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During the last ten years computers have become fast enough to support evo-
lutionary algorithms and a lot of applications to real-world problems have been
developed. This has led to a great deal of empirical knowledge on the behavior
of evolutionary algorithms and to many heuristics for choosing their associated
parameters. There is also a developing theory of evolutionary algorithms based
on tools from the analysis of randomized algorithms, of Markov processes, and
of dynamical systems. The aim of this workshop was to contribute to this theory
and to allow a discussion between researchers with different backgrounds.
The organizers are happy to report that 45 researchers accepted an invitation
to Dagstuhl. They came from Germany (21), England (8), USA (5), France
(2), Netherlands (2), Romania (2), Austria (1), Belgium (1), India (1), Mexico
(1), and Poland (1). The 31 talks captured all the aspects of a theory of evolu-
tionary algorithms, among them statistical dynamics, time-varying landscapes,
convergence issues, complexity results, fitness landscapes, models of evolutionary
algorithms, analysis of the run time of evolutionary algorithms, self-adaptation,
new variants of evolutionary algorithms, and genetic programming. The discus-
sion was extremely vivid. There was almost no talk that evoked fewer than five
questions and remarks. The schedule included an informal evening session where
eight topics suggested by the participants were discussed.
Besides the official schedule the participants used unscheduled time for many
discussions and some informal sessions with short talks, all inspired by the special
Dagstuhl atmosphere. The special event of the week was the Wednesday hike
where it has snowed heavily on the way out and the sun shone on the way back
through the snow.

1



Seminar Program

Monday, February 14th, 2000

9.00 – 9.40 Hans-Paul Schwefel
Still Missing Features in Current Evolutionary Algorithms

9.45 – 10.25 Karsten Weicker
Towards a Theoretical Foundation of Dynamic Optimization

10.35 – 11.15 Christopher Ronnewinkel
Genetic Algorithms in Time-Dependent Environments

11.20 – 12.00 Dirk Arnold
Local Performance of Evolution Strategies in Noisy
Environments

15.15 – 15.55 Jonathan L. Shapiro
Statistical Mechanics of Genetic Algorithms

16.00 – 16.35 Adam Pruegel-Bennett
Symmetry Breaking in Evolutionary Algorithms

16.45 – 17.20 Gabriela Ochoa
Optimal Mutation Rates and Error Thresholds in Genetic
Algorithms

17.25 – 18.00 Stefan Droste
On the Analysis of Simple EAs with Dynamic Parameter
Control

Tuesday, February 15th, 2000

9.00 – 9.40 Roman Galar
Considering Evolution in the Space of Population States

9.45 – 10.25 Riccardo Poli
Recursive Conditional Schema Theorem, Convergence and
Population Sizing in Genetic Algorithms

10.35 – 11.15 Nicole Weicker
Towards Qualitative NFL Results

11.20 – 12.00 Xin Yao
Computational Time Complexity of Certain
Evolutionary Algorithms

15.30 – 16.10 Ivo Hofacker
Characterization of Landscapes

16.15 – 16.55 Bart Naudts
Comparing Population Mean Curves

17.05 – 17.45 Colin Reeves
Experiments with Tunable Landscapes

20.00 Discussion Session
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Wednesday, February 16th, 2000

9.00 – 9.40 Jeffrey Horn
Speciation as Computation

9.45 – 10.25 Günter Rudolph
Recent Advances in the Theory of Multi-Objective
Evolutionary Algorithms

10.35 – 11.15 Alden Wright
Models of Steady State Genetic Algorithms

11.20 – 12.00 Jonathan Rowe
Generalising the Dynamical Systems Model

Thursday, February 17th, 2000

9.00 – 9.40 Thomas Jansen
Proving Crossover Useful

9.45 – 10.25 Evelyne Lutton
Understanding EA: The Fractal Way

10.35 – 11.15 Heinz Mühlenbein
From Genetic Recombination to Search Distributions and
Graphical Models

11.20 – 12.00 Ingo Wegener
On the Analysis of a Dynamic (1+1) EA

15.15 – 15.50 Kalyanmoy Deb
Self-Adaptive Evolutionary Algorithms for Function
Optimization

15.55 - 16.30 Nikolaus Hansen
Keypoints in Strategy Parameter Control

16.40 – 17.15 Martin Pelikan
Research on the Bayesian Optimization Algorithm or
How the BOA Saved the Building Blocks

17.20 – 17.55 Leila Kallel
How to Detect All Maxima of a Function?

