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The development of our modern societies needs more and more involvement
of computers in managing highly complex and (safety-)critical tasks, e.g., in
telecommunication, chemical and physical process control, transportation sys-
tems, etc. It is essential to be able to produce reliable hardware and software
systems, since any erroneous behaviour can have catastrophic (economical and
human) consequences. This requires rigorous methods and techniques to con-
ceive, analyze and validate these systems.

The verification problem consists in checking whether a system satisfies its specifi-
cation. During the two last decades, significant achievements have been obtained
in the case of finite-state systems (systems with finitely many states). One of
the main actual challenges in the domain of automated verification is the con-
ception of methods and tools allowing to deal with verification problems beyond
the finite-state framework.

Such problems rise naturally as soon as we consider aspects like:

real-time constraints: timed and hybrid systems,

unbounded discrete data structures: counters, fifo-channels, stacks, etc.

parametric reasoning about families of systems, e.g., networks of processes,

process mobility, dynamic creation and destruction of processes (dynamic
modification of the communication structure).

In the last two years the specification and verification of infinite-state systems
have attracted the attention of more and more researchers belonging to a very
broad range of research communities. Both process algebras (or term rewriting
systems) and automata (or finite control machines) are being used as specifica-
tion formalisms. Verification problems can be reduced to checking behavioural
equivalence or implementation (simulation) relations, or to checking the satisfac-
tion of properties described in temporal logics or fixpoint calculi (model checking
problems). Verification methods can be deductive (based on the use of theo-
rem provers), or algorithmic (based on decision or semi-decision procedures).
Algorithmic methods can be based on fixpoint theory, automata theory or (con-
strained) logic programming.



Recent work has shown that different techniques can be combined with sometimes
spectacular results. As a result, it is being acknowledged that only a combination
of techniques can lead to methods and tools widely used in practice. The aim of
this meeting is to bring together researchers working on different research fields
in order to make a synthesis on the state of the art and evaluate the potential of
combined methods. Concrete questions to be addressed are:

e Which results in logic, automata theory, rewriting systems, etc. are appli-
cable to automatic verification?

e How should deductive and algorithmic techniques be combined?
e Which are the right techniques to deal with abstraction?

e Which are the most promising application fields (mobile systems, cryp-
tographic protocols, static program analysis ...), and which are the most
appropriate models, specification formalisms, and verification techniques
to deal with them?
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1 Regular Model Checking

Bengt Jonsson

Joint work with Marcus Nilsson, Parosh Abdulla, Ahmed Bouajjani, and Tayssir
Touili.

We present reqular model checking, a framework for algorithmic verification of
infinite-state systems with, e.g., queues, stacks, integers, or a parameterized linear
topology. States are represented by strings over a finite alphabet and the transi-
tion relation by a regular length-preserving relation on strings. Major problems in
the verification of parameterized and infinite-state systems is to compute the set
of states that are reachable from some set of initial state, or to compute the tran-
sitive closure of the transition relation. We present a direct automata-theoretic
construction for computing the transitive closure, which uses elementary tech-
niques adapted to our framework. The technique is incomplete in general, but
we give sufficient conditions under which it works. The work has been presented
in [1,2].
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2 Model Checking Context-Free Properties

Markus Miiller-Olm

Imperative programming languages typically offer a sequential composition oper-
ator which allows the straightforward specification of behavior proceeding in suc-
cessive phases. Similar operators are provided by interval temporal logics, where
they are called chop-operators. Important examples are Moszkowski’s Interval
Temporal Logic ITL [7] and the Duration Calculus [10]. Up to our knowledge,
however, no point-based temporal logic and, in particular, no branching-time
logic with a chop operator has been proposed up to now.

In the talk, which was based on [8], we presented some results on a logic called
FLC (Fixpoint Logic with Chop) that extends the modal mu-calculus [6] by a chop
operator ;" and termination formulae ‘term’. In order to explain the meaning
of the new types of formulas in a compositional way we utilize a ‘second-order’
interpretation of formulae. While (closed) formulae of usual temporal logics are



interpreted by sets of states, i.e. represent predicates, we interpret formulae by
mappings from states to states, i.e. by predicate transformers. A similar idea
has been used by Burkart and Steffen [2] in a model checking procedure for
modal mu-calculus formulae and context-free processes. However, they rely on a
second-order interpretation of states as property transformers, while we use here
a second-order interpretation of formulae.

