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Foreword

All over the world numerous computers are used for real number com-
putation. They evaluate real functions, find zeroes of functions, determine
eigenvalues and integrals and solve differential equations, and so they perform
or at least are expected to perform computations on sets like the set of real
numbers, the set of open subsets of real numbers or the set of differentiable
real functions. The increasing demand for reliable as well as fast software in
scientific computation and engineering requires a sound and broad founda-
tion. Computable analysis is the mathematical theory of those functions on
the real numbers and other sets from analysis, which can be computed by
machines. It connects the two classical disciplines analysis/numerical analy-
sis and computability /complexity theory combining in particular the central
concepts of limit and approximation on the one hand and of machine models
and computation on the other hand. Computable analysis may serve as an
additional framework for numerical analysis and all other disciplines which
need an exact concept of computation for real functions.

Though computable analysis started in the early years of computability
theory, the field is still in its infancy. It has a great potential for further de-
velopment, since there are numerous challenging open problems, many basic
questions have not yet been studied systematically and only occasionally its
concepts have been applied to advanced problems.



The second Dagstuhl seminar on Computability and Complexity in Anal-
ysis was attended by 36 scientists from 11 countries. The 25 talks presented
at the seminar mirror the present state of the art.

We express our gratitude to the staff of Schloss Dagstuhl for perfect or-
ganization and providing a great atmosphere.

Abstracts

Variants of Computable Analysis and Realizability

ANDREJ BAUER
Carnegie Mellon University, Pittsburgh, USA

There are several schools of computable analysis, among others: recur-
sive analysis, type II computability, effective domains, effective Tj-spaces,
effectively given continuous domains, effective equilogical spaces, and Blum-
Smale-Shub Real Numbers Machine.

In this talk I show that all of these variants of computable analysis arise
as, or are closely related to, realizability constructions over various partial
combinatory algebras. This gives the subject of computable analysis a more
uniform outlook. It also makes available the tools from category theory and
categorical logic, which are traditionally not employed very much in the study
of computable analysis.

We can interpret the results of John Longley about logical full abstrac-
tion for programming languages as saying that to each programming language
corresponds a school of computable analysis. Thus, one’s choice of a partic-
ular variant of computable analysis should depend on what programming
language one intends to use to implement algorithms. In many ways I find
this view satisfactory because it is pragmatic and it explains where all the
variants of computable analysis come from.



An Application of Domain Representations

JENS BLANCK
University of Wales Swansea, U.K.

Streams and transformations on streams are very common in Computer
Science, especially as models of time dependant functions. We model streams
as functions from time to data. Both time and data may be either discrete or
continuous. We build representations of stream spaces from representations
of time and data. Since streams naturally are discontinuous we need to con-
sider approximative representations to get computability. Representations of
stream transformers have also been considered.

Recursive Operations over Topological Structures

VASCO BRATTKA
FernUniversitat Hagen, Germany

We present a definition of recursive multi-valued operations over topo-
logical structures. One of the main results states that over a certain class
of structures, so-called perfect structures, recursive operations coincide with
computable operations. Moreover, perfect structures uniquely characterize
their computability theory. Finally, we define classes of recursive sets over
structures and we show that these notions are generalizations of the classical
notions from recursion theory and computable analysis.

1Y Classes and Index Sets in Computable Analysis

DoucLAs CENZER
University of Florida, USA
(joint work with JEFF REMMEL)

Index sets are defined for effectively closed sets and for computably con-
tinuous functions. The complexity of various problems in the arithmetical
hierarchy is determined. For example, we consider the problem of finding
the measure and cardinality of a set and of the difference of two sets. We



consider the problem of testing whether two functions are equal (which is Pi-
0-2 complete) or differ by less than some fixed amount. We also consider the
problem of whether one function is the derivative of another and the problem
of whether a given function has a computably continuous derivative (which
is Sigma-0-3 complete). An effective version of the Closed Graph Theorem
for the Baire Space is shown.

A New Foundation for Computational Geometry
and Solid Modelling

ABBAS EDALAT
Imperial College, London, U.K.
ANDRE LIEUTIER
Matra Datavision & XAQOLab, LIM, Marseilles, France

Correctness of algorithms in computational geometry is usually proved
using the unrealistic Real RAM machine model of computation with the
undesirable result that correct algorithms, when implemented, turn into un-
reliable programs.