Friday, February 18th, 2000

9.00 – 9.40 William B. Langdon
Scaling of Program Fitness Spaces

9.45 – 10.25 Wolfgang Banzhaf
On the Reason for Bloat in Genetic Algorithms

10.35 – 11.15 Peter Stagge
Evolving Neural Structures

11.20 – 12.00 Kenneth De Jong
Evolutionary Computation Theory: A Unified Approach
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Local Performance of Evolution Strategies in Noisy
Environments

Dirk Arnold

Noise is present in many optimization problems. Evolutionary algorithms are
frequently reported to be robust with regard to the effects of noise. This talk
addresses two separate aspects of the local performance of evolution strategies
(ES) in a very simple fitness environment that may help explain the observed
robustness.
For the (1 + 1)-ES, systematic overvaluation of the parental fitness is shown to
naturally arise if the fitness of an individual is evaluated only once in its lifetime.
It is demonstrated that reduced success probabilities and at the same time an
increased fitness gain as compared to a strategy that reevaluates the parental
fitness in every generation can be expected in the noisy environment investigated.
Implications for success probability based mutation strength adaptation schemes
are discussed.
For the (µ/µI , λ)-ES, the local performance on an infinite dimensional noisy
sphere is discussed. It is shown that as in the noise free case genetic repair is
present and that the performance of the strategy can be substantially improved
by increasing the population size. Unlike the situation in the noise free case, the
efficiency of the (1 + 1)-ES can be exceeded in the presence of noise.

On the Reason for Bloat in Genetic Programming

Wolfgang Banzhaf

It has been well established over recent years, that in Genetic Programming
as well as in other evolutionary algorithms with length-changing genotypes a
tendency for growing length of genotypes occurs. This phenomenon has been
termed ”bloat”. We introduce a very simple model for GP which does not use any
representation in order to show that the tendency to growing length is a general
and inherent tendency in all GP systems. We present a number of simulations and
reconsider some of the explanations for bloat published in recent years, notably
the “fitness causes bloat” and the “neutral code protection” hypotheses.
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Evolutionary Computation Theory: A Unified Approach

Kenneth De Jong

The rapid growth of interest in evolutionary computation has made it difficult
for theoretical analyses to keep pace. Evolutionary computation theory continues
to make progress, but in a somewhat fragmented way. In this talk a framework
based on decomposition and abstraction hierarchies is presented as the basis for
a unifying theory as well as encouraging sound design of new algorithms and
applications.

Self-Adaptive Evolutionary Algorithms for Function
Optimization

Kalyanmoy Deb

Self-adaptation is an essential feature of natural evolution. However, in the con-
text of function optimization, self-adaptation features of evolutionary search al-
gorithms have been explored only with evolution strategy (ES) and evolutionary
programming (EP). In this talk, we demonstrate the self-adaptive properties of
real-parameter genetic algorithms (GAs) with a number of crossover operators,
such as simulated binary crossover (SBX), blend crossover (BLX), and fuzzy re-
combination operator (FR). The connection between the working of self-adaptive
ESs and real-parameter GAs with SBX operator is also discussed. The connec-
tion is made better by calculating the growth of population variance of the above
three crossover operators and self-adaptive ESs. It is then postulated that for a
good variance operator (i) the population mean should remain unchanged and (ii)
the population variance should, in general, increase. Based on these two postu-
lates, the equivalence of these EAs on flat fitness landscapes has been established.
Simulation results on sphere models show similar performance of all the above
self-adaptive EAs. These results suggest a unified approach to EAs: With similar
population variance growth of variance operators, EAs with an identical selection
operator are expected to have similar performance.
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On the Analysis of Simple EAs with Dynamic Parameter
Control

Stefan Droste (joint work with Thomas Jansen)

As evolutionary algorithms (EAs) are controlled by a number of different pa-
rameters, it is an interesting open question, if some parameter control schemes
are better than others. Here we present a proof, that for a carefully chosen fit-
ness function and a very simple EA a variation of the selection probability only
depending on the number of generations exponentially outperforms every static
choice of this parameter with respect to expected runtime. Because the EA in-
vestigated is an instance of simulated annealing, this is another example, where
simulated annealing outperforms the Metropolis algorithm. Furthermore, our
proof is easy to understand, as it uses only basic stochastic formulas, like the
Markov inequality.