FLC-based model checking is an interesting alternative to modal mu-calculus-
based model checking as FLC is strictly more expressive but still decidable for
finite-state processes. We showed that FLC is undecidable for context-free pro-
cesses, that satisfiability (and thus also validity) is undecidable, and that the
logic does not have the finite model property. These results are inferred from the
existence of formulae characterizing context-free processes up to bisimulation and
simulation. In the talk we also discussed some connections to mu-calculus based
model-checking of context-free and push-down processes [1,2,9] and to propo-
sitional dynamic logics with context-free programs [3,4,5]. We also indicated
that the logic might be of use for casting interprocedural data-flow analysis as a
model-checking problem on the so-called supergraph of the program in question.
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3 Alternating Automata Based Decision Proce-
dures for Circuit Families

David Basin

(Following is joint work with Felix Klaedtke and Abdelwaheb Ayari)

We show how alternating automata provide decision procedures for the equiva-
lence of inductively defined Boolean functions that are useful for reasoning about
parameterized families of circuits. We use alternating word automata to formalize
families of linearly structured circuits and alternating tree automata to formal-
ize families of tree structured circuits. We provide complexity bounds and show
how our decision procedures can be implemented using BDDs. In comparison to
previous work, our approach is simpler, yields better complexity bounds, and, in
the case of tree structured families, is more general.

4 Verification and Synthesis for Timed and Hy-
brid Systems

Oded Maler

In this talk I first explain the motivation for hybrid (discrete-continuous) sys-
tems and the main differences in the mathematical models underlying discrete
and continuous dynamical systems. More details about a unifying model for dis-
crete and continuous systems can be found in http://www-verimag.imag.fr/
~maler/cabst.html#unif.

If one wants to extend verification methodology to treat such systems, the prob-
lem of (approximately) computing reachable states for continuous (and non-
deterministic) systems should be solved. I describe an experimental system called
d/dt, which combines numerical approximation with computational geometric
techniques to verify and synthesize hybrid automata with linear differential in-
clusions. More about this work can be found in http://www-verimag. imag.fr/
~maler/jabst.html#procieee.



5 Generic Type Systems for Mobile Processes

Barbara Konig

We introduce a generic type system for the synchronous polyadic m-calculus,
allowing us to mechanize the analysis of input/output capabilities of mobile pro-
cesses. The parameter of the generic type system is a lattice-ordered monoid, the
elements of which are used to describe the capabilities of channels with respect
to their input/output-behaviour. The type system can be instantiated in order
to check process properties such as upper and lower bounds on the number of
active channels and confluence.

6 Parametric Linear Temporal Logic

Salvatore La Torre

The results presented in the talk are mainly taken from [1].

Model checking has become a central methodology for automated verification of
reactive systems. We extend the standard model checking paradigm of linear
temporal logic, LTL, to a “model measuring” paradigm where one can obtain
more quantitative information beyond a “Yes/No” answer. For this purpose,
we define a parametric temporal logic, PLTL, which allows statements such as
“a request p is followed in at most = steps by a response ¢”, where z is a free
variable. Given a formula ¢(zy,...,z;) of PLTL and a system model K, we
are interested in V(K ¢), the set of valuations of zi,...,z; under which the
system K satisfies the property ¢. We show algorithms to check for emptiness,
finiteness, and universality of V (K, ¢), and we also show how to find valuations
which satisfy various optimality criteria. The complexity of these algorithms is
essentially that of ordinary LTL model checking: PSPACE in the formula size and
polynomial-time in the size of the model. When all parameterized operators in
the formula are of the same polarity, we can compute an explicit representation of
V(K, ¢) by symbolic constraints on parameter values. We have defined our logic
with two restrictions: we do not allow equality subscripts (e.g. ¢—,), and the
same parameter cannot appear in association with two operators with different
polarities (e.g., both {<, and O<,). We show that our logic lies at the threshold
of decidability for parametric temporal logics, in the sense that removing either
of these two restrictions leads to an undecidable “model measuring” problem.
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7 Automatic Abstraction by Syntactic Program
Transformations

