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1 Introduction

Linear Logic was introduced by J.-Y. Girard in 1987, and has attracted much
attention from computer scientists as a logical way of coping with resources
and resource control. The basic idea of Linear Logic is to consider formulae
in a derivation as resources, which can be consumed or produced. To realize
this basic idea we consider a logical system where the duplication and/or
erasing of formulae must be explicitly marked using a unary operator, called
an exponential or a modality. Rather than an alternative to Classical Logic,
Linear Logic is a refinement of it: using Girard’s well-known translation we
can investigate the usage of resources in proofs of the traditional theorems.
Linear Logic shares with Intuitionistic Logic a well-developed proof-theory
and shares with Classical Logic the involutive behavior of negation, which
makes its model theory particularly pleasant.

More importantly, because resource control is a central issue for Computer
Science, Linear Logic has been applied to several areas within it, includ-
ing functional programming, logic programming, general theories of concur-
rency, syntactic and semantic theories of natural language, artificial intel-
ligence and planning. Several sessions in prestigious conferences like LiCS
(Logic in Computer Science) as well as whole conferences (Cornell 1993,
Cambridge 1995, Tokyo 1996, Luminy-Marseille 1998) have been devoted to
Linear Logic, a measure of the penetration of these ideas in the community.

2 Report

The Dagstuhl seminar Linear Logic and Applications contained talks con-
cerning a number of different application areas of linear logic, as well as
talks on more foundational issues.

(a) There was a large representation of linguistic applications. A repeated
theme was a need for proof search methods that could efficiently un-



cover all distinct proofs of a given formula from a set of premises;
distinct proofs either corresponding to distinct parses of a sentence,
or distinct semantic interpretations of a parse. Many of the linguis-
tic applications employed some version of categorial grammar, which
through the Lambek calculus bear close connections to linear logic.
However, the applications were not limited to this one style of linguis-
tic theory: there were presentations on how linear logic could account
for the resource sensitive nature of minimalism, how it could be used
for rewrite rules in machine translation, and how categorial seman-
tics could be combined with other grammatical theories. There was
additionally discussion of how proof nets could account for observed
processing costs in different types of linguistic construction. There was
also discussion of how Linear Logic could be used to encode pragmatic
distinctions (in natural language meanings), e.g. between assertions
of fact, obligations.

Applications to verification and specification. There were two presen-
tations on using linear logic for formal specification and verification.
Both stated that linear logic appeared to provide a compact and in-
tuitive representation for a variety of problems, as compared to many
other logical specification languages. However, the need for a com-
bined linear and temporal logic was clearly felt.

There were also presentations on the application of linear logic to
functional programming. There has been a longstanding hope that
the resource/usage counting aspects of linear logic could be used to
allow efficient memory management / garbage collection in functional
languages. Presentations showed how this goal could be met in a
number of useful special cases, but higher-order functions continue to
raise problems for the more general goal.

Semantics of linear logic. The seminar included talks on game seman-
tics for Linear Logic as well as semantic spaces useful for linguistic
representations.

Proof theory, search, complexity and syntax. Talks on proof search
and checking included a discussion of potentially incremental connec-
tion methods, and the presentation of a linear time algorithm for mul-
tiplicative linear logic. There was also a talk on the complexity of
proofs, using their graph-theoretical properties and also presentations
on the treatment of quantifiers as infinite tensors and pars, as well as
the significance for various translations / embeddings between logics.

The semantics of resources and bunched implications. The seminar
also contained three presentations that, collectively, argued that linear
logic should not be viewed as “the” logic of resources. Thus while



Linear Logic may serve well as a process logic, and as providing a better
understanding of proof and the nature of some familiar connectives, it
was argued that it fell short in its account of resources. It was argued
instead that a logic of bunched implication grew more naturally out
of considering the nature of resources.

It is probably fair to say that the (negative) claims about the resource sen-
sitivity of linear logic provoked the most controversy in the meeting. While
there was perhaps a fairly general consensus that linear logic should not be
seen as the only logic of resources, there was no similarly general agreement
that it was not a resource logic at all, nor that it was thereby devoid of
interest, e.g. in shedding light on proof theory / cut-elimination. Also, to
many of the participants working at the applied end, much of the dispute
had the air of an internal argument, where it was unclear whether or not the
results would have far-reaching consequences for many of the more practical
applications.

At a more informal level, the meeting succeeded admirably in bringing to-
gether people from a variety of different backgrounds, and with different
expectations of linear logic, and provoking lively, friendly and productive
discussion.

