
Carole Dulong, Rajiv Gupta, Robert Kennedy,
Jens Knoop, Jim Pierce (editors):

Code Optimisation –
Trends, Challenges, and Perspectives

Dagstuhl-Seminar-Report; 286
17.9.–22.9.2000 (00381)

Dagstuhl Seminar

on

Code Optimisation – Trends, Challenges,

and Perspectives

Organized by :

Carole Dulong (Intel Corp., Santa Clara, CA)

Rajiv Gupta (University of Arizona, AZ)

Robert Kennedy (Tensilica, Santa Clara, CA)

Jens Knoop (Universität Dortmund, Germany)

Jim Pierce (Intel Corp., Santa Clara, CA)

Schloß Dagstuhl, September 17 - 22, 2000

3

Contents

1 Preface 7

2 Final Seminar Programme 9

3 Abstracts of Presentations 14

Decreasing the Cost of Array Bounds Checks
Roy Amir . 14

Typed Static Single Assignment Form – A Structured and Typed
Intermediate Representation for Mobile Code

Wolfram Amme . 14

Stratification of Rewrite Systems for Optimizing Transformations
Uwe Aßmann . 15

Applications of the Minimal Unrolled Graph
Dhananjay M. Dhamdhere . 15

Software Prefetching of Induction Pointers
James C. Dehnert . 16

The SGI Pro64 Compiler Infrastructure
James C. Dehnert . 16

Software Profiling for Hot Path Prediction
Evelyn Duesterwald . 16

Efficient Use of DSP Addressing Modes
Erik Eckstein . 17

Optimization During Tree Parsing Code Selection
M. Anton Ertl . 17

Postpass Code Optimization and Code Compaction for
the Infineon 80C16x Microcontroller

Christian Ferdinand . 18

Mobile Code Representations Supporting Code Optimization
Michael Franz . 18

Comparing Tail Duplication with Compensation Code in Global
Instruction Scheduling

David Gregg . 19

Coalescing as an Aid to Interference-Graph Coloring
Max Hailperin . 19

Retargetable Code Optimisation by Integer Linear Programming
Daniel Kästner . 20

4

Instruction Scheduling for Minimum Register Need
Christoph W. Kessler . 21

Bidirectional Data Flow Analysis: Myths and Reality
Uday Khedker . 21

Cache-Conscious Optimization: Can Compilers Hack It?
James R. Larus . 22

From Recursion to Iteration: What are the Optimizations?
Yanhong A. Liu . 22

Optimization for Segmented Memory Architectures
Florian Martin . 22

Optimizations Based on Probabilistic Data Flow Systems
Eduard Mehofer . 23

Enabling High Overhead Analysis in a Dynamic Compiler with
Quasi-Static Compilation

Samuel P. Midkiff . 23

PlayDoh, Epic, ... And What’s Next?
Frank Müller . 24

Register Placement in the SAFL-to-Hardware Compiler
Alan Mycroft . 24

A Fast Dynamic Register Allocator with Superior Code Quality for
Small Register Set Embedded Processors

Santosh Pande . 25

Is Code Optimization (Research) Relevant?
Bill Pugh . 25

Code-Size Sensitive Code Motion
Oliver Rüthing . 25

Symbolic Analysis for the VFC Compiler
Bernhard Scholz . 26

Optimization Challenge of Object Code Translators
Manfred Stadel . 26

Generic Program Optimisation and Analysis Framework
Reinhard Wilhelm . 27

LaTTe: An Open-Source Java VM Just-in-Time Compiler
Byung-Sun Yang . 27

Compiler-Controlled Dual-Path Branch Execution
Eberhard Zehendner . 28

Correctness Issues in Optimizing Transformations
Wolf Zimmermann . 29

5

A Appendix 30
Motivation of the Seminar . 30

6

1 Preface

From September 17 to 22, 2000, the Dagstuhl Seminar 00381 on “Code Optimisation:
Trends, Challenges, and Perspectives” took place in Schloß Dagstuhl covering research
being conducted on a broad range of topics related to code optimization. A major goal
of this seminar was to bring together researchers and practitioners from industry and
academia working in the field of optimizing compilation, and to create a setting for inter-
action among the attendees leading to exchange of ideas and future collaborations. This
goal was clearly met. Attendees from three continents, 24 from Europe, 5 from Asia, and
11 from North America, 12 of which were from industry and 28 from academia, repre-
sented a broad crossection of the community. This was also reflected by the broad range
of topics covered at the meeting including:

• Classical code optimizations (PRE, inlining etc.)

• Instruction scheduling and register allocation

• Mobile code - representations and optimizations

• Profiling and profile guided optimization

• Memory optimizations

• Code generation/optimization for DSP/Network/Embedded processors

• Optimizations for Java

• Analysis techniques (data flow, symbolic etc.)

The scientific programme of this seminar consisted of 32 contributed talks, plenary dis-
cussion sessions, and informal meetings in the evenings. This report summarizes the
abstracts of the presentations, presents the final seminar programme, and reports the
statement written by the organizers of the seminar, which was included with the invita-
tions to the participants. Predominating topics in the plenary discussion sessions were the
impact of compiler optimization on performance, the relationship between code optimiza-
tion and code verification, and future challenges for code optimization. The questions
below summarize some of the key issues discussed here:

• Compiler Optimizations for Performance:

– The impact of many optimizations is small.

– How do the advances in performance from hardware techniques compare with
those achieved through compiler techniques?

– Have we not paid sufficient attention to optimizations with big payoff (e.g.,
memory optimizations)?

• Code Optimization and Code Verification:

– Systems being deployed must function correctly or consequences can be disas-
trous. Do the goals of optimization and verification conflict?