Considering Evolution in the Space of Population States

Roman Galar (joint work with Artur Chorazyczewski and Iwona Karcz-Duleba)

A simple model of asexual phenotypic evolution with non-overlapping generations
assumes population of m individuals with n traits under proportional selection
and independent N(0, s) distributed traits modifications. The state of such popu-
lation is represented as a point in the n ·m real space and the appropriate formula
for its probability distribution in the next generation is given which represents a
standard Markov chains description. It is pointed that: (1) to avoid ambiguity
in such representation population has to be ordered, what restricts the space of
states to a specific part of R

n·m; (2) for strongly diversified populations, i.e. with
distances between individuals >> s, the probability distribution of the next gen-
eration is distinctly multimodal, what accounts for jumps of populations state.
Both points were illustrated for cases involving n = 1 and m equal few, using sim-
ulator that draws population trajectory mapped in (position along identity axis,
distance from identity axis) co-ordinates. It is visible then that such evolution is a
two-speed process: (1) rapid concentration of individuals into population cluster
with the radius of about s; (2) drift of this cluster toward more elevated areas.
The possibility of generalising these observations on large populations and multi-
dimensional spaces are illustrated using appropriate simulations. Some prospects
of utilising the space of states approach as a tool for better understanding of
evolution and theorem proving are indicated.
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Keypoints in Strategy Parameter Control

Nikolaus Hansen

A dynamic strategy parameter control which depends more or less directly on
the search points evalutated so far seems essential in evolution strategies. Four
keypoints for strategy parameter control are identified:

• Adjustment of the change rate of the strategy parameters

• Stationarity of strategy parameters (for weak selection)

• Invariance (for prediction)

• Evaluation of success

Invariance is very attractive, because it raises the probability to get similar (or
even identical) results on similar (not yet evaluated) problems. Any evalution of
search strategies, for example by test functions, is based on the implicite assump-
tion of invariance. A simple evolution strategy is invariant against translation
and rotation of the search space and against any strictly monotonically increas-
ing (i. e. order-preserving) transformation of the fitness value. Invariances can be
lost, if more complex operators are introduced. For example with discrete recom-
bination or with an individual step size adaptation invariance against rotation is
lost. This should be taken into account if different strategies are evaluated.
From a conceptual point of view one primary aim of strategy parameter control
is to introduce new invariances. At the same time it seems desirable to retain
the invariances of the simple evolution strategy. Two additional invariances are
identified. (To become exactly invariant, object and strategy parameters have to
be transformed accordingly to the search space.)

• Invariance against scalar multiplication of the search space. This can be
facilitated by control of a global step size.

• Invariance against any (full rank) linear transformation of the search space.
This can be facilitated by adaptation of the complete covariance matrix of
the mutation distribution.

In evolution strategies the latter is achieved with the so-called covariance matrix
adaptation.

References
[1] N. Hansen and A. Ostermeier, Adapting Arbitrary Normal Mutation

Distributions in Evolution Strategies: The Covariance Matrix Adap-
tation. In Proceedings of the 1996 IEEE International Conference on

Evolutionary Computation, pages 312-317, 1996
[2] N. Hansen and A. Ostermeier, Completely Derandomized Self-

Adaptation in Evolution Strategies. To appear in Evolutionary Com-

putation, Special Issue on Self-Adaptation, 2000.
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Characterization of Landscapes

Ivo Hofacker (joint work with Peter Stadler)

A landscape is a fitness function f : V → R defined on a set of configurations
V together with some notion of nearness. Typically, V is a graph with edges
connecting the neighbors.
Landscapes can be characterized by their autocorrelation function along random
walks. A rapidly decreasing correlation function, i.e. a short correlation length,
corresponds to a rugged landscape.
Of particular interest are the “elementary landscapes” of a configuration graph,
given by the eigenfunctions of the graph laplacian. For elementary landscapes
the correlation function is a simple exponential, with correlation length related
to the eigenvalue.
General fitness landscapes can be decomposed into a superposition of elementary
landscapes through a Fourier transform. The amplitude spectrum obtained from
the Fourier transform contains information about the ruggedness of the landscape
and can be used for classification and comparison purposes. Using fast fourier
transform techniques explicit computation of the spectrum is possible for land-
scapes with up to 108 configurations, for larger problems the dominant amplitudes
can be estimated from the correlation function.
The technique can be generalized to landscapes with recombination. For bi-
nary strings with recombination the elementary landscapes are exactly the p-spin
functions (Walsh functions), i.e. the same as the for point mutation spaces. Com-
paring the nearest neighbor correlation, one finds that one-point crossover always
leads to a more correlated (less rugged) landscape than uniform crossover, while
point-mutations are more correlated than crossover except for very high interac-
tion orders.