3 Programme of the Seminar

Monday, 23 August

Mark Hepple Linear Logic, Tree Descriptions, and Early Deduction
Alessandra Carbone On the Complexity of Proofs

David Pym The Logic of Bunched Implications

Luiz Carlos Pereira  Translations and Normalization: applications to Linear Logic
Gianluigi Bellin A pragmatic interpretation of Substructural Logics

Dick Crouch Linear Logic for Natural Language Semantics:

skeletons, modifiers and proofs with identities
Tuesday, 24 August

Uday Reddy Linear Logic, SCI and Resources
Eike Ritter Linear Abstract Machines with the Single Pointer Property
Peter O’Hearn On Resource Semantics of Bunched Implications

Martin Hofmann  In place update with linear types

or how to compile functional programs into malloc()-free C
Geert-Jan Kruijff Resource Logics, Natural Language Grammar and Processing
David Sinclair Specifying and Verifying Protocols using Linear Logic



Wednesday, 25 August

Andrea Schalk  Abstract Games for Linear Logic
Glyn Morrill Proof Nets as Syntactic Structure of Language

Thursday, 26 August

Hermann Haeusler  Infinitary Linear Logic and

Multiplicatively Quantified Linear Logic
Francois Lamarche  Spaces for the Semantics of Linear Logic and Linguistic Representation
Philippe de Groote  Towards a Generalisation/Implementation of Type Logical Grammars
Christian Retoré Linear Logic and Chomsky’s Minimalist programme for Linguistics
Sara Kalvala A Substructural Logic for Formal Verification
Bertram Fronhoefer  Proof Search in Multiplicative Linear Logic

Friday, 27 August

Tsutomu Fujinami A Decidable Linear Logic for Speech Translation

Akim Demaille Hybrid Linear Logics

Luke Ong A Linear-Time Algorithm for Verifying MLL Proof Nets
via Lamarche’s Essential Nets

4 Abstracts of the talks

Linear Logic, Tree Descriptions, and Earley Deduction

Mark Hepple,
University of Sheffield

This talk draws parallels between a number of logical and grammatical for-
malisms, with a view to adapting ideas and methods available for one ap-
proach to some of the others. The approach of categorial grammar is firstly
introduced, as well as a specific categorial system, the (product-free) Lam-
bek calculus. Then, the relationship between the Lambek calculus and the
implicational fragment of linear logic is discussed, and it is shown how the
latter can be used as a basis for implementing the former by use of the
labelled deduction methodology of Gabbay. We then discuss the relation-
ship between the Lambek calculus and grammatical representations which
employ tree descriptions. This leads to a demonstration that Lambek deduc-
tions can be compiled to a variant of the formalism Multiset-valued Linear
Indexed Grammar, in which categories are augmented with labels that cap-
ture the Lambek system’s ordering constraints. This compilation allows for
an efficient deduction method which is related to Earley’s top-down, predic-
tive, chart parsing algorithm. This approach is readily adapted to provide
an efficient tabular deduction method for implicational linear logic.



Linear Logic for Natural Language Semantics: skeletons, mod-
ifiers and proofs with identities

Dick Crouch,
Xerox Palo Alto Research Center

We start by briefly reviewing the ‘glue language’ approach to the semantic
interpretation of natural language [1]. This uses an (implicational) fragment
of linear logic to assemble the meanings of words and phrases in a syntac-
tically analysed sentence. This raises an important, but neglected, proof
search problem of relevance to computational linguistics.

From a given set of premises (representing lexical items), and with a given
conclusion in mind (representing an analysis of the full sentence), there is
typically a multitude of distinct normal form derivations, each assigning a
distinct proof/meaning term to the sentence. Many applications in com-
putational linguistics require exhaustive proof search, where all alternative
derivations are found, and as efficiently as possible.

In the case of glue language derivations, it turns out that all alternative
derivations arise through different ways of introducing modifiers into a single
skeleton derivation. In logical terms, modifiers correspond to identities of
the form ¢ —o¢ (for atomic or complex formulas ¢). Given this feature of
glue language derivations, the following three questions are addressed

1. How can normal form modifier derivations concluding in identities,
I'; F ¢ —o¢, be inserted into normal form skeleton derivations, I's - v,
to create all possible normal form derivations, I';,I's F 7

2. How can modifier derivations be separated out from skeleton deriva-
tions in the first place?

3. Why might this ‘skeleton-modifier’ approach to derivations be compu-
tationally efficient, especially when combined with standard tabular /
Earley deduction techniques

References
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Resource Logics, Natural Language Grammar and Processing

Geert-Jan Kruijff
Charles University, Prague

This talk consists of three parts. The first part reviews the use of substruc-
tural logics in formal approaches to natural language grammar and seman-
tics. In particular, labelled deductive systems of the form ( label, formula )
are considered as a means to model substructural logics. Employing differ-
ent algebras over the labels that guide the inference over the formulas they
are attached to, a whole landscape of substructural logics arise that spans
from the non-associateve Lambek calculus NL (weakest) to the Lambek-
van Benthem calculus LP (strongest). t The latter has a correspondence to
multiplicative linear logic (MLL).

