Dagstuhl Workshop on Finite Model
Theory, Databases, and Computer
Aided Verification

03.10. - 08.10.1999
organized by

G. Gottlob, E. Gradel, M. Vardi, V. Vianu

The goal of this workshop was to bring together researchers working in finite
model theory (FMT), in databases (DB) and in computer-aided verification
(CAV). Besides complexity theory, DB and CAV are the two main application
areas of FMT in computer science.

A common concern of FMT, DB and CAV is the design and study of logi-
cal formalisms with the ‘right’ balance between expressiveness and complex-
ity. In databases, query languages are developed that should be expressive
enough for the relevant queries of a given application area, but nevertheless
lend themselves to efficient strategies for query evaluation. In CAV, speci-
fication languages are sought that are able to express relevant fairness and
liveness conditions, but can be efficiently checked on the important classes
of transition systems. In FMT, one studies the relationship between logical
definability and computational complexity systematically. One of the cen-
tral open problem of FMT is the quest for logics that precisely capture the
most important complexity classes, in particular the problem whether there
is a logic for PTIME. Hence model checking problems, in the broad sense
of finding algorithms for and studying the complexity of the evaluation of
logical formulae (queries, specifications) in a structure (database, transition
system), play a central role in all three fields.

Also the central logical formalisms in the three fields are of a very similar
nature. Typically, a basic formalism like first-order logic, relational calculus
or modal logic is extended by recursion in one form or another. In partic-
ular, fixed-point logics (formalisms that include least and/or greatest fixed

1

points as their essential feature) play a central role in all three fields. In
databases, fixed-point and while queries have been studied quite intensively
and fixed-point query languages such Datalog and its extensions are central
to the field. In CAV, the mu-calculus is in some sense the quintessential spec-
ification language, since it subsumes most of the other common formalisms
like PDL, CTL, CTL* etc. The discovery of natural symbolic evaluation of
the mu-calculus has lead to the industrial acceptance of computer-aided ver-
ification. In FMT, the most important logics are the fixed-point logics LFP,
IFP, PFP with a very close relationship to the most important complexity
classes. Hence fixed point logics, their expressive power and the algorithmic
problems connected with them have been a central topic of this workshop.

In all three communities the main focus has for many years been on finite
structures (databases, transition systems). Interestingly all three communi-
ties have recently started to extend their methods to suitable classes of infi-
nite structures. New applications like spatial (geographical) databases have
lead to the study of infinite database models, notably constraint databases.
In CAV, model checking problems on infinite transition systems such as
context-free systems or push-down system have been successfully studied and
are of increasing interest also for practical applications. Also the general ap-
proach and the techniques of FMT have been extended to suitable classes of
infinite structures (e.g. metafinite structures or recursive structures), which
seems to be one of the most promising perspectives of finite model theory for
the future. In fact this new perspective has been partially motivated by the
new developments in databases and CAV.

There were 43 participants at the seminar. The program consisted of five
invited survey talks, namely

Martin Otto: Finite Model Theory

Phokion Kolaitis: Database Query Languages

Jan Van den Bussche: Constraint Databases

Colin Stirling: Games in Verification

Pierre Wolper: Infinite Structures in Databases and Verification

and 25 other presentations, mostly of ongoing research. In addition we
had a very lively evening session on “Logic in Computer Science Education”
(chaired by Wolfgang Thomas) and numerous informal discussions in smaller
groups.

We believe that this workshop has been a success. It has certainly helped to
increase the awareness of the researchers working in one field of the problems
and methods in the others and thus to increase the interaction and collabo-
ration of the three fields, and the transfer of methodologies from one field to
another.