Speciation as Computation

Jeffrey Horn

The formation and interaction of different species in a population P undergoing
selection is a powerful, natural process. To help us understand and control the
dynamics of evolving species, it might be useful to model species selection as a
computation (e.g., optimization of a figure of merit, or the solution of a system
of equations). For an example, we analyze sharing of different niche resources
among competing individuals: fA ≡ resource coverage of species A, fB ≡ resource
coverage of species B, and so on. Equilibrium is defined as the distribution of the
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population at which all individuals’ shared fitnesses are equal: fA,shared = fB,shared

or fA

nA

= fB

nB

(where nA is the number of A individuals). If there is no overlap
among the species (a.k.a, perfect sharing), it turns out that the equilibrium distri-
bution occurs where the product of individual shared fitnesses is at a maximum:∏

i∈P fi,shared. Just as selection without sharing can be modeled as a process of
monotonically increasing the sum of individual fitnesses,

∑
i∈P fi, so selection

under perfect sharing can be seen as monotonically increasing the population fit-
ness product. Unfortunately, once we include overlap among species coverage, the
population fitness product fails to model the selection process. However, by in-
creasing the complexity of the equilibrium equations, overlapping niches suggest
another computational model of speciation: as the process of numerically solving
a set of equations in k unknowns (where k is the number of niches):

• For perfect sharing, the equilibrium equations reduce to a single equation
that is easily solved.

• For fitness sharing, the equilibrium equations result in a system of k linear
equations in k unknowns.

• For resource sharing, the equations yield a system of k polynomial equa-
tions, of order (2k − 3), in k unknowns.

The degree of complexity of these three sharing regimes correlates with experi-
mental observations:

• perfect sharing equilibrium is reached in a single generation, while

• fitness sharing equilibrium takes several generations, but is approached
monotonically, and

• resource sharing equilibrium can take much longer to achieve, with “errors”
(overshoots and oscillations) along the way.

Such complexity might explain the observed difficulty of achieving the steady-
state distribution when many overlapping niches (e.g., 10 < k) are present. Fur-
thermore, the oscillating convergence to equilibrium suggests that selection might
be using a successive approximation method to solving the set of polynomial
equations, much as Newton’s method would. Next we can try comparing the
successive approximations of our selection operator with the sequence of approx-
imations produced by various known iterative methods.
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Proving Crossover Useful

Thomas Jansen (joint work with Ingo Wegener)

It is a “well-known fact” that crossover is a very useful operator in evolutionary
algorithms. It is demonstrated in many experiments and made plausible by an-
alytical investigations based on more or less reasonable assumptions. However,
a rigorous proof based on no unproven assumptions is missing. Here, one such
proof is presented for a special family of objective functions and a carefully de-
signed steady-state genetic algorithm. It is shown that for these functions the
GA outperforms by far a wide class of mutation-based evolutionary algorithms.
The result is formulated in terms of expected running time as well as in terms of
optimization within a certain number of generations with very high probability.

How to Detect All Maxima of a Function?

Leila Kallel (joint work with Josselin Garnier)

This paper starts by a theoretical investigation of a family of landscapes charac-
terized by the number of their local optima N and the distribution of the sizes
(αj) of their attraction basins. We then propose a practical methodology for
identifying these quantities (N and (αj) distribution) for an unknown landscape,
given a random sample on that landscape and a local steepest ascent search.
This methodology applies to any landscape specified with a modification operator
and provides bounds on search complexity (to detect all local optima) when using
the modification operator at hand. Experiments demonstrate the efficiency of
this methodology for guiding the choice of modification operators, leading to the
design of problem-dependent optimization heuristics.

Scaling of Program Fitness Spaces

William B. Langdon

We investigate the distribution of fitness of programs concentrating upon those
represented as parse trees, particularly how such distributions scale with respect
to changes in size of the programs. By using a combination of enumeration and
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Monte Carlo sampling on a large number of problems from three very different
areas we are lead to suggest, in general, once some minimum size threshold has
been exceeded, the distribution of performance is approximately independent of
program length.

We proof this for linear programs and for simple side effect free parse trees. We
give the density of solutions to the parity problems in program trees composed of
XOR building blocks. We have so far only conducted limited experiments with
programs including side effects and iteration. These suggest a similar result may
also hold for this wider class of programs.

References
[1] W. B. Langdon, Scaling of Program Tree Fitness Spaces, Evolutionary

Computation, 7(4), pages 399-428, 1999.

Understanding EA: The Fractal Way

Evelyne Lutton

Fractals are largely known as “nice” images (Julia sets, Mandelbrot sets, Von
Koch curves, Sierpinski gasket), that present the characteristic of having infinitely
many details and that obey a sort of “self-similarity” law. There exists however
important (but often less known) aspects of fractals, especially related to their
use as analysis tools. The design and use of fractal or multifractal tools in order to
perform analyses of signals that are not necessarily “fractal” is now an important
trend, and has been proven successful in various domains of applications, such as
image analysis, finance, physics, or network traffic analysis ...