Kedar Namjoshi

(joint work with Bob Kurshan, Bell Laboratories)

We present an algorithm that constructs a finite state “abstract” program from a
given, possibly infinite state, “concrete” program by means of a syntactic program
transformation. Starting with an initial set of predicates from a specification, the
algorithm iteratively computes the predicates required for the abstraction rela-
tive to that specification. These predicates are represented by boolean variables
in the abstract program. We show that the method is sound, in that the abstract
program is always guaranteed to simulate the original. We also show that the
method is complete, in that, if the concrete program has a finite abstraction with
respect to simulation (bisimulation) equivalence, the algorithm can produce a fi-
nite simulation-equivalent (bisimulation-equivalent) abstract program. Syntactic
abstraction has two key advantages: it can be applied to infinite state programs or
programs with large data paths, and it permits the effective application of other
reduction methods for model checking. We show that our method generalizes
several known algorithms for analyzing syntactically restricted, data-insensitive
programs.

8 Unfoldings of Infinite State Systems

S. Purushothaman Iyer

Net unfoldings have attracted much attention as a powerful technique for com-
bating state space explosion in model checking. The method has been applied to
verification of 1-safe (finite) Petri nets, and more recently also to other classes of
finite-state systems such as synchronous products of finite transition systems. We
show how unfoldings can be extended to the context of infinite-state Petri nets.
More precisely, we apply unfoldings to get an efficient symbolic algorithm for
checking safety properties of unbounded Petri nets. We also discussed extensions
of the notion of unfoldings to other classes of infinite state systems.



9 Provability in a Logic for Concurrent Objects
is Well-structured!

Giorgio Delzanno

In the early 90’s, Andreoli and Pareschi [2,3,4,5] introduced a logic for specifying
concurrent objects. The logic captures the main features of object-oriented lan-
guages like classes, inheritance, objects with state, and dynamic updates. The
logic provides two form of concurrency: OR-concurrency to model the internal
evolution of objects, and AND-concurrency to model the interaction among ob-
jects. Furthermore, asynchronous communication is achieved via ask and tell
operations on a common blackboard. The operational semantics of LO is given
via a goal-driven sequent calculi. In this context, a proof is viewed as a goal-
driven computation and an LO-program as a set of multiset rewriting rules. LO
programs specify infinite-state concurrent systems. The following question natu-
rally arises.

Can we use results developed for infinite-state verification to this special class of
infinite-state systems?

To answer the question, we show that provability in the logic LO is a well-
structured relation. Following from general results of Abdulla-Cerans-Jonsson-
Tsay [1] and Finkel-Schnoebelen [7], this property implies that it is possible to
construct effectively a finite representation of the set of all logical consequences of
an LO-program P, i.e., of the set of goals that are provable in P. This construc-
tion is achieved building a proof bottom-up starting from the axioms of the logic.
This proof-search strategy can also be viewed as a method for the bottom-up
evaluation of LO-programs.

The connection between the decidability results for infinite-state systems and
provability in LO is interesting for at least two reasons. Firstly, it can be consid-
ered as a first step towards the application of verification techniques like model
checking to concurrent object-oriented systems. Secondly, LO is based on a frag-
ment of linear logic [8], a constructive logic obtained as a sub-structural refine-
ment of classical logic. Thus, our result on well-structuredness of LO-provability
can be considered as a potentially useful technique to find new proof search
strategies for larger fragments of linear logic.