In the second part of the talk a tabular deduction method is presented.
Its aim is to provide an efficient means of processing with grammars that
are modelled as LDS-style substructural logics. The method is based on a
method proposed by Hepple (see also talks by Hepple, Crouch). The method
presented here extends Hepple’s method by including the means for handling
directional implications, structural rules and many modals. Finally in the
third part we raise several questions regarding various formal characteristics
we would like to establish for complex systems in which substructural logics
of various strengths coexist and interact.

Linear logic and Chomsky’s minimalist programme for lin-
guistics

Christian Retoré
INRIA-Rennes

This talk is meant to explain the growing interest in the connection be-
tween resource-logical theories of grammar and the minimalist grammars
of the transformational tradition in syntax. Although there are substantial
differences that can be debated, the prospects also look good for identify-
ing a valuable common ground. In particular, the rich descriptive tradition
of transformational theory may become more accessible to resource-logical
frameworks, and the frameworks may stimulate a more sophisticated un-
derstanding of the mechanisms of minimalist grammar, in particular from
a computational viewpoint (parsing and learning algorithms). Linear logic
is an appealing framework for a logical treatment of minimalist grammars;
indeed linear logic is a neat and well studied logic from a proof theoretical
perspective which is able to handle both resource logic for syntax (like the



Lambek calculus) and logic for semantics (like intuitionistic proofs depicting
formulae of usual predicate calculus used in Montague semantics).

I will first survey the generative perspective on language. — a possible refer-
ence is [4] by J.-Y. Pollock which presents various stages of the Chomskyan
theories. I will insist on Chomsky’s minimalist program for linguistics [5],
which gets closer to Lambek’s categorial grammars:

e grammars are assumed to be fully lexicalized

e lexical entries are made of features (categorial, or functional) which
are “linguistic resources”.

e all the operations of the grammar are driven by feature consumption,

e the two generative operations MERGE (the combination of phrases)
and MOVE are triggered by the consumption of categorial features.

Nevertheless, the difference lies in the presence of phrasal movement for
producing the phonological form and the logical form of a sentence.

Then I will present Stabler’s formal (tree) grammars [1] which formalize
these ideas, and finally show how they can be encoded in plain Lambek
calculus, plus a simple automaton, as done in [2]. The simple automata
is used after the Lambek proof is constructed in order to compute word
order and logical form. The key point is to use product elimination (that
is “par” introduction) for encoding movement: during the computing of the
labels (phonological and logical forms) from an “ordinary” Lambek proof,
this rule is used to copy the label of the main premise to the two discharged
hypotheses. The strength of the features which are discharged explain cross
language variation, as in Chomsky’s minimalist program.

Acknowledgement: Edward Stabler (UCLA, Los Angeles) gave the first for-
malization of minimalist grammars, the one we are using [1]. The encoding
of Stabler’s minimalist grammars is from a recent paper with Alain Lecomte
(UPMF, Grenoble) [2]. The general relation between these two fields is taken
up again from a recent paper with Edward Stabler on this connection [3].
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Towards a Generalisation/Implementation of Type Logical
Grammars

Philippe de Groote
INRIA - LORIA

We review the notions of Lambek Categorial Grammars [1], of Montague
Grammars [2], and of Type Logical Grammars [3]. Then we propose a
general framework, inspired by these different formalisms.

In this new framework, an abstract lexicon is simply a higher-order linear
signature, and a concrete view of such a lexicon is a realization of the sig-
nature by means of linear A-terms. This scheme allows several views of a
same lexicon to be defined: typically, a syntactic view and a semantic view.
We argue that the resulting formalism is well-suited for an implementation.
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Proof Nets as Syntactic Structures of Language

Glyn Morrill,
Universitat Politécnica de Catalunya



Type Logical Grammar (Morrill 1994; Moortgat 1996; Carpenter 1998) is
a theory of categorial grammar which defines the relation of syntactic for-
mation logically, by an interpretation of categorial types, rather than by
stipulation of a formal system. The logic is generally some variety of non-
commutative, probably intuitionistic, linear logic, paradigmatically Lam-
bek’s Syntactic Calculus. Since derivations are proofs, computational con-
cerns raise the question: what is the essential structure of proofs? To which a
powerful answer is: proof nets, leading to the slogan ‘proof nets as syntactic
structures of language’.