7

An immediate outcome of this workshop is an International Workshop on “Compiler
Optimization Meets Compiler Verification (COCV 2002)” going to be organized as a
satellite event of the 5th European Joint Conferences on Theory and Practice of Software
(ETAPS 2002), Grenoble, France, April 6 - 14, 2002. This workshop will take place on
April 13, 2002, in Grenoble, France. More information on this event can be found on the
home page of COCV 2002 at

http://sunshine.cs.uni-dortmund.de/∼knoop/cocv02.html

Further information including contact information of participants, slides of presenta-
tions, as well as brief position statements of future challenges in code optimization can
be found at the Seminar’s home page:

http://sunshine.cs.uni-dortmund.de/∼knoop/dagstuhl 00381/dag 00381.html

In closing, we would like to thank Reinhard Wilhelm, the Scientific Director of Schloß
Dagstuhl and the staff of the Dagstuhl office in Saarbrücken for the smooth co-operation
during the organization of this Seminar. In particular, we thank the staff in Schloß
Dagstuhl for making the stay a very pleasant and convenient one for all of us. We
gratefully acknowledge the financial support of Intel for sponsoring this seminar. Finally,
we would like to thank the participants of the Seminar for a notable donation devoted to
helping Schloß Dagstuhl “to fill its empty walls.” This donation will be used to purchase
the painting “Grüner-Ausschnitt” by Gabriele Eickhoff. We hope that you enjoy viewing
this painting the next time you are in Dagstuhl!

August 2001 Rajiv Gupta
Tucson and Dortmund Jens Knoop

8

2 Final Seminar Programme

Monday, September 18, 2000

08:50 Opening
J. Knoop

Session 1 Motivation and Challenges: 09:00 – 10:30

Chair: Jens Knoop

09:00 Discussion: Is Code Optimization Relevant?

09:55 Optimization Challenges in Object Code Translation
M. Stadel, Germany

∗ ∗ ∗ Break (10:30 – 11:00) ∗ ∗ ∗

Session 2 Backend Optimization I: 11:00 – 12:10

Chair: Evelyn Duesterwald

11:00 Generic Postpass Program Optimisation and Analysis Framework
R. Wilhelm, Germany

11:35 Retargetable Code Optimisation by Integer Linear Programming
D. Kästner, Germany

+ + + + + Lunch (12:15 – 14:00) + + + + +

Session 3 Advanced Compiler Analyses and Transformations
I: 14:00 – 15:45

Chair: Robert Schreiber

14:00 Optimizations based on Probabilistic Data Flow Systems
E. Mehofer, Austria

14:35 Symbolic Analysis of Programs for Optimizations
B. Scholz, Austria

15:10 Stratification of Rewrite Systems for Optimizing Transformations
U. Aßmann, Germany

∗ ∗ ∗ Break (15:45 – 16:30) ∗ ∗ ∗

Session 4 Dynamic and Just-In-Time Optimization: 16:30 – 17:40

Chair: Helmut Seidl

16:30 Enabling High Overhead Analysis in a Dynamic Compiler with
Quasi-Static Compilation
S. P. Midkiff, USA

9

17:05 LaTTe: An Open-Source Java VM Just-in-Time Compiler
Byung-Sun Yang, Korea

Session 5 Breakout Session I: 20:00 – 21:15

... on the impact of compiler optimization on performance.

Tuesday, September 19, 2000

Session 6 Classical Analyses and Optimizations Reconsidered:
09:00 – 10:10

Chair: Rajiv Gupta

09:00 Bidirectional Data Flow Analysis: Myths and Reality
U. Khedker, India

09:35 Dynamic Currency Determination Using Minimal Unrolled Graph
D. M. Dhamdhere, India

∗ ∗ ∗ Break (10:10 – 11:00) ∗ ∗ ∗

Session 7 Mobile Code: 11:00 – 12:10

Chair: Samuel P. Midkiff

11:00 Mobile Code Representations Supporting Code Optimization
M. Franz, USA

11:35 Typed Static Single Assignment Form – A Structured and Typed
Intermediate Representation for Mobile Code
W. Amme, USA

+ + + + + Lunch (12:15 – 14:00) + + + + +

Session 8 Scheduling: 14:00 – 15:45

Chair: Alan Mycroft

14:00 Global Instruction Scheduling
D. Gregg, Austria

14:35 Instruction Scheduling for Minimum Register Need
Ch. W. Kessler, Germany

15:10 Compiler-Controlled Dual-Path Branch Execution
E. Zehendner, Germany

∗ ∗ ∗ Break (15:45 – 16:30) ∗ ∗ ∗

Session 9 Optimization under New Perspectives: 16:30 – 17:40

Chair: Dhananjay M. Dhamdhere

10

16:30 Code-Size Sensitive Code Motion
O. Rüthing, Germany

17:05 Correctness Issues in Optimizing Transformations
W. Zimmermann, Germany

Session 10 Breakout Session II: 20:00 – 21:15

... on the interdependencies of optimizing and verifying compilation

Wednesday, September 20, 2000

Session 11 Advanced Compiler Analyses and Transformations
II: 9:00 – 10:10

Chair: Uwe Aßmann

09:00 Decreasing the Cost of Array Bounds Checks
R. Amir, Israel

09:35 From Recursion to Iteration: What are the Optimizations?
A. Liu, USA

∗ ∗ ∗ Break (10:10 – 11:00) ∗ ∗ ∗

Session 12 Profiling and Code Selection Techniques: 11:00 –
12:10

Chair: Michael Franz

11:00 Software Profiling for Hot Path Prediction
E. Duesterwald, USA

11:35 Optimization During Tree Parsing Code Selection
M. A. Ertl, Austria

+ + + + + Lunch (12:30 – 14:00) + + + + +

∗ ∗ ∗ Afternoon Excursion ∗ ∗ ∗

11

Thursday, September 21, 2000

Session 13 Register Optimization: 09:00 – 10:10

Chair: James R. Larus

09:00 Coalescing as an Aid to Interference-Graph Coloring
M. Hailperin, USA

09:35 Dynamic Register Optimization: Analysis vs. Optimization
S. Pande, USA

∗ ∗ ∗ Break (10:10 – 11:00) ∗ ∗ ∗

Session 14 Backend Optimization II: 11:00 – 12:10

Chair: Carl v. Platen

11:00 A Study of Postpass Code Optimization Techniques for the
Infineon 80C166 Microcontroller
Ch. Ferdinand, Germany