Georg Gottlob
Erich Gradel
Moshe Vardi
Victor Vianu

For additional information, see http://www.dbai.tuwien.ac.at/user/dag99/

Contents

1 Martin Otto: Finite Model Theory 6
2 Phokion G. Kolaitis: Database Query Languages - a finite model
theory perspective 6
3 Jan Van den Bussche: Constraint Databases 7
4 Colin Stirling: Games in Verification 7

5 Pierre Wolper: Infinite Structures in Databases and Verification 8

6 Foto Afrati: CTL* vs. Monadic Datalog 8
7 Michael Benedikt: Logical methods in pointer aliasing analysis 9
8 Nicole Bidoit: Implicit temporal query languages : towards com-
pleteness 9
9 Witold Charatonik: Stratified mu-calculus 11

10 Rolf Drechsler: Automatic verification based on Decision Diagrams 12

11 E. Allen Emerson: Aspects of Model Checking 13
12 Javier Esparza: An automata-theoretic approach to interprocedural
dataflow analysis 13
13 Kathi Fisler: Computing Bisimulation Symbolically 14
14 Erich Gradel: Automatic Structures 14
15 Martin Grohe: Descriptive and Parameterized Complexity 15
16 Neil Immerman: Reachability Logic 16
17 Marcin Jurdzinski: Small Progress Measures and Model Checking
Games 17
18 Leonid Libkin: Variable Independence 17

19 Johann A. Makowsky: Meta-Finite Monadic Second Order Logic 18
20 Frank Neven: Unranked trees in database theory 18

21 Andreas Podelski: Temporal Properties as Models of Constraint
Data Bases 19

22 Michel de Rougemont: Probabilistic Model Checking and Com-
Pression 20

23 Vladimir Sazonov: Capturing LOGSPACE over Hereditarily-Finite
Sets 21

24 Helmut Seidl: Inter-Procedural Analysis of Parallel Programs - the
Abstract Interpretation Perspective 21

25 Wolfgang Thomas: Recognizability and Constraint Satisfaction 22

26 Moshe Y. Vardi: Emptiness of Tree Automata 23
27 Helmut Veith: Linear Time Datalog: Temporal versus deductive
reasoning in verification 23
28 Victor Vianu: Verifying protocols for electronic commerce 24
29 Igor Walukiewicz: Logic on Traces 24

30 Thomas Wilke: CTL* Is Exponentially More Succinct Than CTL 25

1 Finite Model Theory

Martin Otto

This is a survey talk on some of the central issues in finite model theory. I
focus on the role of games and logical equivalences, and on ideas and results
in descriptive complexity. The discussion of games and equivalences is related
to some families of logics that feature prominently in finite model theory, in
particular finite-variable logics and fixed-point extensions of first-order logic.
Fundamental notions od equivalence, as mediated by the games, may also be
regarded as providing specif semantic frameworks (e.g. of a modal, bounded-
variable, or guarded flavour) which reflect levels of abstraction at which finite
structures are to represent typical problem instances in corresponding appli-
cations. Of the algorithmic and model theoretic issues that can usefully be
studied within these specific semantic frameworks I here consider the captur-
ing of complexity classes and model-checking issues as well as the analysis of
least-fixed point recursion.

A revised and extended version of this talk will be available from my Aachen
homepage: www-mgi.informatik.rwth-aachen.de/~otto

2 Database Query Languages - a finite model
theory perspective

Phokion G. Kolaitis

The aim of this talk was to present an overview of database query languages
from a finite model theory. Particular emphasis was placed on the trade-off
between expressive power and complexity of query evaluation.

The first part of the talk focused on first-order logic as a database query
languages and on fragments of first-order logic, such as conjunctive queries.
The second part of talk contained a survey of extensions of first-order logic

with fixed-point operators. Topics covered included least fixed-point logic,
Datalog, inflationary fixed-point logic, and the complementation problem for
least fixed-point logic.

3 Constraint Databases

Jan Van den Bussche

The concept of constraint database was introduced 10 years ago by Kanel-
lakis and his collaborators. We give an elementary introduction to the con-
cept, and present a selection of results that have been obtained in con-
straint database research. Topics discussed include quantifier elimination;
o-minimality; natural-active collapse; safety; arithmetical collapse; spatial
databases; topological connectivity; geometrical and topological queries; lin-
ear constraint databases; and recursion. A book on the subject is due to
appear in December 1999 (Constraint Databases, edited by Libkin, Kuper,
and Paredaens; Springer).