We use a domain—theoretic approach to recursive analysis to develop the
basis of an effective and realistic framework for solid modeling. This frame-
work is equipped with a well-defined and realistic notion of computability
which reflects the observable properties of real solids. It is closed under
Boolean operations, admits non-regular sets and supports a design method-
ology for actual robust algorithms.

Within this model, some unavoidable limitations of solid modeling compu-
tations are proved and a sound framework to design specifications for feasible
modeling operators are provided which can incorporate existing methods into
a general, mathematically well-founded theory. Moreover, the model is able
to capture the uncertainties of input data in actual CAD situations.

On Effective Metric Spaces and Representations of the Reals

ARMIN HEMMERLING
Ernst-Moritz-Arndt—Universitat Greifswald, Germany
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An effective metric space (EMS) is a triple (X, S, d) with a complete met-
ric space (X, d) and a “skeleton” S = (s,)nen being a sequence of elements
which is dense in (X, d) and for which the set {(m,n, k) : d(sm, sn) < qx} is
recursively enumerable, where (gi : k € N) is a standard numbering of the
rational numbers. Very often the set {(m,n,k) : d(Sm,sn) > qr} is recur-
sively enumerable too; then we are speaking on a strongly effective metric
space (SEMS). These notions go essentially back to Lacombe, Moschovakis,
Weihrauch et al..

Modifying the Ko—Friedman approach, approximate computability of (par-
tial) functions f: X >— X’ from an EMS to another one is defined by
means of oracle Turing machines which process natural numbers correspond-
ing to the indices of points of the skeletons. Some usual consequences are
sketched, and a criterion of equivalence of different skeletons in a metric space
is easily obtained.

The topological arithmetical hierarchy gives a useful tool to classify point
sets in EMSs. So the domains of computable functions are just the II{* sets
of this hierarchy, i.e., the recursive Gy sets.

Representations of the real numbers are surjective functions g : X =—— R,
where X is equal to # = & or to 8 = {0,1}". A representation is said to
be standard if it is computationally equivalent to the normed Cauchy rep-
resentation. It turns out that the standard representations are just those
functions p, for which there are computable representations ¢ and o satisfy-
ing 0 C p C ¢ and having inversions which are computable (_as relations) in
a natural sense. In particular, the computable standard representations are
just those computable functions which have computable inversions.

Nonlinear Integration Problems of High Average Complexity

PETER HERTLING
Fernuniversitat Hagen, Germany

We analyse the complexity of nonlinear Lebesgue integration problems in
the average case setting for continuous functions with the Wiener measure
and the complexity of approximating the It6 stochastic integral. Wasilkowski
and Wozniakowski (1999) studied these problems, observed that their com-
plexities are closely related, and showed that for certain classes of smooth
functions with boundedness conditions on derivatives the complexity is pro-
portional to e~!. Here € > 0 is the desired precision with which the integral



is to be approximated. They showed also that for certain natural function
classes with weaker smoothness conditions the complexity is at most of order
£~2 and conjectured that this bound is sharp. We show that this conjecture
is true.

Real Functions Computable by Finite Automata using
Incremental Representations

MICHAL KONECNY
University of Birmingham, U.K.

We try to classify the functions of the type I" — I (for some interval
I C ®r) that can be realized by finite automata. Such a class strongly depends
on the choice of real number representation. We consider only so-called TFS
representations where numbers are represented by sequences of digits and
each of the digits is a contraction on I.

First we study the special case of IFS representations in which all digits
are affine contractions. It turns out that every finitely computable function
in this setting must be affine on every region where it is continuously dif-
ferentiable. Conversely, it is easy to see that every function whose graph is
composed of (parts of) hyperplanes with rational coefficients can be finitely
computed using the signed binary representation which is an affine represen-
tation.

In the case of more general IFS representations we can get a similar
limitation result for finitely computable functions using bijections T that
translate a contraction d to an affine contraction T odo T

The author finds it difficult to say much about these translators T in
general, but in the case of LF'T (=Mdbius transformations) representations
(studied by Edalat, Potts, Heckmann and others) we can arrive at a complete
LFT version of the affine result: Any function of the type I™ — I which is
finitely computable using an LFT representation is equal to an LFT on every
region where it is continuously differentiable.



Solving Differential Equations

DAvVID LESTER
Manchester University, U.K.

