
customer. 150 pages, 40 days. Tool: editor and document creator for different views.

Ignorance: list of questions before feedback from the customer, easening the
definition of a lexicon and offering help for rapid prototyping. 7 pages, 2 days.

Language Expanded Lexicon (LEL): partial lexicon (triggering more information
for a satisfactory complete lexicon) and 1 scenario, defined before feedback from the
customer. 25 pages, 4 days. Tools: lexicon editor, scenario editor, crc-card generator
from lexicon and scenarios.

27

Natural language Parsing (NLP): incomplete first draft specification. 15 pages, 1
hour. Tools: text generator, graph representation and consistency checker.

SCR (USA): four-variable-model, designed for ease of change, for 1 office including
fault tolerance, 5 pages, 3 days. Tool environment.

SCR (CND): specification for 1 office including malfunction and priorities. 8 pages,
5 days.

Statemate: almost complete executable specification for one office. 10 pages, 3 days.
Tool: Statemate.

TRIO : almost complete executable specification for one office. 20 pages, 5 days.
Tools: model generator and history checker.

X-machines: Analysis of requirements with respect to an abstract model, series of
refinements including design for test issues (test set generation). 18 pages, 5 days.
Tool: test generator.

28

The Richness of the Requirements Engineering Process

Barbara Paech, FhG IESE (with input from Stefanie Lindstaedt, DaimlerChrysler)

The Scope of the RE-Process

The participants of the working group had quite diverse backgrounds and interests.
Therefore, we started out by creating a common view on the RE-Process. The result
of this effort is captured in the following picture:

e. g.
wishes, ideas domain/task
knowledge ex. system

 e
lic

ite
d

ne
go

tia
te

d

 a
na

lyz
ed

Constraints
difficult or
impossible to
change

RE-Process/ Tasks

Output
to be used by other
systemseng. tasks

Input
to be transformed
through the
process

Goals
for the process or the
output

e. g.
agreement understandable
spec. reusable spec. consistent
spec measurable requ.
repeatable process affordable
process

e. g.
customer spec.
developer spec. models
prototypes risk
assessm.

e. g.
politics
culture
domain knowledge
resources

do
cu

m
en

te
d

el
ic

ite
d

ne
go

tio
at

ed
an

al
yz

ed

The RE-process (and each individual task within that process) is driven by inputs,
goals, and constraints and produces some output. The driving forces can be
distinguished into forces on the solution space which are transformed through the
process (inputs, e.g. customer wishes, existing systems), forces on the solution space
which are impossible or difficult to change (constraints, e.g. politics, system type) and
forces on the RE-process and its outputs (goals, e.g. agreement, reusable process,
consistent specification). The domain knowledge, for example, is partly input (like
user tasks knowledge) and partly constraint (like physical laws). All these driving
forces are typically not evident at the beginning of the process, but have to be elicited,
negotiated and analyzed within the process.

Depending on the forces and the required output, RE-processes have quite different
characteristics. So, a process starting with a vague (product) idea of the customer and
aiming at a detailed customer specification will typically be a mutual learning
process between customer and developer, dominated by elicitation and negotiation
tasks, while a process driven by a quite detailed customer specification (developed by
the customer or in a separate project) aiming at a developer specification is typically
dominated by analysis. Typically, a contract separates these two types of processes.
However, even without a contract there is an important kind of border between the
two processes due to the effects of change. Change of requirements is easier in the

\

::: -----,,

[J

29

first part than in the second. Typically the detailed customer requirements reach a
state of complexity and settledness that changing one or several ones of them requires
a lot of effort, time, and money. Thus, on that border the willingness of the RE-
participants to accept change decreases.

Examples of Industrial RE-Processes

Based on this common understanding we looked at specific instances of industrial
RE-processes and their problems. One problem we discussed for several hours was
the situation of pre-development and series-production groups at DaimlerChrysler. A
pre-development group typically gets a new, vague idea from research (e.g. avoid
sliding of the car when braking). The task of pre-development is then to build a first
prototypical system which can work in a car. Afterwards the prototype is given to a
series-production group. The task of this group is now to re-implement the system
cleanly and to consider the additional constraints the system has to meet like specific
control units used, etc. The problem is, that much of the design rationale of the
prototype is lost when it is given to series-production. So the engineers basically have
to re-engineer the prototype. The question is now: how is it possible to capture the
important design decisions for reuse in series-production without hindering the
creativity and spontaneity of the pre-development engineers who develop the
prototypes?

During the discussion 4 ways of dealing with this problem surfaced:
1. The series people could elicit the design rationale from the pre-development group

after the prototype has been constructed.
2. The pre-development people should document each design decision during the

prototype development.
3. Mix people from pre-development and series-production: send some people from

pre-development with the prototype to series-production, and /or have some series
people already involved in the pre-development.