Here, we show how these fractal tools can be used in order to carry out some
theoretical analysis of Evolutionary Algorithms.

We first present how some irregularity measures (that are one of the basis of
fractal and multifractal analysis of signals) can be used in a deception analysis of
genetic algorithms (discrete space and inifinite population). A qualitative analysis
of the influence of some of the GA parameters are derived and a chromosomal
encoding evaluation tool is designed.

Then, considering continuous spaces EA, we present preliminary results stemming
from perturbation theory, that are a first step towards the introduction of fractal
irregularity measures in a Markov model.

Indeed it seems that (fractal) irregularity may be a convenient quantity (yet of
course not the only one !) for the classification of fitness functions (or landscapes)
with respect to their EA behaviour (related to some extent to EA-difficulty).
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From Genetic Recombination to Search Distributions and
Graphical Models

Heinz Mühlenbein

First we show that all genetic algorithms can be approximated by an algorithm
which keeps the population in linkage equilibrium, i. e. the genetic population is
distributed as a product of univariate marginal distributions. We describe a sim-
ple algorithm which keeps the population in linkage equilibrium. It is called the
Univariate Marginal Distribution Algorithm (UMDA). Our main result is that
UMDA transforms the discrete optimization problem into a continuous one de-
fined by the average fitness W̃ (p1, . . . , pn) as a function of the univariate marginal
distributions pi. For proportionate selection UMDA performs gradient ascent in
the landscape defined by W (p). We derive a difference equation for pi which has
already been proposed by Wright in population genetics. We show that UMDA
solves difficult multi modal optimization problem. But for functions with highly
correlated variables it has to be extended to marginal and conditional distribu-
tions. The Factorized Distribution Algorithm (FDA) uses a general factorization
of the distribution. For decomposable functions the optimal factorization can
be explicitly computed. In general it has to be computed from the data. Each
distribution can be represented as a Bayesian network. Computing the structure
from the data is called learning in Bayesian network theory. The problem of
finding a minimal structure which explains the data is discussed in detail. It is
shown that the Bayesian Information Criterion is a good score for this problem.
This is used by the algorithm LFDA.
Part of the material of the talk appeared in Journal of Heuristics 5, 215-247
(1999) and Evolutionary Computation 7, 353-376 (1999). The talk will be pub-
lished in Theoretical Aspects of Evolutionary Computation, Springer Lecture Se-
ries in Natural Computing Systems. See also http://borneo.gmd.de/AS/art/

index.html.
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Comparing Population Mean Curves

Bart Naudts

A possible approach to qualify how easily a search problem is solved by an evo-
lutionary algorithm is to record statistical aspects of the (average) dynamics of
the (algorithm,problem)-combination, and to compare them with the recordings
of a large class of well-studied combinations. This talk addresses the issue of
comparing population mean (κ1) curves arising from problems with different fit-
ness ranges. If one normalizes the curve with respect to the density of states
(i.e., h1 = − log

2
(F (κ1(t)), with F the cdf of the DoS) then the derivative of this

normalized curve can be seen as the speed of the algorithm in bits (of the leading
ones problem fixed) per iteration. A first experimental validation of this work in
progress suggests that the normalization catches on the aspects influencing the
dynamics of evolutionary algorithms: onemax problems are solved at a constant
speed from the random population to approximately 90% of the bits equal to
one. Randomly generated instances of the 3SAT problem are initially solved at
an identical speed independent of the ratio of clauses to variables.

Optimal Mutation Rates and Error Thresholds in Genetic
Algorithms

Gabriela Ochoa

It has been argued that optimal per-locus mutation rates in GAs are proportional
to selection pressure and the reciprocal of genotype length. In this paper we sug-
gest that the notion of error threshold, borrowed from molecular evolution, sheds
new light favoring this argument. We show empirically the existence of error
thresholds in GAs running on a simple abstract landscape; and then investi-
gate a real-world industrial problem, demonstrating comparable phenomena in a
practical application. We study the correspondence between error thresholds and
optimal mutation rates on these two problems, and explore the effect of different
selection pressures. Results suggest that error thresholds and optimal mutation
rates are indeed correlated. Moreover, as the selection pressure increases, both
error thresholds and optimal mutation rates increase. These findings may have
practical consequences, as heuristics for measuring error thresholds in real-world
applications will provide useful guidelines for setting optimal mutation rates.
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Research on the Bayesian Optimization Algorithm or
How the BOA Saved the Building Blocks

Martin Pelikan (joint work with David E. Goldberg)