In my talk I discuss some of the practical problems associated with solving
differential equations in a computable analysis setting. These include the
following:

e An exact series solution of a PDE might not converge fast enough to
be useful; and

e Initial Value Problems require a Lipschitz condition to be computable;
and

e Function representation has an important role to play in the efficiency
of an algorithm; and

e Even though the effective Weierstrafl Theorem can compute an ap-
proximate polynomial for a computable function, it takes too long to
be practical.

If you know otherwise, email me: dlester@cs.man.ac.uk !

Finite Approximations of Metric Spaces

HENRI LOMBARDI
Université de Franche-Comté, Besangon, France

We give some examples for supporting the need of uniform versions of
theorems of analysis from the bit-complexity point of view.

First we examine the case of real roots of real polynomial. The pointwise
theorem says that the roots of a polynomial with polynomial time computable
real coefficients are polynomial time computable. But the fact is that the
set of real roots is not recursively computable. So the pointwise theorem
is strange, and false in the intuitive meaning. We get a uniform theorem
saying that some set of “real or virtual” real roots is uniformly computable
in polynomial time from the coefficients. Here it is necessary to extend the
set of real roots in order to get a continuous variation of this set. Once this is

7



done (see [GLM98]), the uniform theorem is much better than the pointwise
one, since it says something about the general computation of roots for any
real polynomial.

Second we deal with the polynomial time Weierstrass approximation the-
orem of Hoover, and we explain how to obtain, using the Hoover’s techniques,
a uniform theorem that gives a uniform result for all real functions (on a com-
pact interval) instead of giving a result only for polynomial time computable
real functions. (see [LLMIT7])

Third, we discuss the computation of complex roots of a complex monic
polynomial. The result is usually stated as: there is an algorithm that com-
putes the list of the roots. In fact this is not a uniform theorem since there
is no way of computing continuously such a list. The uniform version deals
with a function from monic polynomials to multisets of complex numbers.

This discussion leads to the following issue. In many natural situations,
when we compute a compact metric space (e.g. the set of roots of a monic
complex polynomial) we do not obtain uniformly any point of the compact
space, but we obtain finite approximations of the space “from outside”. So
the usual description of compact metric spaces via skeletons (that means ap-
proximating the compact space from inside) seems not well adapted to uni-
form computations. Approximating metric spaces by finite sets with rational
distances between points should be investigated systematically in order to get
better uniform theorems. This is in the same spirit of the Richman’s claim
about the need of a development of constructive analysis without countable
choice, in order to get better and nicer theorems (abstract of [RicTfa] see also
[RicGen]: Can constructive mathematics be developed in a reasonable man-
ner without the axiom of countable choice? Serious schools of constructive
mathematics all assume it one way or another, but the arguments for it are
not compelling. Here it is shown how the fundamental theorem of algebra
can be restated and proved without using countable choice, and it is argued
that this is really the right way to look at it. A notion of a complete metric
space, suitable for a choiceless environment, is also developed.).

[GLM98]| Gonzalez-Vega L., Lombardi H., Mahé L. Virtual roots of real poly-
nomials, J. Pure And Applied Algebra 124, (1998) 147-166.

[LLM97] Labhalla S., Lombardi H., Moutai E. Espaces métriques ration-
nellement présentés et complexité, le cas de [’espace des fonctions ré-



elles uniformément continues sur un intervalle compact, to appear in
Theoretical Computer Science.

[RicTfa] Richman F. The fundamental theorem of algebra: a constructive
development without choice, (21 pages, 16 October 1998)

[RicGen| Richman F. Generalized real numbers in constructive mathematics,
Indagationes Mathematicae, 9 (1998), 595-606.

Using logic to design efficient algorithms

KrLAus MEER
TU Chemnitz, Germany
(joint work with J.A. MAKOWSKY)

We introduce a new sparsity condition on multivariate polynomials in
n variables (over some ring R) and show that under this condition many
otherwise intractable problems involving these polynomials become solvable
in polynomial (even linear) time in n (in the BSS-model over R). To define
our sparsity condition we associate with these polynomials a hypergraph and
study classes of polynomials where this hypergraph has tree width at most k
for some fixed k € A& Our method uses graph theoretic and model theoretic
tools developed in the last 15 years and applies them to the algebraic setting.