4 Games in Verification

Colin Stirling

A brief introduction to the use of games of verification was presented. Prop-
erty checking games for modal mu-calculus were described. In the case of
finite state processes these are parity games. We considered some algorithms
for this game. The second part of the talk concentrated on bisimulation
equivalence which is essentially game theoretic.Some decidability results were
mentioned. In particular a simpler proof of decidability of DPDA equivalence
using bisimulation of strict deterministic grammars was mentioned.

7

5 Infinite Structures in Databases and Veri-
fication

Pierre Wolper

After introducing a simple view of verification, this talk discusses an ap-
proach for dealing with systems having an infinite number of states. The
central element of the methodology that is outlined is a suitable represen-
tation formalism for infinite sets of states. Examples are used to show that
this representation can often be finite automata. Moving on to constraint
databases, it is then shown that automata can also be used as a convenient
constraint language for temporal database. The general conclusion is that
finite automata are a useful and recurring formalism for representing infinite
structures.

6 CTL* vs. Monadic Datalog

Foto Afrati

This is joint work with Th. Andronikos, E. Foustoucos, and I. Guessarian.

We investigate the relationship between CTL* and Monadic Datalog™. We
give a translation of CTL*(without-the-existential-quantifier) into piecewise
linear monadic Datalog™ over acyclic finite Kripke structures. Then, by using
two successor-like binary predicates, we also give a translation of CTL* into
monadic Datalog™(succy, NextSuce) over finite tree Kripke structures.

7 Logical methods in pointer aliasing analysis

Michael Benedikt

Much recent work in pointer analysis can be seen as algorithms for producing
a finitely-representable database of memory storage graphs. This database is
an approximation to the storage structures that can be produced by a source
program; once produced, this database can be mined for information relevant
to the correctness or optimization of the source program.

Some of the representations produced in program analysis are quite familiar
to existing verification tools (e.g. grammars, constraint sets). However, there
are some exceptions: representations of infinite classes of stores that do not
map easily onto standard formalisms in theoretical computer science. I'll
discuss one family of representations that has this property: shape graphs.
I'll give some idea of the kinds of properties that can be expressed in these
formalisms that can’t be expressed in classical formalisms like tree automata.
I’ll then give a new logic in which several variations of shape graph can be
embedded, and which has a decidable satisfaction problem. The embedding
of shape graphs in a logic gives an effective means for querying the shape
graph for information about the source program, and give some idea of the
expressive power of these graphs.

This is joint work with Tom Reps and Mooly Sagiv.

8 Implicit temporal query languages : to-
wards completeness

Nicole Bidoit

This is joint work with Sandra de Amo.

There are two alternative ways of extending the relational model in order
to represent temporal data. The first approach captures time in an implicit

manner: a relationnal temporal database instance is then a finite sequence of
relational instances. The second approach relies on augmenting each relation
with a “timestamp” column storing the time instants of validity of each tuple.
In the context of an implicit representation of time, query languages, called
implicit temporal query languages, are usually based on first order temporal
logic. When time is explicitly represented, queries are specified using the
standard relational query languages with built-in linear order on the times-
tamps. One of these languages, called TS-FO, is the relational calculus (i.e.
first order logic) with timestamps. A non trivial question arises then: how
implicit temporal languages and explicit temporal languages relate to each
other with respect to expressive power. It has been studied from various
angles.

Herr & all provide a hierarchy of temporal languages® with respect to ex-
pressivity: (1) it is shown that future first order temporal logic (FTL) is
strictly weaker than first temporal order logic (TL) and (2) that TL is strictly
weaker than TS-FO. The first result (FTL C TL) follows from the fact that
the query Does there exist an instant (in the future) whose state
equals the initial state? cannot be expressed in FTL but is express-
ible in TL. The second result (TL C TS-FO) is derived by showing that
the query Does there exist two distinct instants (in the future)
whose respective states are equal? cannot be expressed in TL but is
expressible in TS-FO. These two results are of major interest and stand in
contrast with the propositional case.h The notion of complete temporal lan-
guage is introduced via equivalence with TS-FO and the authors show that
propositional TL is complete. Moreover, it is shown that propositional FTL
is equivalent to propositional TL.