Recently, a number of evolutionary algorithms that guide the exploration of the
search space by building probabilistic models of promising solutions found so
far have been proposed. These algorithms have shown to perform very well
on a wide variety of problems. The Bayesian optimization algorithm (BOA)
used Bayesian networks as a very general probabilistic model to model promising
solutions and generate the new ones. This presentation provides motivation to the
proposal of the BOA algorithm. It summarizes our recent research on the BOA
and outlines the directions our research in this area has been following. It settles
the algorithm in the problem decomposition framework used often to understand
the complex behavior of genetic algorithms. It provides the most important
research issues to tackle and reviews our recent progress in each of these areas.
For more detailed information on any of the topics covered in the presentation,
please visit our IlliGAL web page at http://www-illigal.ge.uiuc.edu/ where
you can download all our papers. The source code of the BOA algorithm in C++
is also available on the above page.

Recursive Conditional Schema Theorem, Convergence
and Population Sizing in Genetic Algorithms

Riccardo Poli

In my talk I have discussed the potential role of theories on schemata in proving
the convergence of genetic algorithms in a finite number of generations and with
finite populations. In the talk I have presented a version of schema theorem that
can be applied recursively, provided that the fitness of population and building
blocks are known. At the beginning of my talk I asked how many people believed
that schema theorems are pretty useless. More than half of the audience waved
their hands. I hope to have convinced at least some of them that this belief is
not supported anymore.
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Symmetry Breaking in Evolutionary Algorithms

Adam Pruegel-Bennett

Hard optimization problems often exhibit some symmetries in their solution
space. Even when there is no explicit symmetry, the solution space will often
be broken up into regions with statistically similar properties. A population ex-
ploring such a space will typically span many such regions or symmetric states.
Crossover between solutions from different regions can be very costly, because the
building blocks have different representations in each state. However this cost
may be mitigated by the correlation of the population, since the members are
more likely to come from the same region of the search space. In understanding
how EAs work on hard problems it is important to investigate how the correla-
tion in the population reflects the underlying structure of the search space. We
present some preliminary empirical studies which suggest that the population of
an EA can correlate in such a way as to reduce its crossover cost. This suggests
that in hard problems some degree of convergence may be beneficial. This may
have important implications for how to choose an optimal mutation rate.

Experiments with Tunable Fitness Landscapes

Colin Reeves

In this talk I first described attempts to measure the difficulty of a problem for
an evolutionary search algorithm. Most of these attempts are essentially the
same in that they try to infer some measure of epistasis from a sample of points
in the search space. The standard measure to which most others are related
is the epistasis variance. Some measures also try to include the effect of the
algorithm itself, but I showed that in the case of binary strings they amount
to the same decomposition, based on Walsh functions. The question is whether
these measures capture any landscape property that really relates to the difficulty
of the search.

I discussed some empirical characteristics of NK-landscapes and showed that they
are in some senses unusual, both in the distribution and the magnitudes of their
Walsh coefficients. I then introduced a new class of tuneable landscapes (the ℓ, θ
landscapes) that can be tuned more precisely. However, I also demonstrated that
a whole set of very different landscapes with different apparent ease or difficulty
of solution can be formed from a single NK-landscape, all of them having the
same epistasis variance. A completely satisfactory interpretation of the meaning
of these results is not yet clear, but the discussion afterwards provided several
pathways to explore.
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Genetic Algorithms in Time-Dependent Environments

Christoper Ronnewinkel

The influence of time-dependent fitnesses on the infinite population dynamics of
simple genetic algorithms (without crossover) is analyzed. Based on general argu-
ments, a schematic phase diagram is constructed that allows one to characterize
the asymptotic states in dependence on the mutation rate and the time scale of
changes. Furthermore, the notion of regular fitness landscapes is raised for which
the population can be shown to converge towards a generalized quasispecies. The
case of a generational genetic algorithm with a moving needle-in-the-haystack
landscape can be approximately described by a two-concentration model taking
into account only the concentration of the current and future needle sequence.
Based on this, error thresholds and an optimal mutation rate for most stably
tracking the needle can be calculated. The so found phase diagram is fully con-
sistent with the one from general considerations. The two-concentration model
also explains the average value of selfadapted mutation rates for the considered
moving needle-in-the-haystack. In future work, finite population effects will be
included into the analysis, as well as landscapes with broader peaks.
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Generalising the Dynamical Systems Model

Jonathan Rowe (joint work with Michael Vose and Alden Wright)