A Note On How To Compute Multi-valued Functions

NORBERT MULLER
Universitat Trier, Germany

Multi-valued functions are of increasing interest at least in the field of
imperative programming languages for exact real arithmetic. We compare
two notions of computability for these multi-valued functions: ‘cylinder-
computability’ allowing precise recursive characterizations and ‘single-path-
computability’ which is better suited for implementations.



Lower Bounds on Discrepancy and the Complexity of Integration

ERrRICH NOVAK
Universitat Erlangen, Germany

Can we compute I4(f) = f[o o f (@) da for f [0, 1] — R from F; in
polynomial time, i.e.,

cost(e, Fy) < C -7 -d°?
The answer clearly depends on the classes Fy, there are three types of results:

e intractability results: for certain F; no polynomial time algorithms
exist, the (normalized) Lo-discrepancy is intractable

e tractability results by probabilistic reasoning: the L.-discrepancy is
tractable

e tractability results by constructive methods: the weighted case and
Wiener integrals.

We use the real number model and know that it is enough to consider quadra-
ture formulas Q,(f) = Y., a; f(x;). For the Lo-discrepancy we know from
Roth (1954, 1980) and Frolov (1980) that

i?f disco({t1,... . tn}) = n"t - (logn)@1/2,

hence the order does not depend on d. Nevertheless the problem is in-
tractable,
n(87 Fd) > Cd (1 - 82)

with some C' > 1 . We also study weighted norms and weighted discrepancy,
the weight of the ith variable is w;. Results for Fy,, depend on the weights
as follows:

The problem is tractable iff lim sup, Z?Zl w;/logd < oo;

n(e, Fuw) <C-e72 iff S w; < oo.

Results of this type for positive quadrature formulas are due to Sloan,
Wozniakowski (1998).

The main result concerning the L..-discrepancy (or star-discrepancy) is

c-dloge ™t <nle, Fy) <C-de?,
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i.e., the complexity is linear in the dimension d. Up to now it was not known
whether
n(1/3, F;) < C - 3%,

The talk is based on two papers from N., Wozniakowski (1999) and from
Heinrich, N., Wasilkowski, Wozniakowski (1999).

Effective Subsets of Metric Spaces

GERO PRESSER
Universitat Dortmund, Germany

In my work I generalised some results that have been published by Brat-
tka and Weihrauch in 1999 for the Euclidean space (cf. V. Brattka and
K. Weihrauch: Computability on subsets of Euclidean spaces I: closed and
compact subsets, Theoretical Computer Science 219, 1999).

I introduce some representations of the closed subsets of a computable
metric space. Some of these turn out to be equivalent (with respect to com-
putable reduction). For others to be equal, the space must have some addi-
tional properties.

I deal with the same kind of question on the space of compact subsets of
computable metric spaces.

Extended Admissibility

MATTHIAS SCHRODER
FernUniversitat Hagen, Germany

We give a new definition of admissible representations which allows to
handle topological spaces which are not second-countable.

We show that admissible representations d x, 0y of topological spaces X, Y
have the property that a partial function f :C X — Y is continuously
realizable w.r.t. dx,dy (i.e. there is a continuous function I' :C ¥* — »¢
with 0y o' = fodx), iff f is sequentially continuous.

Furthermore, the class of the spaces having an admissible representation
is proven to equal the class of the Ty—spaces with a countable pseudobase.
Here, a pseudobase of a topological space X is a set B C 2% such that for all
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open sets O, all x € O and all sequences (y,) converging to x there is a set
B € B such that € B C O holds and the sequence (y,,) is eventually in B.
Many interesting operators creating new topological spaces from old ones
are shown to preserve the existence of an admissible representation (e.g.
cartesian product and exponentiation).
Thus, a reasonable computability theory is possible even on important
non—second—countable spaces.

An Intrinsic Topology for (all) Sets

DANA S. ScoTT
Carnegie Mellon University, Pittsburgh, PA, USA

Any set can be given either the discreet or the indiscreet topology, but
these are trivial and not interesting. In set theory, it is usually agreed that
every entity is a set of some sort, and, hence, every set can always be re-
garded as a set of sets. As a consequence of this convention, every set is a
subset of a powerset. Now powersets have two intrinsic product topologies:
one making them compact Hausdorff spaces and a weaker topology that only
satisfies Tj) separation. We concentrate on the second. It has many proper-
ties (well known from different presentations). For example, the intrinsic T}
topology can produce a homeomorphic example of every topological space.
Moreover, there is a simple way to describe continuous mappings between
sets in set-theoretical terms. Thus, sets and continuous mappings give an
equivalent category to the topological category of T spaces. A new cate-
gory, EQU, consists of (arbitrary set-theoretical) equivalence relations and
continuous equivariant mappings. This category has some surprising prop-
erties including being cartesian closed.