We have introduced methods based on proof nets addressing four aspects of
categorial processing: tabularization of Lambek proof nets (Morrill 1996),
type logical generation (Merenciano and Morrill 1997), preevaluation of
lexico-syntactic interaction (Morrill 1999) and incrementality and best-first
resolution of local and global ambiguity (Morrill 1998). The first and sec-
ond are not presented here. The third observes that if syntactic derivation
and lexical semantics are represented uniformly as proof nets, the substitu-
tion of lexical semantics into derivational semantics, usually postevaluated
by on-line lambda conversion, can be preevaluated by off-line lexical Cut-
elimination ‘getting rid of lambda conversion once and for all’. The fourth
observes that a wide range of psycholinguistic processing phenomena are
explained on the plausible assumption that incremental processing resolves
axiom link dependencies as soon as possible.
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A Decidable Linear Logic for Speech Translation

Tsutomu Fujinams,
School of Knowledge Science, JAIST

The structure of objects employed in the study of Natural Language Seman-
tics has been increasingly complicated to represent the items of information
conveyed by utterances. The complexity becomes a source of trouble when
we employ those theories in building linguistic applications such as speech
translation systems. To understand better how programs operating on se-
mantic representations work, we adopt a logical approach and present a
monadic and multiplicative linear logic. In designing the fragment, we re-
fine on the multiplicative conjunction to employ both the commutative and
non-commutative connectives. The commutative connective is used to glue
up a set of formulae representing a semantic object conjointly. The non-
commutative connective is used to glue up a list of formulae representing
the argument structure of an object, where the order matters. We also
introduce to our fragment a Lambek slash, the directional implication, to
concatenate the formula representing the predicative part of the object and
the list of formulae representing the argument part. The monadic formulae
encode each element of the argument part by representing its sort as the
predicate and the element as the place-holder. The fragment enjoys the nice
property of being decidable. To encode contextual information involved in
utterances, however, we extend the fragment with the exponential operator.
The context is regarded as a resource available as many times as required,
but not infinitely many. We encode the items of context with the exponential
operator, but ensure that the operator should appear only in the antecedent.
The extension keeps the fragment decidable because proof search will not
fall into an endless search caused by the coupling of unlimited supply and
consumption. We show that the fragment is rich enough to encode and
transform semantic objects employed in the contemporary linguistic theo-
ries. The result guarantees that the theories on natural language semantics
can be implemented reasonably and safely on computers.

A pragmatic interpretation of Substructural logics

Gianluigi Bellin (Univ. Verona) and
Carlo Dalla Pozza (Univ. Lecce)

In the philosophical approach proposed in Dalla Pozza [1995, 1997] Tarski’s
semantics for classical propositional logic is compatible with Heyting’s in-
terpretation of intuitionistic connectives, if the former applies to the logic
of propositions and the latter is regarded as an informal model for the logic
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of judgement and of obligation. Namely, a language £” is proposed where
Heyting’s interpretation holds of formulas with assertive pragmatic force,
deontic pragmatic force is interpreted as a modal operator and Tarski’s se-
mantics applies to radical formulas, without a sign of pragmatic force. We
present here a sequent calculus that formalizes reasoning with mixed as-
sertive and deontic contexts: these are essential to formalize fundamental
schemes in legal reasoning such as conditional obligations (“if A is forbid-
den and it is assertible that A, then sanction B is obligatory”). The guiding
principle of our formalization is Hume’s law (“we cannot derive an ‘ought’
from an ‘is’ and vice-versa”). Taking this principle seriously forces the use of
a mixed relevant and ordinary intuitionistic consequence relation. Finally,
we conclude that linear logic is the logic of pragmatic schemes where the
sign of pragmatic force is unspecified, and such that the scheme remains
valid under the widest range of substitutions of assertive or deontic signs of
force for the unspecified ones.
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Specifying and Verifying Protocols using Linear Logic

David Sinclair,
City University Dublin

Communications protocols are significant elements of today’s electronic com-
munications infrastructure. The ability to formally specify these protocols,
and the ability to verify their properties is essential. Many formalisms have
been used. Some are more suited to specification, others are more suited to
verification. This talk advances Linear Logic as a formalism that is suited to
both the specification and verification of protocols. The TCP/IP protocol is
taken as an example. A Linear Logic specification of the interface to the IP
and TCP layers is presented, as well as a specification of the data transfer
portion of the protocol. Properties of the IP are proved. The composition
of the specifications of the IP layer interface and the data transfer protocol
is shown to have the same properties as the TCP layer interface, namely
that data is transferred as a stream of octets. The approach leads to rel-
ative simple specifications that enable verification. However this work has
indicated that the addition of temporal reasoning to Linear Logic would be
a great advantage.
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A Substructural Logic for Formal Verification