Michael Vose’s “dynamical systems” model of GAs utilises the underlying symme-
tries in the set of fixed-length binary strings to simplify the equations of motion.
To generalise this model to arbitrary finite search spaces, we start by explicitly
defining a group structure on the search space to capture significant symmetries.
Once this is done, suitable crossover and mutation operators can be defined which
are invariant with respect to the group. Furthermore, if the search space group
has a decomposition into normal subgroups, we can define crossover and mutation
operators which respect this decomposition. This leads to a natural generalisa-
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tion of the concept ”schema” as being cosets of the normal subgroups of the
search space. An exact schema theorem can then be proved. This is simplified
further if the group is abelian by a Fourier Transform. It can be shown that
such a transform exists only if the group is abelian - for example, there is no
such transform if the search space is a permutation group (as in the travelling
salesman problem).

Recent Advances in the Theory of Multi-Objective
Evolutionary Algorithms

Günter Rudolph (joint work with Alexandru Agapie)

Whereas the limit theory of Evolutionary Algorithms (EA) for single-objective
optimization is almost exhaustively treated, the situation is completely different
in case of multi-objective problems. First results were published in 1998, but the
theoretical foundation is hardly developed yet.

Here, we took the following approach: It is assumed that the fitness “values” are
only partially ordered. Therefore the target of the evolutionary search is the set
of minimal elements. As soon as we find conditions that imply convergence to this
set, then this result is also valid in the special cases of multi-criteria and single-
criterion problems. For this purpose we defined four abstract base algorithms
and postulated certain conditions regarding the Markovian kernel that describes
the generation of new trial points depending on the set of current solutions.
It is shown that every EA that matches a base algorithm and its associated
conditions converges to the desired solution set. Next we split the Markovian
kernel into three, say, Markovian kernels that only describe the transitions made
by crossover, mutation, and “pre-selection”. We identify special properties that
must be satisfied for each kernel in order to guarantee that the product of these
kernels still exhibits the desired property of the original Markovian kernel. Now
it is easy to examine explicit methods for crossover, mutation and pre-selection
whether they lead to stochastic kernels with the desired properties or not. It
is shown that these conditions are fulfilled for a variety of existing evolutionary
“operators”.
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Still Missing Features in Current Evolutionary Algorithms

Hans-Paul Schwefel

Nearly four years ago, at the first Dagstuhl seminar on evolutionary computation
and its applications, nearly the same title was used for the last presentation of the
seminar. This offers the opportunity to revisit the findings from the year 1996
and to look for areas of progress as well as areas of stagnation or “premature
convergence.”
Firstly, some differences between organic evolution and artificial or simulated evo-
lution will be addressed in binary terms of evolutionary optimization or, better,
amelioration, e.g., static versus dynamic, single criterion versus multiple crite-
ria, global knowledge and long term memory versus distributed non-predictive
information processing, etc.
Secondly, some emerging ideas of using nature’s “tricks” to survive and evolve
will be examined for their feasibility within global, parallel, dynamic, and multi-
objective optimization.
Finally, the question will be addressed whether mimicking organic evolution is
compulsory or senseless, prodigal or intelligent, or just challenging during the
search for understanding the real world.

Statistical Mechanics of Genetic Algorithms

Jonathan L. Shapiro

Statistical Mechanics can be used to analyse and predict the dynamics of genetic
algorithms in finite populations for specific problems. In this approach, the pop-
ulation is described in terms of macroscopics, which are large-scale, statistical
properties of the population. If other quantities are required about the popula-
tion, a maximum entropy distribution is assumed to infer these. This approach
works well if the macroscopics used are appropriate for the problem.
The approach is illustrated for the one-max problem under the assumption of
linkage equilibrium. Average cumulants of the fitness distribution in the popu-
lation are used as the macroscopic variables. Taking the diffusion limit produces
a linear first order differential equation. The dynamics is dominated by a single
slow mode which contributes primarily to low order statistics. For this simple
system, optimal annealing rate for the mutation rate can be found. The system
can also be studied in a time-varying fitness landscapes.
Moving beyond the linkage equilibrium assumption requires a study of the full
difference equations including nonlinearities which vanish only in the linkage equi-
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librium limit. Maximum entropy inference is required to determine statistics of
the similarity of the strings in the population from the fitness statistics. This
similarity determines the efficacy of crossover. Part of the similarity is due to the
fact that many strings share a common ancestor; this must be treated separately.
The approach has been applied to a range of problems, including multi-modal
fitness functions, learning in a perceptron, and the subset sum problem. Different
selection models have been considered including truncation selection, tournament
selection, ranking selection, and multiplicative selection. Predictions are in very
good agreement with simulations.