In the present paper, we study the following open problem : find an implicit
first order temporal language which is complete i.e. equivalent to TS-FO.
We enrich the hierarchy described above by investigating two languages NTL
and RNTL. Both languages are shown to be more powerful than TL. The
language N'TL is not complete. The language RNTL is more expressive than
NTL. Completeness of RNTL remains a conjecture.

The language NTL is the first order linear version of NCTL*. It extends
TL by a temporal modality R (“From Now On”). Intuitively, the modality
N allows one to choose a new initial time instant (called relative origin)

LOther languages investigated by these authors are stronger with respect to expressivity
than TS-FO and TL.

10

and forget about all previous instants. In this sense, it can be said that NTL
introduces a notion of relative past: the past modalities (Previous and Since)
are evaluated with respect to the relative origin. This stands in contrast
with TL whose modalities are of course always evaluated with respect to the
absolute origin. Relative past increases the expressive power of TL in the first
order case even if in the propositional case relative past is redundant with
the other temporal operators. However, the language N'TL is not complete:
we show that the query Does there exist 3 distinct instants whose
respective states (let say S;, S; and S3) satisfy S;NS; =0 and
S1USy = S37? is expressible in TS-FO but not in NTL2. This result is proved
by extending the proof technique based on communication protocol.
Because NTL fails to be complete, we extend it by investigating a rather sim-
ple idea: allowing one to forget the past is coupled together with allowing one
to restore the past. The implicit language RNTL is defined by introducing a
temporal modality & whose task is to restore the segment of the past which
has been “removed” by the last “application” of R. Once again, the ability to
restore the past does not add any expressive power in the propositional case.
However, in the first order case, RNTL is strictly more expressive than NTL.
A strict hierarchy in expressive power among fragments RNTL? of RNTL
is established. The fragment RNTL? is defined by restriction on the max-
imal number of operators in formulas. This provides a new perspective
towards proving the well-known conjecture that there is a strict hierarchy
in expressive power among the ¢ time-variable fragments TS-FO? of TS-FO.
The fragment TS-FO? is the subclass of TS-FO formulas built by restricting
the number of distinct time-variables to be at most 1.

9 Stratified mu-calculus

Witold Charatonik

This is joint work with Supratik Mukhopadhyay and Andreas Podelski.

2One says that the query separates NTL and TS-FO.

11

We introduce a fragment of alternation-free modal mu-calculus and show its
connections to stratified logic programs. Using this correspondence we are
able to apply methods available in logic programming (in particular tabled
resolution and constructive negation) for model checking of infinite-state sys-
tems specified by [constraint] logic programs, including timed automata and
pushdown systems. As a consequence, we obtain model-checking procedures
based on both forward and backward analysis.

The formulas of stratified mu-calculus express properties definable in terms of
reachability. In the case of finite-state systems the model-checking problem
for this fragment has NLOGSPACE program complexity as opposed to the
PTIME-completeness for the alternation-free mu-calculus.

10 Automatic verification based on Decision
Diagrams

Rolf Drechsler

This is joint work with Bernd Becker.

Nowadays modern circuit design can contain several million transistors. For
this, also verification of such large designs becomes more and more difficult,
since pure simulation can not guarantee the correct behavior and exhaustive
simulation is too time consuming. But many designs have very regular struc-
tures, like ALUs, that can be described easily on a higher level of abstraction.
This talk gives an introduction to formal verification in VLSI CAD. Decision
Diagrams (DDs) are introduced and it is shown how they can be applied
in equivalence checking. Techniques are outlined how DDs can make use of
information provided by hardware description languages, like VHDL. A ver-
ification tool is presented that is totally automatic and experimental results
are given to demonstrate the efficiency of the approach.