Sara Kalvala,
University of Warwick

While several toy examples, such as in the “blocks world” or concerning
cigarettes and chocolates, have been used to demonstrate the applicabil-
ity of Linear Logic to capture the concept of resources in the real world,
Linear and other substructural logics have not yet been successfully used to
model temporal properties, which are necessary for verification of computing
systems (software and hardware). Traditionally, such systems are specified
using variants of temporal logics, which capture many of the notions of be-
haviour over a possibly infinite computation; however, what they are not
ideal for is to describe and reason about each step of the computation.

Linear logic can be seen to model single computation steps directly, as it is
often claimed that Linear Logic captures the notion of state, and a single step
in a computation is a change of state. If a computation step consumes certain
properties of state and generates new properties, it can be represented by a
linear formula,

P](S) —OPQ(S)

where s is the representation of state and P; and Ps are predicates charac-
terizing each state. Programs consist of actions, which can either be single
commands represented as above or structuring constructs. We can represent
a choice between two actions (a generalized version of if-then-else) by the
linear par (%).

Loops play an important role in computations. The simplest model of a loop
is an action that can be repeated (potentially infinitely) many times until
some condition is met. Using linear constructs, this can be written simply
with an exponential around an action; of course the condition needs to be
coded in.

Let us take as an example an algorithm which calculates the GCD (Greatest
Common Denominator) of two numbers by the difference method. This
repeatedly replaces the larger of two values by the difference between it and
the smaller value. The repetition continues until one of the values becomes
zero, at which point the other value is the greatest common denominator of
the two initial numbers. Here is a linear logic formula representing it:

r=a®y=0",
Wol,v2.((z=v1)® (y =1v2) @ (vl < v2) ® (vl > 0)) —o((z =v1) ® (y = v2 — vl))
B(z=v])@(y=12)® (vl > v2)® (v2 > 0)) —o((z = vl — v2) ® (y = v2))
Fz=0®y=GCD(a,b))|(x =GCD(a,b) @y = 0)
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Let us see what this means: the initial state for the computation is specified
by assigning the values a¢ and b to = and y, respectively. The main body
of the program is a loop, in which there is a choice between two actions,
depending on whether the value stored in z is less than the value stored in
y or not. The loop is only enabled if both values are greater than 0. Finally,
the desired final state of the computation is reached when either x or y
become 0, in which case the other variable contains the calculated GCD.

The above is a simplistic use of linear logic operators for describing algo-
rithms. There are still many issues to be addressed - such as how to repre-
sent concurrency, or data scoping, or non-determinism, or which variant of
linear /substructural logic is ideal for this kind of use, from the semantical
point of view. It is hoped that this presentation will fuel further discussion
and result in collaboration between logic developers and the applications
community keen on exploring new avenues to facilitate formal verification.

Linear Abstract Machines with the Single Pointer Property

FEike Ritter,
School of Computer Science, University of Birmingham

Resource control in functional programming was an early application of
linear logic. The idea was that as linear variables are used exactly once,
objects of a linear type should have exactly one pointer to them. Hence
update-in-place for linear objects should be possible. This turned out to
be problematic, as was first observed by Gunter et al. I present in this
talk a different approach. I describe a calculus which separates language
constructs for resource control from language constructs for manipulating
data. In this way we obtain a calculus which describes update-in-place.
Linearity plays only a limited role in this calculus: if the all operations on
a given type are destructive, it follows that variables of this type are linear.
If a type admits also non-destructive operations (eg arrays) linearity is not
a necessary condition for update-in-place. In general, with higher-order
functions, linearity is also not a sufficient condition for update-in-place.

This is joint work with Valeria de Paiva.

In-place update with linear types or how to compile functional
programs into malloc()-free C

Martin Hoffman,
University of Edinburgh

We show how linear typing can be used to write C functions which modify
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their heap allocated arguments in a functional way without explicit “pointer
surgery.”

We present this both as a “design pattern” for writing C-code in a functional
style and as a compilation process from linearly typed first-order functional
programs into malloc ()-free C code.

The main technical result is the correctness of this compilation.

We discuss various extensions, in particular an extension with FIFO queues
admitting constant time catenation and enqueuing, and an extension of the
type system to fully-fledged intuitionistic linear logic.