The full paper is available as technical report [6].
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10 On the Complexity of Bisimulation Equiva-
lence

Richard Mayr

We give an overview on some recent results on the complexity of deciding bisim-
ulation equivalence. Weak and strong bisimilarity between context-free processes
and finite-state processes is decidable in polynomial time [1], in spite of the fact
that there are cases where the bisimulation game must have exponential length.
On the other hand, weak bisimilarity between pushdown automata and finite
automata is PSPACE-hard, even for a small fixed finite automaton. The same
problem for strong bisimulation is also PSPACE-hard, but only polynomial in the
size of the pushdown automaton [3]. Finally, we show that strong bisimilarity
of Basic Parallel Processes (BPP, also called communication-free Petri nets) is
co-NP hard, while weak bisimilarity of BPP is IT5-hard in the polynomial hierar-
chy [2].
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11 Simulation and bisimulation over
one-counter processes

Antonin Kucera

We present an overview of recent decidability and complexity results for checking
bisimulation and simulation equivalence with processes of pushdown automata,
one-counter automata, and one-counter nets. First we show that there is a gen-
eral relationship between simulation problems and their bisimulation counter-
parts, which is valid (but generally not effective) for arbitrary finitely-branching
processes. Then we show that this method can be effectively applied to processes
of one-counter nets (which are ‘weak’ one-counter automata without an explicit
test for zero). In this way we demonstrate that certain simulation problems (e.g.,
equivalence, regularity) for one-counter nets can be reduced to the corresponding
bisimulation problems for one-counter automata and thus they are decidable.
Next, we present a summary of results concerning the complexity of simulation
and bisimulation equivalence between pushdown (or one-counter) processes and
finite-state processes. Some of the bounds are already tight (in particular, we
show that bisimilarity between pushdown processes and finite-state processes is
PSPACE-complete, while simulation equivalence is EXPTIME-complete).

12 Deciding first-order non-regular Properties
of PA-Processes

Denis Lugiez, Philippe Schnoebelen

This paper gives decidability results for several first-order logic based upon the
reachability predicate in Process Algebras, i.e. the model of parallelism with se-
quential and parallel composition, and process rules X % ¢. The main idea is to
show that the reachability relation is a recognizable relation. More precisely, this
means that the set of terms s x t such that s = ¢ is a regular set on the product
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alphabet. Classical tree automata constructions are used to show that recogniz-
able relations are closed under conjunction, disjunction, products, projection and
cylindrification. Therefore the first order theory of recognizable relations is de-
cidable. This classical closure properties and of the recognizability of the relation
= imply that the first-order logic built from the classical connectives, quantifiers,
and atoms s — ¢ (as well as any other recognizable relation) is decidable.

We show similar results for constrained reachability (some constraints are set
on paths) for several kind of constraints. These constraints are either time con-
straints (like reach t from s in less than 5 time units) or Presburger’s arithmetic
formula on the number of actions performed along a derivation (like reach ¢ from
s by performing as many actions a as actions b for s in a regular set of initial
states and ¢ belonging to a regular set of final states). The decision procedure for
the first type of constraints relies on the notion of decomposable predicates. For
the second type of constraints, we show that the resulting first-order logic is un-
decidable but that interesting fragments are decidable. In this case the decision
procedure involve automata where a cost is associated to transition rules and we
show how to embed these costs into a classical tree automaton or to compute
with these costs.

13 Decision procedures for pushdown automata
with e-transitions

Colin Stirling

We examined decision procedures for pushdown automata with e-transitions.
First their graphs were introduced. We examined two transformations, a “col-
lapsing” transformation and a determinatization transformation. We showed how
these are very useful for understanding the DPDA equivalence problem.

14 Model Checking Pushdown Graphs

Igor Walukiewicz

A pushdown graph is the graph of configurations of a pushdown automaton. The
model checking problem for some logic is: given a pushdown automaton and a
formula « of the logic decide if o holds in the initial configuration of the pushdown
graph.

First, we recall the EXPTIME-completeness result for model checking of linear
time logics (LTL, mu-calculus). Next, we recollect the EXPTIME-completeness
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result for the alternating reachability problem. Finally, we show a new result
which is PSPACE completeness of the model checking problems for both EF-
logic and CTL. EF-logic is a restriction of CTL to the formulas given by the
grammar:

P|l-a|aNf|Eoca| EFa

It turns out that there are two reasons for the model checking problem to be
EXPTIME-complete. One is the ability to compare all pairs of adjacent intervals
of size n (the case of linear time model checking). The other is unbounded alter-
nation. Once both these features disappear the complexity becomes PSPACE.