12

11 Aspects of Model Checking

E. Allen Emerson

This is a talk in two parts. The first part is a historical retrospective. It is
suggested that expressiveness is at least as fundamental to the sucess of model
checking as efficiency. In the second part, it is demonstrated how certain
asymmetric systems are "nearly” symmetric, and amenable to symmetry
reduction, which can provide an exponential compression of the state space.
This latter is joint work with Richard Trefler.

12 An automata-theoretic approach to inter-
procedural dataflow analysis

Javier Esparza

In the talk I first presented a solution to the model-checking problem for LTL
and pushdown automata. (Notice that pushdown automata are infinite state
systems, since stacks has unbounded length.) The solution uses automata
techniques in two different ways. First, following the automata-theoretic
approach of Vardi and Wolper, the model-checking problem is reduced to
the emptiness problem for Buechi-pushdown automata. Second, finite word
automata are used to finitely represent infinite sets of stack contents.

In the second part of the talk I showed that our solution to the model-checking
problem finds a natural application in the area of interprocedural dataflow
analysis. The goal of interprocedural dataflow analysis is to obtain informa-
tion about runtime properties of a procedural program without executing it.
It operates by abstracting from information about data; for basic dataflow
analysis problems, only information concerning which variables are accessed
and modified at each program point is retained. The abstracted program can
then be faithfully modelled as a pushdown automaton, and many dataflow

13

analysis problems can be reduced to model-checking problems.

In the final part of the talk, I showed that our results can be extended to
programs with both procedures and parallelism. This requires to replace the
finite word automata used in the case without parallelism by tree automata.

13 Computing Bisimulation Symbolically

Kathi Fisler

Bisimulation is a well-known equivalence relation between models. As it pre-
serves all properties expressible in the mu-calculus, bisimulation is attractive
for minimizing state-spaces in model checking. Many model checking ap-
proaches represent state spaces symbolically. Efficient symbolic bisimulation
algorithms are therefore desirable in model checking. This talk explores sym-
bolic algorithms for bisimulation minimization and discusses our experience
with such algorithms in practice. It also provides a theoretical explanation
for our observation that bisimulation minimization worsens, rather than im-
proves, the performance of symbolic model checking on invariant properties.

14 Automatic Structures

Erich Gradel

We study definability and complexity issues for automatic and w-automatic
structures. These are, in general, infinite structures but they can be finitely
presented by a collection of automata. Moreover, they admit effective (in
fact automatic) evaluation of all first-order queries. Therefore, automatic
structures provide an interesting framework for extending the approach and
methods of finite model theory from finite structures to infinite ones.

14

While automatic groups have been studied rather intensively in computa-
tional group theory, a general notion of automatic structures has only been
defined recently and the theory of these structures is not well-developed yet.
Informally, a relational structure 2 = (A, Ry, ..., R,,) is automatic if we can
find a regular language Ls C ¥* (which provides names for the elements of)
and a function v : Ly — A mapping every word w € L to the element of A
that it represents. The function v must be surjective (every element of A
must be named) but need not be injective (elements can have more than one
name). In addition it must be recognisable by finite automata whether two
words in Ls name the same elements, and, for each relation R; of 2, whether
a tuple of words in Ls names a tuple belonging to R,;.

In the talk the notion of automatic and w structures was explained, exam-
ples were presented and the relationship to automatic groups was discussed.
Complexity results for model checking and query evaluation problems on
automatic structures were presented. Further, closure properties and defin-
ability issues on automatic structures were studied, and a technique for prov-
ing that a structure is not automatic was explained. Finally, model-theoretic
characterisations for automatic structures were given, via interpretations into
suitable expansions of Presburger arithmetic or into tree structures. Simi-
larly w-automatic structures can be characterized via interpretability into a
suitable expansion of the additive real group.

(This is joint work with Achim Blumensath)

15 Descriptive and Parameterized Complex-
ity

Martin Grohe

Descriptive Complexity Theory studies the complexity of problems of the
following type:

Given a finite structure A and a sentence ¢ of some logic L, decide
if A satisfies ¢7

15

In this talk we discuss the parameterized complexity of such problems. Basi-
cally, this means that we ask under which circumstances we have an algorithm
solving the problem in time f(|¢|)|A|¢, where f is a computable function and
c¢ > 0 a constant. We argue that the parameterized perspective is most ap-
propriate for analyzing typical practical problems of the above form, which
appear for example in database theory, automated verification, and artificial
intelligence.