11:35 Optimization for Segmented Memory Architectures
F. Martin, Germany

+ + + + + Lunch (12:30 – 14:00) + + + + +

Session 15 Hardware-Related Issues I: 14:00 – 15:45

Chair: Santosh Pande

14:00 Cache-Conscious Optimization: Can Compilers Hack It?
J. R. Larus, USA

14:35 PlayDoh, Epic, ... And What’s Next?
F. Müller, Germany

15:10 Efficient Use of DSP Addressing Modes
E. Eckstein, Austria

∗ ∗ ∗ Break (15:45 – 16:30) ∗ ∗ ∗

Session 15 Hardware-Related Issues II: 16:30 – 17:40

Chair: Manfred Stadel

16:30 Optimising Register Placement in Hardware from Flow Graphs
A. Mycroft, UK

17:05 Design and Evaluation of an Induction Pointer Prefetch Algorithm
J. C. Dehnert, USA

12

Friday, September 22, 2000

Session 16 Compiler Infrastructures: 09:00 – 10:15

Chair: Jens Knoop

09:00 The SGI Pro64 Compiler Infrastructure
J. C. Dehnert, USA

∗ ∗ ∗ Break (10:15 – 11:00) ∗ ∗ ∗

Session 17 Breakout Session III : 11:00 – 12:15

... on challenges and perspectives of optimizing compilation.

+ + + + + Lunch (12:15 – 14:00) + + + + +

∗ ∗ ∗ Farewell ∗ ∗ ∗

13

3 Abstracts of Presentations

The following abstracts appear in alphabetical order of speakers.

Decreasing the Cost of Array Bounds Checks

Roy Amir

University of Tel-Aviv
Israel

A special architecture mechanism for checking array bounds is described. It is similar
to some existing memory-protection mechanisms and modulo addressing computations
already in use in commercial machines, and thus can be easily implemented. The main
idea of the mechanism is to have a small set of designated registers, each guarding accesses
to a single array, and to perform array-bounds checks in parallel with the actual array
accesses. We present a simple algorithm for a compiler to use the mechanism to reduce
the cost of array-bounds checking in Java. The algorithm is parametric in the number of
designated registers. A prototype of the algorithm was implemented. It shows that with
4 registers 61% of the cost of run-time checking is eliminated.

This is joint work with Nurit Dor and Mooly Sagiv.

Typed Static Single Assignment Form – A Structured and
Typed Intermediate Representation for Mobile Code

Wolfram Amme

University of California at Irvine, CA
USA

The Java Virtual Machine’s byte-code format (JVM-code) has become the de-facto stan-
dard for transporting mobile code across the Internet. However, it is generally acknowl-
edged that JVM-code is far from being an ideal mobile code representationa considerable
amount of preprocessing is required to convert JVM-code into a representation more
amenable to an optimizing compiler, and this pre-processing step translates into precious
time lost in a dynamic compilation context. We introduce TSSA, a type-safe mobile code
representation based on static single assignment form. We are developing TSSA as a
replacement technology to the Java Virtual Machine (JVM), over which it has several ad-
vantages: (1) TSSA is better suited as input to an optimizing dynamic code generator and
allows CSE to be performed at the code producer’s site. (2) TSSA provides incorruptible
referential integrity and uses “type separation” to achieve intrinsic type safety. These
properties reduce the code verification effort at the code consumer’s site considerably.
(3) TSSA can transport the results of type and bounds-check elimination in a tamper-
proof manner. Despite these advantages, TSSA is usually considerably more compact
than JVM-code. The approach taken with TSSA is radically different from JVM’s stack-
based virtual machine. The TSSA representation is a genuine static single assignment

14

variant in that it differentiates not between variables of the original program, but only
between unique values of these variables. TSSA contains no assignments or register moves,
but encodes the equivalent information in phi-instructions that model dataflow. Unlike
straightforward SSA representations, however, TSSA provides intrinsic and tamper-proof
referential integrity as a well-formedness property of the encoding itself. Another key
idea of TSSA is “type separation:” values of different types are kept separate in such a
manner that even a hand-crafted malicious program cannot undermine type safety and
concomitant memory integrity. Interestingly enough, type separation also enables the
elimination of type and range checks on the code producer’s side in a manner that cannot
be falsified.

This is joint work with Michael Franz and Jeffery Von Ronne.

Stratification of Rewrite Systems for Optimizing
Transformations

Uwe Aßmann

Universität Karlsruhe
Germany

Many optimizing transformations can be described by rewrite systems, in particular re-
lational graph rewrite systems. However, most often those systems are indeterministic
and the specification developper does not know whether all solutions are apt, adaquate,
or correct.

In this talk, we propose a new method to order the rule set of an indeterministic graph
rewrite system in layers, so-called strata. When rules are executed along the order of these
layers, they produce a unique normal form for the rewrite system. In many cases, this
normal form is quite natural.

Applications of the Minimal Unrolled Graph

Dhananjay M. Dhamdhere

Indian Institute of Technology at Powai, Mumbai
India

Compiler optimizations pose many problems to source level debugging due to reordering
of computations in a program. One such problem concerns whether a variable has an
“expected” value at a breakpoint or at an exception point. The currency determination
problem aims at determining whether the value of a variable is current, i.e., whether its
actual value is the same as its expected value, at a point in a program.

We have developed a minimal representation of an execution of a program, called a
minimal unrolled graph, for the purpose of dynamic currency determination. Adequacy of
this representation for dynamic currency determination has been proved using preliminary
results from the theory of bit-vector data flow analysis. The size of a minimal unrolled
graph is O(n), where n is the number of nodes in a program flow graph.

15

The minimal unrolled graph can also be used to perform a variant of dynamic slicing
of programs.

Software Prefetching of Induction Pointers

James C. Dehnert

Silicon Graphics SGI, Mountain View, CA
USA

We present an automatic approach to prefetching data in linked list data structures. The
main idea is based on the observation that linked lists are often allocated at regular
intervals in memory, resulting in nearly constant address increments in loops processing
the lists. We use this regularity to prefetch linked lists by speculating that future address
increments will equal recent ones.