15 Acceleration of infinite loops: very well-
structured transition systems

Alain Finkel

We present a survey on the 10 different models related to well-structured transi-
tion systems (WSTS).

The importance of the choice of monotony (also called compatibility) and quasi-
ordering is shown. Some new undecidability results on WSTS may help us
to better understand the differences between models: in particular, we prove
that boundedness and computation of a coverability set are both undecidable for
WSTS (as defined in [1] and [2]). However, a coverability set has some advan-
tages: it allows to decide some liveness properties, to build a coverability graph
which simulates the original labelled transition system. To be able to define,
to effectively construct and to insure termination of an algorithm computing a
such coverability graph, we propose a new model, called very well-structured
transition systems, which have these desired properties. Finally, we give some
insights on how it is possible to accelerate infinite loops for reaching a cover of
the reachability set.
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16 Efficient Algorithms for Model-Checking
Pushdown Systems

Stefan Schwoon

The talk covers joint work with Javier Esparza, David Hansel, and Peter Ross-
manith. The related paper is available as a technical report [1].

We study the model-checking problem for linear time logics on pushdown sys-
tems. We do not treat pushdown systems as language acceptors; instead, we
regard them as infinite transition systems whose configurations are pairs of a
control location and a stack content. Our motivation lies in the fact that push-
down systems can model sequential programs with procedures. We develop a
strategy for solving the global model-checking problem, i.e. computing the set
of all configurations which violate a given formula ¢, and show that the prob-
lem can be solved in O(|P|?|B|?) time and O(|P|?|B|?) space if |P| is the size of
the pushdown system and |B]| is the size of a Biichi automaton corresponding to
—¢. If P is derived from a set of interprocedural flowgraphs, the time and space
requirements become linear in |P)|.
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17 Heterogeneous Finite-state Representation
Systems

Bernard Boigelot

We address the general problem of computing an exact representation of the set
of reachable configurations of a system with finite control and unbounded data.
In order to solve, even partially, this problem, one needs a representation sys-
tem for potentially infinite sets of values, as well as a computation method for
generating infinite sets of reachable states in finite time. We present a general
approach to solving the former problem, based on finite-state automata recogniz-
ing encodings of states. The latter problem is solved thanks to meta-transitions,
which are objects equivalent to iterations of cycles in the control graph of the
system being analyzed. After presenting the results of a practical application of
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this approach, we move to its main restriction which is that it can only be applied
to systems whose data part is expressed with respect to this problem, we describe
some restricted classes of systems for which one can lift the results obtained for
individual data domains so as to make it possible to analyze systems with an
heterogeneous data part. We then conclude with a list of open questions.

18 Temporal logics, flatness and counters

Hubert Comon

An automaton (or any finite state machine) is flat if there is at most one loop on
each state. When such a machine is in a given state, it may stay in the same state
for some time, performing some actions and either stay here forever or eventually
move to a strictly smaller state.

We show that flatness is an important hypothesis: many problems which are un-
decidable in the general case, become decidable for flat machines. For instance,
the transitive closure of the transition relation of a counter machine can be ef-
fectively defined in some decidable theory when the machine is flat (which is not
the case otherwise).

Then we define flat temporal logics in the linear case and prove a correspondence
between flat logics and flat automata. Such logics include, as atomic formulas,
expressions which say something about the counters or the relations between
counters, for instance y' = x + 2 says that the value of counter y after the tran-
sition is equal to the value of counter x before the transition plus two. Flatness
imposes some restrictions on the left-nested “until” constructions. Because of the
correspondence with flat automata, the satisfiability is decidable for such logics.
Unfortunately, the logic is not closed under negation and it turns out that the
validity problem is undecidable.