Representations Versus Numberings: Some New Results

DIETER SPREEN
Universitat Siegen, Germany

This paper gives an answer to Weihrauch’s question (Weihrauch, K.,
Computability, Springer, Berlin, 1987) whether and, if not always, when an
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effective map between the computable elements of two represented sets can
be extended to a (partial) computable map between the represented sets.

Examples are known showing that this is not possible in general. A
condition is introduced and for countably based topological Ty-spaces it is
shown that exactly the (partial) effective maps meeting the requirement are
extendable. For total effective maps the extra condition is satisfied in the
standard cases of effectively given separable metric spaces and continuous
directed-complete partial orders, in which the extendability is already known.
In the first case a similar result holds also for partial effective maps, but not
in the second.

The Kolmogorov Complexity of Real Numbers

LUDWIG STAIGER
Martin-Luther-Universitat Halle-Wittenberg, Germany

The talk focussed on the following three topics.
1. Classes of real numbers definable by properties of base r expansions

2. Application of Kolmogorov complexity to the calculation of Hausdorff
dimension

3. Right computability of Hausdorff dimension yields a small recursive
presentation of a GGs-cover of an Ys-definable set

For a real number « € [0, 1], we consider the Kolmogorov complexity of its
expansions with respect to different bases and we show that the length of the
[ - log, b prefix of the base r expansion of « is the same (up to an additive
constant) as the log,b-fold complexity of the length [ prefix of its base b
expansion.

Using this base independence of Kolmogorov complexity we derive re-
lationships between various classes of real numbers, such as random, Borel
normal, disjunctive, Liouville and computable numbers to the classes of com-
plexity defined numbers.

Moreover, we present the above mentioned connections to the estimation
of the Hausdorff dimension of sets of real numbers.

13



Abstract versus Concrete Computation
on Topological Partial Algebras

J.V. TUCKER
University of Wales Swansea, U.K.
(joint work with J.I. Zucker, McMaster University)

Let A be a many sorted algebra. Abstract models of computation on
A define finite computations that are independent of any representations of
A and are isomorphism invariant. Concrete models of computation on A
define computations via some representation v : R — A. We review these
models in the case that A is a topological algebra. Roughly speaking the
abstract models define a single class of computable functions Abstract(A)
and, similarly, the concrete models also define a single class of computable
functions (up to equivalent representations) Concrete(A,r). We consider the
relationship between them. Usually, Abstract(A) is a subset of Concete(A,r)
and the question arises for what A and r does

Abstract(A) = Concrete(A,r)?

We survey results for while-array computation on real numbers (TCS Vol.
219 (1999)) and announce new results for metric algebras. We extend the
while language with a countable choice (cc) instruction to define many valued
functions. We explain the need for these functions through basic examples
(pivot, approximation). We show that for f an effectively locally uniformly
continuous function on A, and certain general conditions on r, f is while..—
computable if, and only if, f is r-computable.

Computability and Delta function

MASAKO WASHIHARA
Kyoto Sangyo University, Japan

We discuss the computability of Dirac’s delta function by the function
space approach. This approach was first introduced by Pour-El and Richards.
In [1], they proposed the concept of computability structure on Banach
spaces. This concept was extended to Fréchet spaces in [2].
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The space S of all rapidly decreasing functions is a Fréchet space by the
norm system || f|l,, = [|[(N + 1)™f|| where N = (2> — D? — 1) and || - ||
denotes the L2-norm. The intrinsic computability structure on S is given as
follows. A sequence {f,} in S is computable if :

(i) {z*D7f,} is computable as a triple sequence of continuous functions
on R, and

(i) 3d; recursive, |x| > d(k,j,n, N) implies |2*D7 f, (x)| < 27V,
An effective generating set in S is the sequence of Hermite finctions:
On(z) = (—1)"7r_iv2"n!e%$2D"(e_$ ).

We have (N + 1)¢,, = (n + 1)¢,, and therefore, ||¢y||m = (n + 1)™.