Evolving Neural Structures

Peter Stagge

Natural evolution does wonderful things in finding structures that survive in
changing environments using quasispecies and adaptive structures. Adaptivity is
also an inherent property the coding from DNS to structure has.
To evolve structures in practice we actually have to restrict to classes of struc-
tures. This choice can be guided by nature: neural fields and neural networks
seem to be sufficiently powerful and general. Additionally, we can try to learn
from nature as similar structures are found. So we want to learn about the
optimizing process by using and comparing it.
Work is presented on noisy fitness functions with different fitness distributions
and the connection to selection strength is given exactly in a model. Additionally,
redundant coding for network structures is analyzed.
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On the Analysis of a Dynamic (1+1) EA

Ingo Wegener (joint work with Thomas Jansen)

The (1+1)-EA often is used to maximize functions f : {0, 1}n → IR. The typi-
cal mutation probability is p(n) = 1/n which is known to be optimal for linear
functions. For certain functions other choices of p(n) are better. Here a dy-
namic variant starting with p1(n) = 1/n is analyzed. The mutation probability
is doubled in each step and values larger than 1/2 are replaced by 1/n. This
dynamic (1+1)-EA tries approximately all possible values of p(n) (up to a factor
of

√
2). One may hope that one can gain a lot if different mutation probabilities

are useful in different regions of the state space. One also may hope that one
does not lose too much, since every (log n)-th step is close to a good value of
p(n). With a general technique it is proved that for ONEMAX we are losing at
most a factor of O(log n) (for the expected run time), for LEADING ONES we
are losing exactly a factor of Θ(log n). For each member of a well-specified class
of functions only mutation probabilities of size Θ(log n/n) lead to polynomial run
times. The dynamic (1+1)-EA is even better than all static ones. But we also
have an example of a function where the dynamic (1+1)-EA is much worse than
the usual static one, since the steps with larger mutation probabilities increase
the chance to jump into a trap.

Towards a Theoretical Foundation of Dynamic
Optimization

Karsten Weicker

In this work a general mathematical framework is defined for dynamic fitness
functions. This enables us to define exact properties of dynamic problems which
help to partition all those problems into subclasses. Exemplary properties are
regularity, homogeneity, periodicity, and the severity of the dynamics. The prop-
erties are inevitable for the comparison of problems. They can also help to
characterize the desired behavior of optimization algorithms in dynamic envi-
ronments and thus to put the term “adaptation” in concrete terms. Results on
the correlation between problem properties, algorithmic techniques, and aspects
of adaptation can be derived if certain working principles are assumed for the
optimization algorithm. In an exemplary result it is shown how adding external
memory for previous good solutions and increasing the population size affects the
optimization accuracy for a simple unimodal dynamic problem.
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Towards Qualitative NFL Results

Nicole Weicker

In this work different kinds of no free lunch results are characterized. A general
formalism is presented that shows the common basis of all these results as well
as the main differences. Beside the known conservation laws a new kind of no
free lunch, the so called qualitative no free lunch is identified. This is a no free
lunch, that includes statements about properties of algorithms resp. problems
which make it possible to find a matching between the different properties.

Models of Steady State Genetic Algorithms

Alden Wright (joint work with Jonathan Rowe)

Discrete-time dynamical system expected value models for a general steady state
genetic algorithm were constructed. These lead to a continuous-time dynamical
system infinite population model by a process of letting the population size go
to infinity while the time step goes to zero. Conditions were given that imply
existence and uniqueness of solutions to this model.
For the random deletion version of the steady state genetic algorithm, the set
of fixed points for the continuous-time model, the discrete-time models, and the
infinite population model of the corresponding generational genetic algorithm,
are all the same. An example was given that showed that a fixed point may
be stable for the continuous-time model, but unstable for the generational GA
model.
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Computational Time Complexity of Certain Evolutionary
Algorithms

Xin Yao

Although evolutionary algorithms have often been used to solve various combi-
natorial optimisation problems, especially NP-hard problems, it is unclear what
advantages they might offer in terms of computational time complexity. Most
comparisons between evolutionary algorithms and classical algorithms have been
experimental. Few results on the computational complexity of evolutionary algo-
rithms exist. This talk presents two new results on the average time complexity
of evolutionary algorithms. They established conditions under which an evolu-
tionary algorithm will take no more than polynomial time (in problem size) to
solve a problem and conditions under which an evolutionary algorithm will take
at least exponential time (in problem size) to solve a problem. These two re-
sults enable us to show the complexity of an evolutionary algorithm for a certain
problem. Examples of the average time complexity of an evolutionary algorithm
for solving the subset sum problem are given to illustrate the use of these two
general results.
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