Spaces for the semantics of linear logic and linguistic repre-
sentations

Francois Lamarche,
INRIA-Loria

This talk is the first announcement of a research program.

There are many areas of computer science that need a “theory of spaces
whose points are little spaces themselves”. For example in formal language
theory (both as a discipline by itself and as an aid to linguistics), the individ-
ual words/sentences generated by a formal language are sets-with-structure.
In this case the structure is very simple, being only a finite total ordering
whose elements are marked by atomic symbols. But this structure, in ad-
dition to being variable from word to word (the vectors vary in length), is
naturally endowed with a strong spatial character (words are definitely one-
dimensional spaces). At the same time the set of all such words/sentences
generated by a formal language has a strong intuitive, while hard to formal-
ize, notion of “neighborhood” attached to it. Two sentences may be related
by a simple substitution of words, or an active-passive transformation, which
shows they are more closely related than two random samples. For another
example replace the space of all sentences by the space of all their parsing
trees. Here, the main difference is that the spatial character of the “little
spaces” is not simply linear anymore, but tree-like.

So we have identified two levels of “spaceness”, “big” and “small”, the former
serving as domain of variation, in the sense of Lawvere, for the latter. It
turns out that once it is recognized, this situation appears in many areas of
computer science and applied mathematics: concurrency theory (a process
is a big space and its little spaces are its states), statistical learning theory,
knowledge representation, rewriting theory, population biology...

We will present a general theory of such spaces. It is informed by two
paradigms, that have to be adapted to fit together. One is the Grothendieck-
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Lavwere theory of toposes, with its connection both to geometry and to
model theory. The second one is linear logic: The operations that generate
and split little spaces will be seen as generalized multiplicative connectors
of linear logic, while the structure that unites all the little spaces into a
big one proceeds from the additive fragment of linear logic. The natural
“cement” between these two paradigms will be seen to be a class of theories
in linear universal algebra, which can be seen as a “general theory of little
spaces”, and at the same time, as a theory of contexts for a multi-modal
multiplicative fragment. A common slogan in proof theory is that “a logic is
generated by its theory of contexts”. The extension of a theory of contexts to
a full logic can be be seen roughly as the addition of the negative connectors
(par and with) to the purely positive fragment (tensor and plus). This adds
the important property of *functionality™ to the theory of spaces, which can
be already observed in the simplest possible example, that of MALL.

Abstract Games for Linear Logic

Andrea Schalk,
Cambridge University

We draw attention to a number of constructions which lie behind many con-
crete models for linear logic; we develop an abstract context for these and
describe their general theory. Using these constructions we give a model of
classical linear logic based on an abstract notion of game. We derive this
not from a category with built-in computational content but from the simple
category of sets and relations. To demonstrate the computational content of
the resulting model we make comparisons at each stage of the construction
with a standard very simple notion of game. Our model provides motiva-
tion for a less familiar category of games (played on directed graphs) which
is closely reflected by our notion of abstract game. We briefly indicate a
number of variations on this theme and sketch how the abstract concept of
game may be refined further.

Proof Search in Multiplicative Linear Logic

Bertram Fronhdfer,
Institut fir Informatik, Technische Universitdt Minchen

In [1] we gave a characterization of theoremhood in terms of the Connection
Method for the multiplicative fragments of Affine (Contraction-Free) and
Linear Logic. Such matrix characterisations constitute a basis for the adap-
tion of the classical proof search procedures to the just mentioned logics.
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Based on this work computationally advantageous variants of the previ-
ously developed matrix characterisations are established. Instead of the
traditional complementarity of (horizontal) paths they hinge on the total
connectedness of a sufficient number of virtual columns (vertical parths) in
a matrix (non-purity). This yields a new view of the proof search process:
Instead of having to examine all possible extension steps for a not yet com-
plementary partial path, we just have to ‘complete’ not yet totally connected
virtual columns. This means less possibilities and thus pruning away parts
of the search space.

Thus we derive a pruning technique for proof search in acyclic (and linear)
matrix graphs, which can be used for multiplicative Affine Logic. Extending
proof search to multiplicative Linear Logic, we show that the additionally
required minimality of spanning sets is automatically assured by depth-first
search, and that the necessary connectedness of all literals can be tested
incrementally.
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A Linear-time Algorithm for Verifying MLL Proof Nets via
Lamarche’s Essential Nets

A. S. Murawski and C.-H. L. Ong,
Ozford University Computing Laboratory

We consider the following decision problems:

PROOFNET : Given a multiplicative linear logic (MLL) proof
structure, is it a proof net?