Because this property cannot be guaranteed, it is critical to avoid degradation when it
does not hold. We evaluate whether prefetching code can be inserted without degradation
by an analysis similar to the minimum iteration interval calculation from modulo schedul-
ing, but generalized to loop bodies with complex control flow, and specifically considering
the target machine’s limits on outstanding memory fetches. The latter evaluation uses a
coloring of a novel memory access interference graph to count likely cache misses along a
path.

Our method has been evaluated by an implementation in the SGI MIPSpro compilers,
with measurements of benefits on the SPECint2000 benchmark suite running on a MIPS
R10000 processor.

This work was done primarily by Artour Stoutchinin, also in collaboration with Guang
Gao, Nelson Amaral, Suneel Jain, and Alban Douillet.

The SGI Pro64 Compiler Infrastructure

James C. Dehnert

Silicon Graphics SGI, Mountain View, CA
USA

Pro64 is a suite of compilers and related tools for C, C++, and Fortran95 on IA-64/Linux
systems, recently released as open source software by SGI. It is a production commercial
compiler, with extensive optimizations in phases performing interprocedural analysis and
optimization, loop nest optimization and parallelization, SSA-based global optimization,
and code generation including hyperblock formation, software pipelining, integrated global
code motion and local scheduling, and global and local register allocation.

In this talk, we present an overview of the compilers’ structure, intermediate repre-
sentations, and optimization capabilities.

(Prepared with Guang Gao, Nelson Amaral, and Ross Towle.)

16

Software Profiling for Hot Path Prediction

Evelyn Duesterwald

HP Laboratories, Cambridge, MA
USA

Recently, there has been a growing interest in exploiting profile information in adaptive
systems such as just-in-time compilers, dynamic optimizers and, binary translators. In
this talk, we show that sophisticated software profiling schemes that provide highly ac-
curate information in an offline setting are ill-suited for these dynamic code generation
systems. Hot path predictions must be made early in order to control the rising cost
of missed opportunity that result from the prediction delay. We will show that existing
sophisticated path profiling schemes, if used in an online setting, offer no prediction ad-
vantages over simpler schemes that exhibit much lower runtime overheads. Based on these
observation we developed a new low-overhead software profiling scheme for hot path pre-
diction. Using an abstract metric we compare our scheme to path profile based prediction
and show that our scheme achieves comparable prediction quality. In our second set of
experiments we include runtime overhead and evaluate the performance of our scheme in
a realistic application: Dynamo, a dynamic optimization system. The results show that
our prediction scheme clearly outperforms path profile based prediction and thus confirm
that less profiling as exhibited in our scheme will actually lead to more effective hot path
prediction.

Efficient Use of DSP Addressing Modes

Erik Eckstein

Atair Software GmbH, Vienna
Austria

The presented algorithm otimizes the use of linear addressing modes, provided by most
DSP architectures. The goal is to remove explicit address calculations and to minimize
the costs of the addressing modes used. The global heuristic algorithm uses an optimal
solution for basic blocks.

Optimization During Tree Parsing Code Selection

M. Anton Ertl

Technische Universität Wien, Vienna
Austria

Tree parsing is well-known as a method for code selection. This talk presents a technique
for also using it for some optimizations. The basic principle is to introduce additional
nonterminals that correspond to additional data representations. For example, a nonter-
minal representing complemented values can be used to distribute complement operations

17

to the optimal position (for a machine) using DeMorgan’s laws. Other examples are other
unary operators, constant folding across intervening non-constants, and optimizing the
conversion between different representations, such as various flag representations, tagged
and untagged representations, or various data sizes. The advantages of this technique is
that it optimizes for the machine, not some intermediate code metric and that it has no
compile-time overhead when used with tree parsing automata. The limitations are that
there are only a finite number of nonterminals and thus data representations, that opti-
mality is limited to trees, that otherwise it is limited to single-entry regions, and that it
results in large grammars. This talk also mentions further work in factoring the grammar
and in dealing with DAGs.

Postpass Code Optimization and Code Compaction for the
Infineon 80C16x Microcontroller

Christian Ferdinand

AbsInt Angewandte Informatik GmbH, Saarbrücken
Germany

The size of compiled C code is becoming increasingly important in embedded systems,
where the economic incentives to reduce ROM sizes are often very compelling. By com-
bining advanced static program analysis methods and pattern matching techniques it is
possible to reduce the code size of programs, while preserving the ability to run the pro-
gram executable directly, i.e. without an intervening decompression stage. The postpass
approach allows for a smooth integration of the optimizer into existing development tool
chains. Practical experiments on real applications have shown compaction rates of more
than 20%.

Mobile Code Representations Supporting Code Optimization

Michael Franz

University of California at Irvine, CA
USA

We are designing a secure and efficient mobile-code transportation scheme that can replace
the Java Virtual Machine and is ”better” than the JVM in terms of (1) being more
scalable to large applications and (2) providing better support for optimizations leading
to excellent final code quality.

Rather than using yet another virtual machine, our approach is based on compressing a
compiler-related graph-based intermediate representation. Our scheme exploits the many
commonalities between security-related information, optimization-enhancing information,
and also information useful for data compression, rather than considering them separately.

We use syntax-directed compression as a means of obtaining guaranteed referential
integrity, reducing the code verification effort at the target machine. Our format contains

18

compiler-related annotations to obtain top-level performance on the eventual target ma-
chine and uses a proof-based approach to guard the compiler-related annotations from
falsification in transit.

Two sub-projects are underway, one encoding the semantics of a mobile program at a
high level close to the source language, and a second encoding them in a format related
to Static Single Assignment form. By implementing both of these options simultaneously,
we are exploring the design space rather than designing an ad-hoc solution. The relative
trade-offs (encoding density vs. decoding/dynamic compilation speed vs. code quality)
are can only be determined by collecting experience with actual prototypes.

Comparing Tail Duplication with Compensation Code in Global

Instruction Scheduling

David Gregg

Technische Universität Wien, Vienna
Austria

Global instruction scheduling allows operations to move across basic block boundaries
to create tighter schedules. When operations move above control flow joins, some code
duplication is generally necessary to preserve semantics. Tail duplication and compen-
sation code are two approaches to duplicating the necessary code, used by Superblock
Scheduling and Trace Scheduling respectively. Compensation code needs much more en-
gineering effort to implement, but offers the possibility of less code growth. I implemented
both algorithms to see if the extra effort is worthwhile. Initial results suggest that Trace
Scheduling does not always create less code growth, and sometimes produces more.