16 Reachability Logic

Neil Immerman

We define Reachability Logic (RL), a sublanguage of transitive closure logic
(with boolean variables) that naturally expresses a wide class of path queries.
RL admits efficient model checking: linear in the size of the structure being
checked. Model checking of RL is also in NSPACE[logn] and thus paral-
lelizable, unlike the alternation-free mu-calculus which is PTIME complete.
Modal logics PDL and CTL* can be linearly embedded in RL. The model
checking algorithm is also linear in the size of the formula, but exponential
in the number of boolean variables occurring in it. In practice this number
is very small. In particular, for CTL and PDL formulas the resulting model
checking algorithm remains linear. For CTL* the complexity of model check-
ing — which is PSPACE complete in the worst case — can be read from the
face of the translated formula.

This is joint with Natasha Alechina.

16

17 Small Progress Measures and Model Check-
ing Games

Marcin Jurdzinski

In this talk I have presented a new algorithm for solving parity games, and
hence for the modal p-calculus model checking. The problem is known to
be in NP N co-NP, and even in UP N co-UP, and it is an intriguing open
problem whether there is a polynomial time algorithm for it. Our algorithm
has running time O (m-(2n/k)*/?), where n and m are the numbers of vertices
and edges, respectively, of the game graph, and k is the number of priorities
in the parity game. This matches the running time of the algorithms due
to Browne et al., 1997, and Seidl, 1996, with the best running time bounds
previously known for the problem. Moreover, our algorithm works only in
space O(kn), while the other two algorithms need space exponential in k in
worst case. The algorithm is based on computing game progress measures,
which witness existence of winning strategies for players in parity games. We
show existence of least game progress measures and a way to compute them
as the least fixed points of certain monotone operators.

18 Variable Independence

Leonid Libkin

Given a model M whose theory admits quantifier elimination, a first-order
formula ¢(x1,... ,x,) and a partition P on {xy,...,x,}, we say that ¢ con-
forms to P if ¢ is equivalent to a Boolean combination of formulae, each
using variables from at most one block of P. The motivation for considering
formulae of this kind comes from quantifier-elimination algorithms, which
in many important cases are exponential in the number of variables; thus,
detecting independence of variables helps reduce the cost of such algorithms.

17

We prove that if ¢ conforms to partitions P; and P, then it also conforms to
their greatest lower bound in the partition lattice. In particular, this implies
that there exists a unique minimal partition a formula conforms to. (A special
case n = 3 was proved earlier by Cosmadakis and Kuper.) We further show
that it is decidable, in polynomial time for each fixed P, whether ¢ conforms
to P, if M is the real field or the real ordered group. These two cases have
applications in constraint databases, as was shown earlier by Grumbach,
Rigaux and Segoufin.

19 Meta-Finite Monadic Second Order Logic

Johann A. Makowsky

This is joint work with K. Meer.

In this talk we study questions related to polynomials over the reals R. These
questions are important in computational geometry but found also applica-
tions in constraint databases. We are looking for combinatorial properties of
the tuples of indices of the variables which appear as non-vanishing mono-
mials. We suggest that if this is considered as a hypergraph, then its tree
width allows us to solve many questions about the polynomials in polyno-
mial time or, equivalently, that the tree width £ makes it parametrically
tractable. Allthough both the problem and its solution do not mention logic,
our analysis relies on the fact that many of these problems are expressible in
Meta-finite Monadic Second Order Logic.

20 Unranked trees in database theory

Frank Neven

18

joint work with Sebastian Maneth and Thomas Schwentick

We recall the automaton model of Br uggemann-Klein, Murata, and Wood
for unranked trees. Unranked trees are trees where the arity of nodes is not
bounded by any constant. We argue that such trees form natural abstractions
of XML documents. Next, we define query automata for expressing unary
queries and point out the differences between the model for the ranked and
the unranked case. Finally, we discuss a formal model for the XML trans-
formation language XSL.