ESSNET : Given an essential net of an intuitionistic MLL for-
mula, is it correct?

In this paper we give a linear-time algorithm for ESSNET. By showing
that PROOFNET is linearly reducible to ESSNET, we obtain a linear-time
algorithm for PROOFNET. Hence the question of whether a given linearly
balanced MLL formula is provable can be settled by a linear-time algorithm.
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On the Complexity of Proofs

Alessandra Carbone
University of Paris XII

We present a survey of results on graphs associated to formal proofs. From
graph-theoretical properties we derive consequences that explain the ex-
pansion of proofs under cut-elimination, both for the propositional calculus
and for the predicate calculus. Linear, polynomial, exponential and super-
exponential complexities arise from the topology of the graphs.

Infinitary Linear Logic and Multiplicatively Quantified Linear
Logic

Edward Hermann Haeusler and Luiz Carlos P.D. Pereira
Pontificial Catholic University of Rio de Janeiro

This work has the purpose of describing the multiplicative quantifiers that
arise from infinitary versions of the tensor ® and the par % connectives.

Blass [1992] has made the observation that an infinitary version of the par
connective would need a generalized form of sequent and its proof theory
would be quite hard. In this talk we present:

e An infinitary sequent calculus for classical linear logic (with infinitary
par and tensor) with semantics based on an extension of Phase-Spaces
to cope with infinitary operations. The calculus is shown to be com-
plete and sound with respect to this semantics.

e A Sequent Calculus for the Multiplicative Quantifiers that arise from
the infinitary calculus. A notion of Linear Structure based on infinitary
Phase Spaces is used to provide a sound and complete semantics for
this calculus. The cut-elimination theorem is proved for this calculus.

e A multiple-conclusion Natural Deduction for infinitary classical linear
logic. In order to obtain the normalization theorem we need to work
with a restricted version of the proposed infinitary classical linear logic.
This restrictin concerns the existence of finite upper bound for the
degrees of formulas and for the height of the derivations.

As one conclusion from this work we can mention that the problems pointed

out by Blass really concern infinitary classical linear logic rather than mul-
tiplicatively quantified classical linear logic.
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Hybrid Linear Logics

Akim Demaille,
EPITA, France

Embedding problems within a logic is an attractive way of formalizing: the
ground is known to be sound, there are usually many nice results etc. Un-
fortunately, in general, while the coding is sound (positive results for the
initial problem are translated as theorems), it is far from being reciprocal
(logic gives false positives).

A typical example of this phenomenon is the translation of lcc into linear

logic by Paul Ruet : while from intuitionistic linear logic success are observ-
able (Saraswat and Lincoln), failures are not. The reason is simply that

c® (c—ol)Fc—o(c®1)

is a theorem, while we would like it not to be. This is simply solved by
introducing a second multiplicative family (i.e., tensor, par, implication(s)
and the associated meta connective), so that

c® (c—ol)fc—o(c®1)
no longer holds.

The same problem arises in other works, while other domains need more
structural policies (typically linguistics). Each time one realizes that one
way out is to move to a system which has a bigger number of connectives,
which are linked together via domain specific rules. There is therefore a
need for a generic study of hybrid systems which allows to design a logical
system suitable for a given problem.

Linear logic proves to be an excellent ground for such constructions. Guided
by works by M. Abrusci, U. Reddy, Ph. De Groote and P. Ruet, the key
point in order to superimpose several times linear logic (commutative or
cyclic) in a single system is to design structured contexts, or blocks.

Then one may add any number of commutative and cyclic multiplicative
families and still obtain a system with a natural phase semantics, soundness,
completeness and cut elimination results in both classical and intuitionistic
schemes.

These families may communicate via several linkage rules, such as entropy
(which states that A® B+ A® B), or relar ((A; ® Az) ® (B; ® Bg) +
(A; ® By) ® (A2 ® Bg). Both orientations are valid, and suits different
readings.

Let ® be commutative and ® be non commutative. Then, with a process
reading, it is natural to admit

AR BFAGB
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since it reflects the fact that “one way to perform A and B is to do A and
then B.

But with an information reading (or token, or resource), the converse is
expected:

AOBFA®B

“if I have A and then B, then in particular I have A and B”.

Intuitionistic systems prove to be much more robust to the addition of link-
age rules. The only “risk” is to have equivalent families in case of circular
dependencies. Classical systems do not support finer linkage rules than en-
tropy. Any finer rule, such as relax, makes the system collapse to linear logic
(all the tensors are the usual ®).

Modalities are also accommodated nicely in this framework.