Coalescing as an Aid to Interference-Graph Coloring

Max Hailperin

Gustavus Adolphus College, St. Peter, MN
USA

In graph-coloring register allocators, it is conventional to coalesce a non-interfering pair
of vertices when this allows a copy instruction to be eliminated. This can also have an
impact on coloring. We find that in practice, the number of colors needed is more often
reduced than increased. We have recently proposed coalescing other pairs of vertices
as well, solely for the impact on coloring. In the present work, we distinguish between
two different ways in which coalescing can aid coloring, and through measurement studies
quantify both kinds of benefits, as well as the lesser negative impacts on coloring. We show
that the largest effect is from reduction in chromatic number when the graph is rebuilt
after coalesces that eliminate copy instructions. A smaller effect comes from coalesces
of either kind allowing heuristic coloring to more closely approach the chromatic number
(i.e., optimal coloring). In fact, coalescing can make heuristic coloring very nearly optimal
for the interference graphs we studied. The only reason why this is a smaller effect than

19

the chromatic number reduction is that even without coalescing the heuristic colorings
are not terribly far from optimal. Our data also show occasional slight increases in
chromatic number and worsening of the heuristic coloring. Our experiments use real
compiler-generated interference graphs, but ask the question how many colors (registers)
are needed to avoid spilling, rather than trying to do actual allocation (with spilling) for
a fixed set of registers. Although less realistic for compiler applications, this methodology
allows us to avoid the arbitrary discontinuity of the register set size.

This is joint work with Steve Vegdahl of the University of Portland and my undergraduate
student John Engebretson.

Retargetable Code Optimisation by Integer Linear
Programming

Daniel Kästner

Universität des Saarlandes, Saarbrücken
Germany

In the area of embedded systems stringent timing constraints in connection with severe
cost restrictions have led to the development of specialised, irregular hardware archi-
tectures designed to efficiently execute typical applications of digital signal processing.
The code quality achieved by traditional high-level language compilers for irregular ar-
chitectures often cannot satisfy the requirements of the target applications. Thus many
DSP applications are still developed in assembly language. However due to the increas-
ing software complexity and the shrinking design-cycles of embedded processors there is
an urgent demand for code generation techniques that are able to produce high-quality
code for irregular architectures. The PROPAN system has been developed as a retar-
getable framework for high-quality code optimisations and machine-dependent program
analyses at postpass, i.e. assembly level. The postpass orientation allows PROPAN to
be integrated in existing tool chains with moderate effort. The retargetability concept of
PROPAN is based on the combination of generic and generative mechanisms. All relevant
information about the target architecture is specified in a dedicated machine description
language TDL. From that description a phase-coupled optimiser is generated which can
perform global instruction scheduling, register reassignment, and resource allocation by
integer linear programming. PROPAN allows to select between an order-indexed and a
time-indexed ILP formulation such that the more appropriate modelling can be chosen
individually for each target architecture. The generated integer linear programs can be
solved either exactly providing a provably optimal solution to the modelled problems, or
by the use of ILP-based approximations. The basic idea of the approximative methods
is the iterative solution of partial relaxations of the original problem. This way the com-
putation time can be reduced significantly and still a very high solution quality can be
obtained. With PROPAN ILP-based postpass optimisers for two widely used contempo-
rary digital signal processors, the Analog Devices ADSP-2106x and the Philips Trimedia
TM1000 have been generated. Additionally PROPAN is integrated in a framework for
calculating worst-case execution time guarantees for real-time systems where a TDL spec-
ification of the Infineon TriCore is used. Finally PROPAN has been successfully used in
a commercial postpass optimiser for the Infineon C166 microprocessor.

20

Instruction Scheduling for Minimum Register Need

Christoph W. Kessler

Universität Trier
Germany

Local instruction scheduling reorders the instructions of a basic block. The goal is to min-
imize either the space requirements, that is, the number of registers used, or the execution
time, that is, the number of CPU cycles used, or some combined optimization criterion.
The data dependences among the instructions imply precedence constraints in the form of
a directed acyclic graph (DAG) that must be preserved in the schedule to be computed.
Except for very special target architectures and certain restricted DAG structures like
trees, these optimization problems are NP-complete. We first present an algorithm that
computes a space-optimal schedule with worst-case runtime complexity O(n ·2n) and very
good average behavior. The algorithm is based on the enumeration of all alternatives for
topological sorting of the DAG. It is made practical by dynamic programming, exploiting
domain-specific properties for pruning, structuring the space of partial solutions as a grid,
and constructing the partial solutions in increasing order of register need. From experi-
ments with randomly generated DAGs and large DAGs taken from application programs
we observe that our algorithm is able to defer the combinatorial explosion and to generate
a space-optimal schedule for basic blocks with up to 50 instructions. Note that most basic
blocks in real-world programs have less than 50 instructions. Moreover, massive paral-
lelism can be exploited in the algorithm. A straightforward modification of our algorithm
to optimize execution time for pipelined and superscalar processors turns out to be less
efficient and is practical only for basic blocks with up to 25 instructions, even if the grid
structure of the space of partial solutions is extended by an additional third axis for the
execution time. In order to avoid this problem, we introduce the new concept of time
profiles, which are used to additionally classify subsolutions. This idea allows to apply a
similar pruning strategy as for the space optimization. An implementation of this idea
does not yet exist, but we expect a considerable improvement in the size of DAGs for
which a time-optimal schedule can be computed in practice.

Bidirectional Data Flow Analysis: Myths and Reality

Uday Khedker

University of Pune
India

Research in bidirectional data flow analysis seems to have come to a halt due to an im-
pression that the case for bidirectional data flow analysis has been considerably weakened
by a plethora of investigations based on decomposability of known bidirectional place-
ment algorithms into a sequence of purely unidirectional components. This paper shows
that the approach of decomposability is not general enough in that it derives its power
from the simplifying graph transformation of edge-splitting and the favourable nature of
flows in partial redundancy elimination (PRE). This follows from the fact that in the

21

absence of edge-splitting, PRE cannot be performed using a sequence of cascaded uni-
directional flows. Further, edge-splitting inherently converts data flows involved in PRE
into unidirectional flows.