Finally, we extend the results to piecewise flat logics which include both flat logic
and Propositional Linear Time Logic. We conclude by asking a question: to which
extent is it possible to express parametrized properties within such a logic?
Most of the material of this talk is described in an abstract paper which is going
to appear in the proceedings of Computer Science Logic 2000.
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19 On the reachability problem in
cryptographic protocols

Roberto Amadio

This paper is joint work with Denis Lugiez [1].

We study the verification of secrecy and authenticity properties for cryptographic
protocols which rely on symmetric shared keys. The verification can be reduced
to check whether a certain parallel program which models the protocol and the
specification can reach an erroneous state while interacting with the environ-
ment. Assuming finite principals, we present a simple decision procedure for the
reachability problem which is based on a ‘symbolic’ reduction system.
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20 Proof-Checking Bisimulations

Christine Rockl

In recent years, theorem proving has gained considerable relevance in the field
of reactive systems. We survey how general-purpose theorem proving can be
applied to tell whether two processes — one modelling the system, and the other
the specification — are weakly bisimilar.

Applying a general-purpose theorem prover like Isabelle/HOL, the user specifies
the goal he/she intends to prove, and then derives it in interaction with the
prover. When formalizing a proof, the user can choose between various tactics,
ranging from classical reasoning over simplification (i.e., algebraic reasoning) to
fully automatic tactics. After a goal has been proven, it can be stored in the
prover’s theorem database as a new theorem to be referenced in further proofs.
There exist three main ways of showing that two processes are bisimilar: (1)
exhibit a relation containing as a pair the two processes, and prove that it is
a bisimulation; (2) use algebraic rules to transform one process into the other;
and, (3) incrementally compute a bisimulation following the coinduction proof
technique. The first and third proof methodologies can both be supported by
“up to” techniques.
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All three approaches have been applied in examples and case studies, formalized
in theorem provers. The first technique deserves special interest: it follows a
natural proof style, requiring only good insight in the behaviour of the system
and its specification; also, the conceptually difficult part (exhibit the relation)
and the simple but often tedious part (prove that it is a bisimulation) are clearly
separated; finally, it works for all kinds of operational models.

The suitability of the approach wrt. theorem proving can be demonstrated by a
range of case studies. We discuss infinite-state and parameterized (in the num-
ber of components) formalizations of communication and cache protocols: We
prove that the Alternating Bit Protocol is observationally equivalent to a one-
place buffer (length of proof, approx. 800 lines), and that a specification of the
Sliding Window Protocol with window-size n is observationally equivalent to an
n-place buffer (approx. 600 lines), and that a simple write-invalidate cache pro-
tocol keeps the cache coherent (approx. 1000 lines, applying a weak bisimulation
up to expansion).

21 Semilinear witnesses for decidability

Petr Jancar

In the talk, the main ideas of two decidability proofs were explained. One con-
cerns the boundedness problem for Petri nets with two resetable places, the other
the simulation preorder for one-counter nets. Both have a common ingredient,
namely exhibiting a ‘semilinear’ structure which implies the decidability.

22 On infinite-state systems

Didier Caucal

We present two general families of infinite-state systems over words: the family of
recognizable graphs [1] and the family of rational graphs defined by Morvan [3].
A recognizable graph is a finite union of elementary graphs of the form

U SVIW ={uw Svw|ueUveV,weW}

where U, V', W are rational languages. The recognizable graphs have a decidable
monadic theory and their traces are the context-free languages. This family
contains strictly the transition graphs of pushdown automata investigated by
Muller and Schupp [4] and the equational graphs defined by Courcelle [2].

A rational graph is a graph such that for each label, its set of transitions is a
rational relation. This family is very general: it contains the recognizable graphs
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and the transition graphs of various systems (like the Petri nets). In particular,
the first order theory of a rational graph is undecidable.