The delta function 9 is a tempered distribution, that is, a continuous
linesr functional on S. In [3], we discussed the computability in the sace &’
of all tempered distributions. This space can be considered as the union of
an increasing sequence of Banach spaces by the following method.

Let S, be the completion of S by the norm || - ||, and &', be its dual.
Then the following statements holds:

(1) &' = UX_, 8.

2

(II) Each &', is a Banach space by the norm |lu||_,, = sup{|u(f)|: f €
S fllm < 1}

(ITI) &' C S'my1 and ||ull—m > |l —nt1) (v € S'm).
(IV) u, — win & iff Im;u, — win &',,.

Every f € S is in &' by putting f(¢) = [*. f(z)¢(z)dz (¢ € S). Then we
have ||f||—m = [|(N 4+ 1)=™f]|. In particular, ||¢,||-m = W

We define effective convergence in & and S’-computability as follows:
{un} is said to converge to {u,} in S’ effectively if 3d; recursive, wyy, u, €
S'dny, and |[upk — Un||—qn) converges to 0 effectively. {u,} is called S'-
computable if there exists an S-computable double sequence {f.;} which
converges to {u,} in & effectively.

Then our results are:

Proposition 1 If {u,} is S’-computable, then 3d; recursive, {||un||—am)} s
computable.
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Proposition 2 If {u,} is S'-computable and {f,} is S-computable, then
{un(fm)} is computable.

Proposition 3 If {u,} is S'-computable, then {D’uy,} is S'-computable.

Proposition 4 Dirac’s delta function 0 is S’-computable.
The sequence { D76} is S'-computable

References.

[1] Marian B.Pour-El and J. Tan Richards, Computability in Analysis and
Physics, Springer-Verlag (1989)

[2] M. Washihara, Computability and Fréchet spaces, Mathematica Japon-
ica, vol.42 (1995)

[3] M. Washihara, Computability and tempered distributions, Mathemat-
ica Japonica, vol.50 (1999)

Upper Bounds on Discrepancy and the Complexity of Integration

HENRYK WOZNIAKOWSKI
Columbia University, USA, and University of Warsaw, Poland

In this talk we consider the classical Ls- and L.-discrepancy of n points in
the d dimensional unit cube. It is well known that the discrepancy measures
the worst case error of linear algorithms for multivariate integration over
the unit ball of the tensor product Sobolev space with regularity one. The
complexity of integration is therefore, roughly, the inverse function of the
discrepancy.

We present explicit upper bounds on the discrepancy for the absolute and
normalized cases. The main emphasis is on the dependence on d. In particu-
lar, we mention a recent result of S. Heinrich, E. Novak, G. Wasilkowski and
the author that the L.-discrepancy is bounded by C'\/d/n for some absolute
constant C.
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Computability problems of discontinuous functions
Functional space approach

MARIKO YASUGI
Kyoto Sangyo University, Japan

I am to discuss how to view notions of computability for discontinuous
functions. 1 confine myself to real-valued functions from some spaces.

In what follows, I have worked with V. Brattka, T. Mori, Y. Tsujii and
M. Washihara.

Our standpoint in studying computability problems in mathematics is do-
ing mathematics. That is, we would like to talk about computable functions
and other mathematical objects just as one talks about continuous functions,
integrable functions, etc.

In any naive notion of computability of a function (on a compact set),
uniform continuity is inherent. On the other hand, one often approximates
discontinuous functions, for instance in numerical computations and draw-
ing graphs. Very often such approximations are successful and satisfactory.
It is therefore meaningful and important to speculate on computability of
discontinuous functions.

According to our standpoint, it is a mathematical investigation to formu-
late computability of discontinuous functions and to find out how it is related
to some existing mathematical notions.

One possible method of such investigations is to work in some theories
of abstract spaces; for example, functional spaces such as Banach spaces and
Frechet spaces, metric spaces, uniform topological spaces. The reason why
such a method is effective for the purpose is that an abstract theory of spaces
supplies us with a logical framework for mathematics. A functional space is
defined axiomatically, and the objects which satisfy such axioms are those
that are well-controlled.