In our opinion, this obviates the need of an alternative formulation. We also show
that edge-splitting cannot convert data flows involved in “truly” bidirectional data flow
problems into unidirectional flows. Thus not every bidirectional data flow problem can be
converted into unidirectional flows. Besides, we argue that the premise that bidirectional
analysis is more complex than unidirectional analysis, is invalid.

Cache-Conscious Optimization: Can Compilers Hack It?

James R. Larus

Microsoft Research, Redmond, WA
USA

Recent work has demonstrated that cache-conscious data structures and cache-conscious
software architecture can improve program performance by large amounts (30-100compiler
optimizations, and the disparity is likely to increase with the ever-increasing processor-
memory latency gap. This talk surveys some work on cache-conscious optimization and
explores the challenges in automating these techniques in compilers.

From Recursion to Iteration: What are the Optimizations?

Yanhong A. Liu

SUNY at Stony Brook, NY
USA

Transforming recursion into iteration eliminates the use of stack frames during program
execution. It has been studied extensively. This paper describes a powerful and sys-
tematic method, based on incrementalization, for transforming general recursion into
iteration: identify an input increment, derive an incremental version under the input in-
crement, and form an iterative computation using the incremental version. Exploiting in-
crementalization yields iterative computation in a uniform way and also allows additional
optimizations to be explored cleanly and applied systematically, in most cases yielding
iterative programs that use constant additional space, reducing additional space usage
asymptotically, and run much faster. We summarize major optimizations, complexity
improvements, and performance measurements.

This is joint work with Scott D. Stoller.

Optimization for Segmented Memory Architectures

Florian Martin

Universität des Saarlandes, Saarbrücken
Germany

22

In this talk a bunch of analyses are proposed to to optimize the cost of memory accesses
on segmented memory machines in terms of code size.

This problem of reducing code size for relatively old processors is still highly relevant
in the embedded market.

On processors with segmented memory architectures, like the Infineon C166, the mem-
ory access for data has to be made in two steps. First a segment register has to be loaded
and the data can be accessed in a second instruction via an offset and a segment register.

We try to minimize this overhead by carefully selecting places and values to insert
loads of the segment registers.

The improvements reached by these techniques on real life test programs are up to
7%.

Optimizations Based on Probabilistic Data Flow Systems

Eduard Mehofer

Universität Wien, Vienna
Austria

Probabilistic program optimization consists of probabilistic data flow analysis followed by
a transformation which takes probabilities of data flow facts into account. In the following
we will address both issues.

Classical data flow analysis is done statically without utilizing runtime information.
All paths are equally weighted irrespectively whether they are heavily, rarely, or never
executed. In contrast probabilistic data flow analysis takes runtime information into
account by using edge probabilities to distinguish between frequently and rarely executed
branches. The resulting solution gives us the probabilities with what data flow facts may
hold true during execution at some program point.

We present a novel probabilistic data flow framework which takes execution history
into account while propagating probabilities through the control flow graph. Practical
experiments with spec95 show that in this way significantly better results can be achieved.

On the transformational side we present two applications: Probabilistic communica-
tion optimizations and parallelization for distributed-memory systems, and probabilistic
procedure cloning for high-performance systems.

Enabling High Overhead Analysis in a Dynamic Compiler with
Quasi-Static Compilation

Samuel P. Midkiff

IBM T. J. Watson Research Center
Yorktown Heights, NY

USA

The optimizations that can be performed by dynamic or just-in-time compilers are severely
constrained by the need to limit the time to perform the optimizations. Global, (whole

23

function) and interprocedural optimizations are limited to programs whose execution time
is long enough to amortize the high cost of performing the optimizations. In Java, pure
static compilation cannot be used without violating language semantics related to dynamic
class loading. In this talk we propose a quasi-static compilation model. Quasi-static com-
pilation optimistically statically compiles Java classes, and during the compilation retains
information (dependences) about other classes on which the correctness of the compila-
tion depends. When methods in the class are used in another execution, the precompiled
code is accessed, specialized for the current instance of the Java Virtual Machine, and, if
the dependences are fulfilled, executed. If the dependences are not fulfilled, the method is
dynamically compiled. By performing quasi-static compilation, we achieve performance
gains of from 9 to 90 percent on the specJVM98 size 100 benchmarks, and from 55 to 365
percent on the size 10 benchmarks. With the more aggressive optimization and analysis
techniques enabled by quasi-static compilation, these performance gains will increase.

PlayDoh, Epic, ... And What’s Next?

Frank Müller

Humboldt-Universität zu Berlin
Germany

The contributions of this talk are twofold. First, past proposals for architectural changes
are briefly highlighted and compared with current trends in emerging processors. At the
same time, the impact of explicitly parallel instruction computing on code optimization
is studied, in particular with respect to prospective trends for the memory hierarchy.
Second, aspects of exploiting instruction parallelism for VLIWs by trace scheduling in
static compilation and dynamic translation environments are studies. The impact of code
reordering and code replication on the control flow is discussed with an emphasis on
techniques to handle irreducible regions of control flow.

Register Placement in the SAFL-to-Hardware Compiler

Alan Mycroft

Cambridge University
UK

We introduce the language SAFL which is used as the hardware specification language
in the FLaSH (Functional Languages for Synthesising Hardware) system. SAFL is a
functional languages (hence easy to transform) which is (i) parallel and (ii) statically allo-
cated; we argue this matches hardware. The SAFL ccompiler is resource aware (compiles
function definitions to hardware blocks 1–1) and is preceded by a transformer to choose
the Area-Time division. We show how it compiles functions as a input register and logic
(combinatorial if no function calls). Intermediate values need to be saved in a register if
there is (parallel or sequential) conflict for the value of a called function. Variants on this
callee-save mechanism are described.

24

See http://www.cl.cam.ac.uk/users/am/papers dated 2000/2001.

This is joint work with Richard Sharp.