We show that these two families of graphs can be expressed naturally using the
transition graphs of word rewriting systems. The recognizable graphs are the
transition graphs of the prefix (or suffix) systems where a prefix (resp. suffix)
system is a system such that a left hand side and a right hand side are overlapping
only by prefix (resp. suffix). Furthermore, the rational graphs are the transition
graphs of the right (or left) systems where a right (resp. left) system is a system
such that a left hand side overlaps a right hand side only on the right (resp.
left). Finally, we show that these four families of word rewriting systems are
the maximal families of systems defined by overlapping between the left hand
sides and the right hand sides, and such that the derivation (transitive closure
by composition of the rewriting) is a rational relation.
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23 Context—Representable Processes

Thomas Noll

(Joint work with Mads Dam, Swedish Institute of Computer Science.)

We introduce a new class of processes in the spirit of process rewrite systems [4,6].
Our investigation is motivated by a practical application of formal methods for
handling infinite-state systems: the verification of distributed systems imple-
mented in the Erlang programming language [3]. For this purpose a very general
and powerful proof system has been developed [1,2]. It employs a tableau-based
theorem—proving approach to establish system properties specified in a modal
p—calculus with Erlang—specific extensions.

However, due to the undecidability of the underlying model-checking problem, a
proof generally requires a high degree of user interaction. Therefore an intimate
knowledge of the theoretical foundations is indispensable to employ the system

19



in a meaningful way. It is thus our aim to increase its usability by providing more
automatic support, in particular when dealing with fixed—point properties, which
are handled by means of a rather complex discharge rule in the proof system.

One possible approach is to represent the states of the system under consideration
in a symbolical way. For example, a CCS specification of a simple counter process
is given as follows (in our examples we employ the CCS process algebra instead
of Erlang to allow for more concise notations):

C = up.(C' || down.nil).

That is, the execution of an wup action adds a parallel component process of
the form down.nil which can be later removed by a down action. Thus the
states of the corresponding transition system can be symbolically represented
by a “polynomial” of the form C' | (down.nil)". Here the exponent n ranges
over the natural numbers and can be used as an inductive parameter for proving
fixed—point properties.

However it is easy to find examples that can not be covered by such a polynomial
form. In many data structures like e.g. stacks it is essential that the state rep-
resentation reflects the order in which actions have occurred, which contradicts
the commutativity that is implicitly assumed above. It is our idea to achieve
this by considering every state of a system as being constructed by the iterated
application of certain process context mappings to some initial state.

For instance, a stack over some set X is given by

S = Z pushy.(S[done — d] || d.pop,.S) \ {d} + done.nil.

reX

It is straightforward to see that every state of the corresponding transition system
can be obtained by iteratively applying context mappings of the form

c2[€] = (§[done — d] || d.pop,.S) \ {d}

to the initial state S. In order to identify a state of the system it hence suffices to
give the corresponding sequence of context indices « € X, which coincides with
the current stack content. A transition is represented now by a string rewriting
operation on index words. Thus a transition system is described by a (finite)
collection of labeled rewrite rules together with an initial state. In other words,
we are dealing with process rewrite systems.

In this setting, a queue process can be specified by the rules
Q™ LO,R L™ L0, O,R™R

Here L and R act as left and right markers indicating the positions where items
are enqueued and dequeued, respectively.

20



The class of processes which can be described by such rewrite systems is called
context-representable processes (CRP); it generalizes the well-known class PDA
of pushdown transition systems [5] in the following sense. While the syntactic
form of the rewriting rules is identical in both cases, PDA rules are to be applied
only in the prefix position of the current state. In contrast, the CRP interpre-
tation allows rewriting steps at arbitrary positions. Thus we are dealing with
arbitrary string rewriting rather than prefix string rewriting systems.

It is possible to show that, with respect to bisimulation, CRP subsumes the
sequential classes (FSA, BPA, PDA) of the known hierarchy of process rewrite
systems [4,6] as well as the class BPP of Basic Parallel Processes. Regarding
Petri nets, we propose a candidate system which might be used to show that
there are Petri net transition systems that are not bisimilar to any CRP system,
thus establishing the incomparability of CRP and Petri nets with respect to
bisimulation. The relationships are illustrated by the following diagram.