21 Temporal Properties as Models of Con-
straint Data Bases

Andreas Podelski

We present our approach to infinite-state model checking. This approach is
based on a novel view of model checking; this view uniformly accounts for
the two cases of programs over symbolic and numeric data structures, respec-
tively. We translate a guarded command program together with a temporal
logic property into a constraint data base such that its specific model is ex-
actly the set of program states that is defined by the temporal logic property
(the model is the least, greatest or some intermediate model, according to the
mu-calculus formula representing the temporal logic property). Model check-
ing thus amounts to transforming the constraint data base into an equivalent
one in closed form (equivalent wrt. the specific solution). The two cases of
symbolic and numeric data structures are accounted for by different closed
forms. In the case of symbolic data structures (represented by strings or
trees), the closed form corresponds to a finite automaton (over strings or
trees). Alternatively, we can view a constraint data bases as a constraint
whose variables range over sets of states; then model checking amounts to
constraint solving, i.e. the procedure of transforming the constraint into

19

an equivalent one in solved form. In most interesting cases, the procedure is
possibly non-terminating; several experiments, however, have been successful
and demonstrate the practical potential of this approach.

22 Probabilistic Model Checking and Com-
pression

Michel de Rougemont

This is joint work with joint work with R. Lassaigne.

Given a probabilistic system (presented as a program P), let S be the state
space, A the accessibility function (A : 5.8 — [0, 1] such that > A(4, j) = 1)
and P;...P; unary predicates on S ; Let M = (S, A, Py... Py, o).

We want to check if the system satisfies a CTL formula 1 in the probabilistic
sense, i.e. if M |= Prob(y)) > §. We introduce a notion of compression where
C is a mapping from finite structures of a class K to finite structures of a
class K’, such that C(U,) = V,, where m < n.

Given a formula we want to check on M, we can in some cases design a
compression algorithm C' and a formula ¢ in the language of K’ such that:

M = Prob(y) > 6 «— C(U,) E

We give two examples : the random walk and the perfect matching on graphs.

20

23 Capturing LOGSPACE over Hereditarily-
Finite Sets

Vladimir Sazonov

This is joint work with Alexander Leontjev.

Two versions of a set theoretic A-language are considered as theoretical pro-
totypes for “nested” data base query language where data base states and
queries are represented, respectively, as hereditarily-finite (HF') sets and set
theoretic operations. It is shown that these versions correspond exactly to
(N/D)LOGSPACE computability over HF, respectively. Such languages over
sets capturing also PTIME were introduced in previous works, however, the
case of LOGSPACE [A.Lisitsa and V.Sazonov, TCS (175) 1 (1997) pp. 183—
222] was not completely satisfactory: problems with the closure under com-
positions in one approach and unnatural, however formally effective syntax
in another. Here we overcome those drawbacks due to some new partial re-
sult on definability of a linear ordering over finite extensional acycling graphs
and present a unified and simplified approach.

Cf. also an extended abstract in
http://www.math.unipr.it/“gianfr/ppdp99.html.

24 Inter-Procedural Analysis of Parallel Pro-
grams - the Abstract Interpretation Per-
spective

Helmut Seidl

We give a general framework for the analysis of programs with procedures
and explicit parallelism. The framework is general enough to derive pre-
cise and efficient algorithms not only for bitvector problems like reaching

21

definitions or life variables but also for non-bitvector problems like simple
constant propagation. Our work is based on the work of Knopp, Steffen and
Vollmer on the efficient intra-procedural analysis of parallel programs. Our
contribution is a completely algebraic reformulation which not only simplifies
proofs, presentation and algorithms but also reveals that the approach can
be naturally extended to the inter-procedural setting.

25 Recognizability and Constraint Satisfac-
tion

Wolfgang Thomas

A common framework for deterministic and nondeterministic notions of finite-
state recognizability is developed.