A Fast Dynamic Register Allocator with Superior Code Quality
for Small Register Set Embedded Processors

Santosh Pande

Georgia Tech, Atlanta, GA
USA

We describe a usage density based register allocator geared towards dynamic compilation
systems. The main attraction of the allocator is that it does not make use of the traditional
live range and interval analysis nor performs advanced optimizations based on range
splitting or spilling but results in very good code quality. We circumvent the need for
traditional analysis by using a measure of usage density of a variable. The usage density
of a variable at a program point represents both the frequency and the density of the uses.
We contend that using this measure we can capture both range and frequency information
which is essentially used by the good allocators based on splitting and spilling. We describe
a two-pass framework based on this measure which has a linear complexity in terms of
the program size. We perform comparisons with static allocators based on graph coloring
and dynamic ones based on simple scan (linear scan) of live ranges and show that our
allocator maintains the speed of dynamic allocators and improves the quality of generated
code.

This is joint work with Sathyanarayanan Thammanur.

Is Code Optimization (Research) Relevant?

Bill Pugh

University of Maryland, College Park, MD
USA

This originally scheduled talk had to be cancelled on short notice because of a sudden
affection of the speaker preventing him from attending the seminar. The slides of the talk
are available at Bill Pugh’s home page: http://www.cs.umd.edu/∼pugh/

Code-Size Sensitive Code Motion

Oliver Rüthing

Universität Dortmund
Germany

25

Program optimization focuses usually on improving the run-time efficiency of a program.
Its impact on the code size is typically not considered a concern. In fact, classical optimiza-
tions often cause code replication without providing any means allowing a user to control
this. This limits their adequacy for applications, where code size is critical, too, like
embedded systems or smart cards. In this talk, we demonstrate this by means of partial
redundancy elimination (PRE), one of the most powerful und widespread optimizations
in contemporay compilers, which intuitively aims at avoiding multiple computations of
a value at run-time. By modularly extending the classical PRE-approaches we develop
a family of code-size sensitive PRE-transformations, whose members in addition to the
two traditional goals of PRE (1) reducing the number of computations and (2) avoiding
unnecessary register pressure, are unique for taking also (3) code size as a third optimiza-
tion goal into account. Each of them optimally captures a predefined choice of priority
between these three goals. The flexibility and aptitude of these techniques for size-critical
applications is demonstrated by various examples.

This is joint work with Jens Knoop and Bernhard Steffen, University of Dortmund.

Symbolic Analysis for the VFC Compiler

Bernhard Scholz

Technische Universität Wien, Vienna
Austria

The quality of many optimizations and analyses for parallelizing compilers significantly
depends on the ability to evaluate symbolic expressions and on the amount of infor-
mation available about program variables at arbitrary program points. We describe an
effective and unified symbolic evaluation framework that statically determines the val-
ues of variables and symbolic expressions, assumptions about and constraints between
variable values and the condition under which control flow reaches a program statement.
The framework computes program contexts at arbitrary program points, which are a novel
representation for comprehensive and compact control and data flow analysis information.
All of our techniques target both linear and non-linear expressions and constraints. The
efficiency of symbolic analysis is highly improved by aggressive simplification techniques.
To illustrate the effectiveness of our approach we present an example for communication
vectorization.

Optimization Challenges in Object Code Translation

Manfred Stadel

Fujitsu Siemens AG, München
Germany

When introducing new processor architectures you need to provide migration support to
make existing applications executable on the new processors. Emulation as well as various
kinds Object Code Translation (OCT) are appropriate means therefor.

26

The common goal of OCT is to translate code written for some original processor
architecture to object code for a different target processor architecture.

Assembly language translators (AssTran) accept the original object code in assem-
bly language notation. Static Object Code Translators (SOCT) accepts original object
module files as input. AssTran and SOCT generate target object module files. Dynamic
Object Code Translators (DOCT) have the loaded image of original binary code as input
and write generated target binary code in memory for immediate execution. DOCTs are
used to accelerate emulation: Emulation starts with interpretation. A piece of code which
has been interpreted a certain number of times is translated.

All kinds of OCTs have less information than higher level language compilers:

• There is no sophisticated type system,

• at least DOCTs cannot clearly separate text and data segments,

• memory attributes like ”volatile” and ”constant” are not available,

• most variables are addressed indirectly,

• control flow is often not entirely known.

Classical optimization algorithms are not sufficient and must at least be enhanced and
adapted to the situation of OCTs. Additional optimization techniques like speculation
and specialization are required.

Generic Program Optimisation and Analysis Framework

Reinhard Wilhelm

Universität des Saarlandes, Saarbrücken
Germany

We present a framework that analyses and transforms programs on the executable/assembler
level. Emphasis is put on the generic and generative approaches employed in the frame-
work to cope with the retargetability problem.

A brief overview is given of the application to the determination of worst case execution
times (WCET). WCET determination needs a static prediction of the cache and the
pipline behaviour of the program and the identification of the worst case execution path.
The first two problems are solved using abstract interpretation, the latter using integer
linear programming (ILP).

LaTTe: An Open-Source Java VM Just-in-Time Compiler

Byung-Sun Yang

Seoul National University
Korea

27

Java grows a prominent programming language with a wide application spectrum from
embedded systems to enterprise servers. One of the major issues in using Java is perfor-
mance, specially of the Java Virtual Machine (JVM). As well as optimizing the various
JVM runtime components such as garbage collection, exception handling, and threads,
Just-in-Time (JIT) compilation, an example of dynamic compilations, is a must to reduce
overheads of the machine-independent bytecode execution.

This talk introduces LaTTe, an open-source JVM with a highly-engineered JIT com-
piler for RISC machines. LaTTe first translates the bytecode into pseudo RISC code with
symbolic registers, which is then optimized and register allocated while coalescing copies
corresponding to pushes and pops between local variables and the operand stack. Runtime
components of LaTTe are also optimized in close coordination with the JIT compilation.

Experimental results with various benchmarks including SPECjvm98 and Java Grande
reveals that LaTTe achieves performance better than or comparable to the latest SUN
JVMs (JDK 1.1.8, JDK J2SE 1.3 HotSpot, and JDK 1.2 production release).