For example, L]0, 1]-space contains continuous functions, but many more.
An object in this space is controlled by the property that it be not too notched
so that the “area” can be determined. Computability in such a space means
a good (effective) approximation by “naive” computable objects so that the
area can be nicely approximated. So, if we place a little bit more restric-
tion on the objects than just integrability, we can characterize computable
objects. Pour-El& Richards thus introduced an axiom system which char-
acterizes (sequences of) computable objects in a Banach space. One notices
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that it is the axiom system of a Banach space restricted to “computable”
objects. On can extend the same idea to other functional spaces.

The domain of a function needs not be a subset of real numbers. We thus
extend our consideration to more general metric spaces. Here too, one can
adopt the axiomatic approach.

Metrization of a Banach space preserves computability of the metric,
while it has not been settled if a fourth metrization of a Frechét space pre-
serves computability.

Although a uniform topological space with a countable index set is equiv-
alent to a metiric space, we notice that, in defining computability structure,
metric itself is not necessary. It is the uniformity of the base system that is
used in describing the computability structure.

From such a standpoint, we have investigated comutability structures on
abstract spaces as well as computability problems of specific objects.

Interpolation functor and computability

ATSUSHI YOSHIKAWA
Graduate School of Mathematics, Kyushu University, Japan

For a compatible couple of Banach spaces X, Y, Calderén’s complex
interpolation space [X, Y]y is defined as the image of the evaluation mapping
f — f(0) from an auxiliary space F(X,Y) to the space X +Y. F(X,Y)
consists of the essentially bounded holomorphic functions f = f(z) on the
strip 0 < Rz < 1, taking values in X and in Y on the lines Rz = 0 and
Rz = 1, respcetively,

Combine this situation with Pour-El’s notion of computability in Banach
spaces. Assuming each of X and Y admits a computability structure, raise
these computability structures to the spaces C(X) or C(Y) of X- or Y-valued
continuous functions on the real line, with good boundary behaviors at in-
finities.

It is a routine matter to verify that these computable structures induces
a computable structure S in the auxiliary space F(X,Y). Denote by Sy the
image of the evaluation mapping f +— f(#) of the computability structure S.

Theorem  Suppose X and Y admit computability structures in the sense
of Pour-El and Richards. Let 6 be computable, 0 < 0 < 1. Then [X,Y]s
admits a computability structure, in fact, Sy.
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Weakly Computable Real Number and Closure Properties

XIZHONG ZHENG
FernUniversitat Hagen, Germany

A real number x is weakly computable if there is a computable sequence
(n)nenr of rational numbers which converges to @ weakly effectively, namely
limy, oo, = x and >~ |Ty — @pq1| is finite. It is shown by Weihrauch
and Zheng that the class of weakly computable real numbers is closed under
the arithmetical operations. Here we show that this class is not closed under
the “effective limits” and the computable real functions. The key step to
prove these result is that we can construct a non-w-r.e. set A such that
Ta =Y ,c427" is weakly computable and that there is a computable real
function which maps such x4 to 24 while the later is not weakly computable
any more by a result of Klaus Ambos . These results are also extended to a
larger class of w-weakly computable real numbers.

Computability Theory of Generalized Functions

NING ZHONG
Clermont College of the University of Cincinnati, Batavia, USA
(joint work with KLAUS WEIHRAUCH)

We propose a computability theory for generalized functions. While for
countable sets there is a single computability theory (ordinary recursion the-
ory); for real functions and other functions from analysis there are several
mutually non-equivalent computability concepts (e.g., Bishop and Bridges,
Blum, Shub and Smale, Grzegorczyk, Ko, Pour-El and Richards, Traub,
Wasilkowski and Wozniakowski, Kreitz and Weihrauch, et cetera). One of
these concepts is based on Turing’s definition of computable real numbers
and Grzegorczyk’s definition of computable real functions. Along this line
there are several different but consistent approaches (e.g., Edalat, Ko, Pour-
El and Richards, Weihrauch, et cetera). We extend two of these models,
the effective approximation approach (Pour-El and Richards) and the repre-
sentation approach (Weihrauch), to test functions and generalized functions,
Schwartz functions and tempered distributions, and distributions with com-
pact support. While the first one, given in familiar analytic terms, provides
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for an interaction between the recursion theory and the theory of generalized
functions, the second offers algorithms for performing computations of gen-
eralized functions on Type 2 Turing machines. The two approaches give rise
to the equivalent computability theory for generalized functions. The com-
putability of several basic operations on generalized functions are discussed
as well as some applications, including an application to computable analysis
of the Korteweg-de Vries Equation posted on the whole line.
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