Translations and Normalization: applications to linear logic

Luiz Carlos Pereira
Department of Philosophy, PUC-Rio/UFR.J

The aim of this paper is to give a brief presentation of some connections
that can be established between translations and normalization proceedures.
Special attention will be given to translations from classical linear logic into
intuitionistic linear logic.

The double-negation family of translations (Gentzen, Godel, Kolmogorov)
can be easily justified, from the proof-theoretical point of view, by the nor-
malization strategy used by Prawitz in [1]. We can also prove that Seldin’s
normalization procedure (see [2],[3]) gives rise to a new translation from clas-
sical logic into intuitionistic logic. When we consider classical linear logic,
we can prove that:

e the (L, —o)-fragment satisfies Prawitz’s strategy; and

e the (L, ®)-fragment satisfies Seldin’s strategy.

These results allow us to define two natural translations from classical
(propositional) linear logic into intutionistic (propositional) linear logic. In
the final part of the paper we suggest how multiple conclusion systems for
linear logic could be used in the definition of translations that are not based
on the unity of the multiplicative disjunction.
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The Logic of Bunched Implications

David Pym,
Queen Mary and Westfield College, University of London

We present the logic of bunched implications, BI, in which a multiplicative
(or linear) and an additive (or intuitionistic) implication live sided-by-side.
Propositional BI can be seen to arise from an analysis of the proof-theoretic
relationship between conjunction and implication, and may be viewed as a
merging of intuitionistic logic and multiplicative, intuitionistic linear logic.
The predicate version of BI includes, in addition to the usual additive quan-
tifiers, multiplicative (or intensional) quantifiers, Yew and Inew, which arise
from observing restrictions on structural rules at the level of terms as well
as propositions. Moreover, these restrictions naturally allow the distinction
between additive and multiplicative predication for each propositional con-
nective. We provide natural deduction and sequent calculi for BI. BI can
also be seen to arise from an axiomatic theory of resources, which gives rise
to a Kripke-style forcing semantics.

More generally, we give a BHK (categorical) semantics of proofs (together
with a lambda-calculus). We mention computational interpretations of BI,
based on locality and sharing, at both the propositional and predicate levels.
We explain BI’s relationship with linear logic and other relevant logics.

On Resource Semantics of Bunched Implications

Peter O’Hearn
Queen Mary and Westfield College University of London

I describe a “spatial” reading of the logic BI of bunched implications, which
derives from Reynolds’s possible world semantics of imperative program-
ming. In this view, BI’s implications and conjunctions get the following
readings:

e A—oB: if I have enough (current) resources to make A true, then then
I can establish B as well.

e A —x B: if you give me enough resources to make A true, then com-
bining with the resourcs I have I can show that B is true.

20



e A&B: A and B are true, of the current resources.

e A x B: the current resources can be decomposed int two parts, one of
which makes A true and the other of which makes B true.

I consider a “money and chocolates” example to illustrate these readings,
and also a model based on Petri nets. Example judgements are used to
drive home the intuitive reading, and how it differs from the number-of-uses
reading of linear logic.

o A—xBF A — B is not derivable

e AF(A— A— B) — B is derivable

The number-of-uses interpretation would answer the opposite for these judge-
ments; for example, in the second the assumption A is used twice. We con-
clude that BI does not support, in an evident way, a uses interpretation.
But the spatial reading provides a view of connectives which provides a way
of understanding why these judgements are the way they are.

Linear Logic, SCI and Resources

Uday S. Reddy
The University of Illinois at Urbana-Champaign

We trace the evolution of two systems: Syntactic Control of Interference
(SCI), due to Reynolds, and Intuitionistic Linear Logic (ILL), due to Gi-
rard. SCI has a a clear resource interpretation, where functions take argu-
ments with which they share no resources. ILL, on the other hand, has a
clear process interpretation where tensor means independent processes, and
linear function space means processes that involve communication between
the argument and the result. The BCI fragment of ILL does admit an emer-
gent interpretation in terms of resources, but this interpretation does not
seem to extend to “!”. The author’s Linear Logic Model of State (LLMS)
is an extension of ILL with additional connectives to represent processes
evolving in time, and servers to model imperative programs with SCI type
regimen. Such processes inhabit structures called “object spaces,” which
form a symmetric monoidal closed category. This category can be Yoneda-
embedded into a functor category (Kripke model). This gives rise to a
model of Bunched Implications (BI) with two closed structures: one, sym-
metric monoidal, to model SCI functions, and the other, cartesian, to model
general imperative programming functions. All said and done, this evolu-
tion represents an excellent study in the interplay of resource and process
interpretations of substructural logics.
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