4. Combine all three approaches: people in pre-development collect some notes on
their rationale, reflection workshops are held periodically in which pre-
development tries to make their rationale and experiences explict. On such
workshops people from series-production might be present(especially when the
prototype becomes more and more mature) and should document the knowledge
elicited. The intend is to use the pride of the pre-developers to motivate them to
talk about their experiences. The whole process of the reflection workshops
should be driven by the informational needs series-production has.

Obviously, options 1 to 3 by themselves are not feasible. However, the combination
of them described in option 4 (which could be varied in several ways) tries to
combine their merits in a most helpful way.

Another pressing problem DaimlerChrysler faces is the question of how to deal with
quality requirements. Already in his presentation on the first day of the seminar Kurt
Schneider (DaimlerChrysler) illustrated how quality models can be used. However,
this approach is not entirely satisfying and the hope was to get pointers to research
work dealing with this problem. Discussing this topic it became apparent that there is
no ready to use approach available. In order to break typical quality requirements like
usability and reliability down into testable requirements a lot of domain knowledge is

30

required. This knowledge needs to be collected and reused so that it can already be
applied in early RE-process phases like in the creation of the contract.

RE-Techniques

Having explored the problem dimension of RE-processes we started on the second
day from the solution viewpoint and looked at different techniques applicable during
the RE-process. The following picture shows a quite impressive list of techniques for
the different RE-tasks which, however, is far from being complete. It just reflects a
quick brainstorming of the participants.

Requirements Analys is

 T racing Change-
Management

Validation /
Verification

S imulation

Animation
virtual environ.

model check

theorem proving

inspections (e.g.,
PBR)

prototyping,

storyboards ,
mock-ups

testcase

derivation

viewpoint-analysis

Vers ion control

sys tems

mgmt techniques
(e.g., impact an.)

(:=docum.

of the process
and relation

to the product)

design rationale

(hyper-)links

tables , matrix

Entity-Rel.

R equirements E ngineering

T ools (DOORS ,
MS Word, Excel)

S tandards

Glossary

Documen-

tation
NegotiationE licitation

Interviews
(unstruct, s tr.)

Protocol Analys .
Laddering

Card sorting
Role plays

T erminology
(Glossary etc.)

CRC-Cards
B rainstorming

Metaplan

Contextual Des .

E thnography

AHT

 MCDA

Expert Convers .

US T M (s take-
holder analys is)

templates

Workshops

RAD (rapid
app.

Developm.)

prioritization

(portfolio)

Inter-
pretation

Requirements Management

S cenarios
Viewpoints
S A, E R,OMT ,UML

We tried somewhat harder to identify techniques for handling non-functional
requirements, but besides general techniques for capturing, structuring, and
documenting knowledge (in particular quality features) and on resolving conflicts
between them nothing much seems to be around. A conjecture was made that the
reason for this is the general attitude of treating non-functional requirements as being
secondary to the functional ones. The discussion on techniques also made clear that
the most fundamental skills of a requirements engineer are communication skills.

The picture also shows that some techniques are more general than others - the most
general ones are listed separately. These techniques can be applied to many tasks, but
they still have aspects which make them particularly suited for a specific tasks. So,
e.g. scenarios are certainly a way to document requirements, but their main benefit is
in the elicitation tasks. Also, analysis methods like SA are mainly sold as a
documentation means, however, there are specific usages of these techniques for e.g.
elicitation purposes.

While it is quite easy to give a rough categorization of the techniques according to the
RE-tasks and the forces mentioned above, we found it quite hard to describe the

31

situations in detail in which a particular technique is of most benefit. Thus, it is
difficult to give general recommendations for techniques to industrial requirements
engineers, since the choice depends on many implicit factors.

RE-Process Improvement

Comparing this result with the result of the problem discussions from the first day, it
seems that improvement of industrial RE-processes is achieved by first designing an
appropriate organizational solution and only then filling out the technical details
based on the specific factors of the company.

The working group ended with a characterization of the major achievements of the
RE-community in the last years. The participants felt that important points are the
focus on elicitation, the shift from requirements modeling to requirements design and
the overall increasing recognition of the importance of RE in industry.

Also, it was emphasized that Requirements Engineering and Software and Systems
Engineering are getting reunited in several ways:
- there is an integration of architecture and design issues in the requirements

specification,
- a lot of S(W)E-tasks which one would normally not view as RE-tasks (e.g.

evaluating project descriptions) contribute to the requirements engineering process
and benefit from RE-techniques,

- a lot of outputs from the RE-process can be used for other S(W)E-tasks than only
design (e.g. using scenarios for test case generation),

- requirements engineering is a continuous process within the S(W)E-process and
does not end with the delivery of the software system created.

Altogether, the group agreed that there is a rich set of issues and techniques associated
with the RE-process becoming more and more valuable for systems and software
engineering as a whole.

This report was compiled by Erik Kamsties, Fraunhofer IESE, Germany.