****************************************************************

FSA BPA
X Xy X VY,

PDA .
X1.Xo -5 V1Y,

......

| rewriting

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

X1HX2AL>Y1HY2

infix string rewriting

multiset rewriting
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24 Decidability of Reachability Problems for
Classes of Two Counters Automata

Grégoire Sutre

We present a global and comprehensive view of the properties of subclasses of
two counters automata for which counters are only accessed through the following
operations: increment (41), decrement (—1), reset (¢ := 0), transfer (the whole
content of counter ¢ is transfered into counter ¢’), and testing for zero. We first
extend Hopcroft-Pansiot’s result (an algorithm for computing a finite description
of the semilinear set post*) to two counters automata with only one test for zero
(and one reset and one transfer operations). Then, we prove the semilinearity
and the computability of pre* for the subclass of 2 counters automata with one
test for zero on ¢, two reset operations and one transfer from ¢; to cy. By prov-
ing simulations between subclasses, we show that this subclass is the maximal
class for which pre* is semilinear and effectively computable. All the (effective)
semilinearity results are obtained with the help of a new symbolic reachabil-
ity tree algorithm for counter automata using an Acceleration function. When
Acceleration has the so-called stability property, the constructed tree computes
exactly the reachability set.

25 Abstracting WS1S Systems to Verify
Parameterized Networks

Kai Baukus

The following is joint work with Y. Lakhnech, S. Bensalem, and K. Stahl.
Recently there has been much interest in the automatic and semi-automatic
verification of parameterized networks, i.e., verification of a family of systems
{P; | i € w}, where each P; is a network consisting of ¢ finite-state processes.
Apt and Kozen show in [2] that the verification of parameterized networks is
undecidable. Nevertheless, automated and semi-automated methods for the ver-
ification of restricted classes of parameterized networks have been developed.
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In [3] we first transform a given infinite family of networks of finite processes into
a bisimilar single transition system whose variables are set variables and whose
transitions are described in WS1S, the weak monadic second order logic of one
successor. We call such systems WS1S transition systems.

The idea of representing sets of states of parameterized networks by regular lan-
guages is applied in [7], where additionally finite-state transducers are used to
compute predecessors. The work presented in [1] extends the idea by considering
the effect of applying infinitely often a transition that satisfies certain restrictions.
Contrary, in our approach we do not try to compute the exact set of reachable
states. We abstract the obtained WSI1S transition system into a finite abstract
system. The abstract system gives us an over-approximation of the set of reach-
able states, but also maintains some properties of the original control flow. These
properties can be analyzed using model-checking techniques.

Since our abstraction is guaranteed to be conservative, i.e., the abstract system
exhibits for every behavior of the WS1S system a corresponding abstract behav-
ior, we are able to verify universal path quantified properties of the WS1S system.
These properties also include liveness properties.

However, it is well known that an obstacle to the verification of liveness properties
using abstraction is that often the abstract system contains cycles that do not
correspond to paths in the concrete system. Therefore, we present an algorithm
to add fairness conditions to the abstract system which are guaranteed to hold
for the concrete system.

Moreover, in [4] we show how to deal with fairness requirements already given
for the concrete system. Combining these techniques allows us to verify some
interesting liveness properties of non-trivial parameterized networks.

The methods are implemented in a tool called PAX, that uses the decision pro-
cedures of MONA [5,6] to check the satisfiability of WS1S formulas. The first
results obtained using our methods and PAX are very encouraging and can be
found at http://www.informatik.uni-kiel.de/~kba/pax/.
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26 Symbolic techniques for parametric reason-
ing about counter and clock automata

Ahmed Bouajjani

We address the problem of automatic analysis of parametric counter and clock
automata. We propose a semi-algorithmic approach based on using:

1. expressive symbolic representation structures called parametric DBM’s,; and

2. accurate extrapolation techniques allowing to speed up the reachability
analysis and help its termination.

The extrapolation techniques we propose consist in guessing automatically the
effect of iterating a control loop an arbitray number of times, and in checking
that this guess is exact. Our approach can deal uniformly with systems that
generate linear or nonlinear sets of configurations. We have implemented our
techniques and experimented them on nontrivial examples such as a parametric
timed version of the Bounded Retransmission Protocol.
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