For the deterministic case, the classical view of Biichi, Eilenberg and others,
further developed by Courcelle, is recalled: The objects under consideration
(words, labeled trees, labeled graphs) are represented by terms over a func-
tional signature 3, and a recognizable set is obtained via a homomorphism
from the term algebra T% into a finite X-algebra.

In the nondeterministic case, we refer to relational structures and relational
homomorphisms into a finite structure, where each input structure requires
its own homomorphism (as in the theory of constraint satisfaction proposed
by Féder and Vardi). It is shown that nondeterministic word automata, non-
deterministic tree automata, tiling systems (as acceptors of labeled grids),
and nondeterministic graph acceptors can be considered as special cases of
finite relational structures which accept their inputs via relational homomor-
phisms.

So in this unifying framework deterministic and nondeterministic recogniz-
ability arise by the uniform, respectively nonuniform application of homomor-
phisms into finite structures. Moreover, a number of results on deterministic
versus nondeterministic recognizability and on the connection to monadic
second- order logic can be verified on this general level as metatheorems,
covering corresponding results over the domains of finite words, trees, and

22

graphs.

26 Emptiness of Tree Automata

Moshe Y. Vardi

Testing emptiness of parity tree automata is a basic algorithmic building
block in many decision procedure for satisfiability of program logics. In this
talk we describe a simple algorithm that runs in time n©(k), where n is the
size of the transition table of the automaton and k is the parity index. The
key to the simplicity of the algorithm is the use of alternation.

Work done jointly with Orna Kupferman.

27 Linear Time Datalog: Temporal versus
deductive reasoning in verification

Helmut Veith

This is joint work with Georg Gottlob and Erich Gréadel.

We show that Datalog is well-suited as a temporal verification language.
Datalog is a well-known database query language relying on the logic pro-
gramming paradigm. We introduce Datalog LITE, a fragment of Datalog
with negation, and present a linear time model checking algorithm for Dat-
alog LITE. We show that Datalog LITE subsumes temporal languages such
as CTL and the alternation-free mu-calculus, and in fact give easy syntactic
characterizations of these temporal languages. We prove that Datalog LITE
has the same expressive power as the alternation-free portion of guarded fixed

23

point logic.

28 Veritying protocols for electronic commerce

Victor Vianu

Electronic commerce is emerging as one of the major Web-supported ap-
plications requiring database support. We introduce and study high-level
declarative specifications of protocols for business transactions, called rela-
tional transducers. These are devices that map sequences of input relations
into sequences of output relations. The semantically meaningful trace of
an input-output exchange is kept as a sequence of log relations. We con-
sider problems motivated by electronic commerce applications, such as log
validation, verifying temporal properties of transducers, and comparing two
relational transducers. Positive results are obtained for a restricted class of
relational transducers called Spocus transducers (for semi-positive outputs
and cumulative state). We argue that despite the restrictions, these capture
a wide range of practically significant business models.

29 Logic on Traces

Igor Walukiewicz

24

30 CTL™ Is Exponentially More Succinct Than
CTL

Thomas Wilke

In the talk T present a sketch of a proof that CTL™ is exponentially more
succinct than CTL. More precisely, I sketch a proof of the following statement.
Every CTL formula equivalent to the CTL* formula

E(Fpo A -+ AFpn_1)

is of length at least ([;}21), which is Q(2"/y/n). This matches almost the
upper bound provided by Emerson and Halpern, which says that for every
CTL* formula of length n there exists an equivalent CTL formula of length
at most 2m18™,

The proof also shows that an exponential blow-up as incurred in known
conversions of nondeterministic Biichi word automata into alternation-free
p-calculus formulas is unavoidable. This answers a question posed by Kupfer-
man and Vardi.

The proof of the above lower bound exploits the fact that for every CTL
(u-calculus) formula there exists an equivalent alternating tree automaton of
linear size. The core of this proof is an involved cut-and-paste argument for
alternating tree automata.

This is going to be published in the proceedings of FST & TCS '99; a de-
tailed account is available as a technical report at ftp://ftp.informatik.
rwth-aachen.de/pub/reports/1999/index.html.

25