Compiler-Controlled Dual-Path Branch Execution

Eberhard Zehendner

Friedrich-Schiller-Universität Jena
Germany

Unpredictable branches in machine programs hinder static scheduling and introduce mis-
prediction penalties. Multithreading extensions to standard wide-issue superscalar proces-
sors, that are assumed to appear as part of those architectures in the future, can be used
to avoid these problems. A conditional branch instruction is replaced by a fork instruction
spawning a new thread starting at the branch target. Synchronisation instructions at the
beginning of both branch paths check for the branch predicate and cancel the wrongly
executing thread.

Following some rules similar to those of ordinary global instruction scheduling, in-
structions may be moved to any speculative section between a fork instruction and a
corresponding synchronisation instruction. These rules are designed such that the results
of instructions in speculative sections can be safely commited, whereas instructions be-
hind a synchronisation instruction may be executed but commit only if on the correct
path and after the speculation is resolved.

Our method – called Simultaneous Speculation Scheduling – completely removes mis-
prediction penalties for the replaced branches. Due to the additional freedom w.r.t. global
instruction scheduling, critical paths can be further optimised. We get some advantages
over pure software speculation techniques as well as over predicated execution since the
first thread finishing its synchronisation instruction stops fetching and executing instruc-
tions from the wrongly executed thread (may be itself).

28

Correctness Issues in Optimizing Transformations

Wolf Zimmermann

Universität Karlsruhe
Germany

In many articles, it is said that optimizing transformations should preserve the semantics
of programs. However, the notion of semantics preservation remains undefined. The talk
shows that is far from being trivial to define an adequate notion of “semantics preserva-
tion”. The notion of “semantics preservation” should be based on a notion of compiler
correctness: The users (or environment) can only observe I/O-operations that are per-
formed by a program. A compiler is correct iff the target program preserves this observable
behaviour of the source program. Since in higher level programming languages resources
are usually unbounded while they are bounded on target processors, it may be allowed
that the target program may abort because resource bounds are exceeded. Based on this
notion of correctness - stemming from discussions in the DFG-project “Verifix” - the talk
discusses correctness of code motion, dead code elimination, and procedure inlining. The
first two demonstrate that analysis of exception behaviour is necessary to perform these
optimizations. The procedure inlining example demonstrates that interaction of privacy
concepts and inheritance can destroy correctness of procedure inlinling.

29

A Appendix

In this section we document the motivation for the seminar.

Motivation of the Seminar

The last decades have been witness to continuous, rapid, and far reaching progress in
code optimisation. Currently, optimisation faces new challenges caused by the increasing
importance of advanced programming paradigms like the object-oriented, (data-) parallel
and distributed ones, the emerging dissemination of new innovative processor architec-
tures, and the explosive proliferation of new application scenarios like Web-computing in
the retinue of the meanwhile ubiquitious Internet.

New paradigms, new architectures, and new application scenarios apparently demand
new compilation and optimisation techniques, but also offer new potentials for optimisa-
tion on both machine-dependent and machine-independent levels.

In the light of this situation the aim of the seminar is to bring together researchers
and practitioners from both industry and academia working on any phase of optimis-
ing compilation to exchange views, share experiences, identify potentials and current
and future challenges, and thus, to bridge gaps and stimulate synergies between theory
and practice and between diverse areas of optimisation such as machine-dependent and
machine-independent ones.

Central issues which should be discussed in the seminar are:

• Paradigm and software/hardware boundaries:
Do we require new techniques to reasonably accommodate the specialities of new
paradigms, architectures, or Web-driven application scenarios? Will unifying ap-
proaches that transcend paradigms be superior or even indispensible because of the
economic demands for reusability, portability, and automatic generability? Sim-
ilarly, the boundaries between hardware and software optimisations are changing
and redefined as e.g., by IA64. Does the boundary lie in the right place? What are
the missing architecture hooks for the compiler to really be as good as the hardware?
Is that even possible?

• Optimisation of running time vs. memory use:
Will there be a renascence of storage-saving optimisations and a shift away from
emphasis on running time due to the growing importance of embedded systems and
the distribution of executables across the Internet?

• Static vs. dynamic and profile-guided optimisation:
Very wide architectures are very sensitive to profile-guided optimisations. The pro-
file data set, however, is most commonly not known at compile time. What are
practical ways of gathering profile information without slowing down applications,
and practical ways of using this information for dynamic optimisations? Concern-
ing Internet-based applications, must approaches for just-in-time computation be
complemented by approaches for just-in-time optimisation? What are the key issues
here?

• Formal methods :
What is the role of formal methods in code optimisation regarding the requirements

30

of reliability, validation or even verifiability of correctness and (formal) optimality
of an optimisation? What should be its role? How can the benefits possibly offered
by formal methods best be combined with those of empirical evaluations?

• Mastering complexity :
The increased complexity of compiler optimisation can lead to validation nightmares
and can increased compiler team size to a counterproductive level. This phenomenon
proves to be a key problem in practice. How can it be mastered? In particular, how
do we avoid the problem faced by growing software and hardware teams? Can
formal methods improve on this situation? What could be their impact?

• Experimental evaluations :
Do we need a common, publicly available compiler testbed for experimental evalu-
ations and comparisons of competing approaches? What would be the key require-
ments? Is it indispensable for reasonably pushing synergies between theory and
practice?

• Synergies:
What and how can people from different communities working on code optimisation,
e.g. on a machine-dependent and machine-independent level, learn from each other?

At the threshold of a new millenium, and in face of the rapid change of paradigms on
both the software and hardware sides, it seems to be worthwile to take stock of the state
of the art, to reflect on recent trends, and to identify current and future challenges and
perspectives on code optimisation.

We believe that a Dagstuhl Seminar will provide an ideal setting for this endeavor, and
will be a stimulating venue for people from all communities working seriously, but often
with (too) little contact on these issues, to come together and exchange views and ideas,
and to share their different experiences in order to push synergies and further progress in
the field.

April 1999 Carole Dulong
Schloß Dagstuhl, Wadern Rajiv Gupta

Robert Kennedy
Jens Knoop

31

