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Preface

This seminar on number-theoretical algorithms and their applications was
the fourth on this topic at Dagstuhl over the last 10 years. This year 45
people from 14 countries participated.

One of the major goals of these has been to broaden interactions between
number theory and other areas. For instance, there has been an effort to
bring together people developing the theory of efficient algorithms with peo-
ple actually writing software. There has also been continuing interest in
cryptography, and this year almost a third of the talks were on algebraic
curves, most with an eye to applications in cryptography. The use of elliptic
curves in cryptography seems to be well understood by now, and the focus
is on speeding up the algorithms, whereas the research on the use of hyper-
elliptic curves is more focused on developing the mathematical foundations
of the field.

Many other talks focused on more classical topics of algebraic number theory,
such as finding divisor class groups of function fields, finding galois groups,
and investigating class groups and their heuristics.

The remaining talks covered a wide variety of problems in algorithmic num-
ber theory, including hardware implementations of arithmetic over fields of
characteristic 2, a parallel sorting algorithm with applications to integer fac-
torization, find solutions to diophantine equations, and factoring polynomials
in various domains.

The variety of topics was stimulating to the audience (though it did make
the organizers’ task of grouping the talks more difficult!). The reaction of the
participants was quite positive and we believe that we succeeded in having



an effective meeting that was able to appeal to a broad audience. We made
sure to allow for adequate breaks between sessions, and there were many
opportunities for discussions that the participants took advantage of. The
pleasant atmosphere of Schloss Dagstuhl once again contributed to a very
productive meeting.
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1 LLL-type Reduction of Lattice Bases
in O(n’log,n) Arithmetic Steps
on Bounded Integers.

Henrik Koy, Claus Peter Schnorr

We present a variant of LLL-reduction of lattice bases in the sense of LENSTRA,
LENSTRA, LOVASz. We organize LLL-reduction in segments of size k. Local
LLL-reduction of segments is done using local coordinates of dimension k.

We introduce segment LLL-reduced bases, a variant of LLL-reduced bases
achieving a slightly weaker notion of reducedness, but speeding up the reduc-
tion time of lattices of dimension n by a factor n. We also introduce a variant
of LLL-reduction using iterated segments. The resulting reduction algorithm
runs in O(n3log, n) arithmetic steps for integer lattices of dimension n with
basis vectors of length 2™.

2 Saturation of Mordell-Weil groups

John Cremona

Given a subgroup B of a finitely-generated abelian group A, the saturation
B of B is defined to be the largest subgroup of A containing B with finite
index. We considered the case where A = F(K), the Mordell-Weil group
of an elliptic curve E defined over a number field K, and where B is the
subgroup generated by a given set of K-rational points. This situation occurs,
for example, when computing E(K') by 2-descent, where we normally obtain
a set of points which generate a subgroup of F(K) of finite (odd) index, and
wish to extend to a basis for the full group E(K).

The problem divides into two: first to determine an upper bound ng for the
index n = [B : B], and second to decide, for each prime p less than ny,
whether or not B is p-saturated (in the obvious sense). The first problem,
which was not discussed in detail, uses estimates from the geometry of num-
bers. For the second problem, the method consists in constructing many
group homomorphisms E(K) — F,, since B is p-saturated if and only if



there exists a map f : E(K) — IF;,V which is injective on B/pB. Two meth-
ods were described, both using auxilary primes ¢ and such that p | #E(F,).
Both methods have been implemented for K = Q. The first method, due
to Siksek, is to map to a subgroup of order p in E(F,) and hence (via an
elliptic curve discrete logarithm) to F,. This has certain drawbacks which
were described. A newer and more elegant method using a map related to the
Tate-Lichtenbaum pairing was then described, where the map is to F; /(F; )?
for ¢ = 1 (mod p), and hence (via a discrete logarithm in F) to F,. The
resulting algorithm appears to work well in practice, despite the restriction
that only primes ¢ = 1 (mod p) can be used. In answer to a question from
the audience, it was (later) confirmed that the use of sufficiently many primes
g will always be sufficient to prove that a p-saturated subgroup of F(K) is
indeed p-saturated.

3 Some New Results on Pseudoprimality
Testing

Siguna Miiller

Although the Miller-Rabin test is very fast in practice, there exist composite
integers n for which this test fails for 1/4 of all bases coprime to n. In
1998 Grantham developed a probable prime test with failure probability of
only 1/7710 and asymptotic running time three times that of the Miller-
Rabin test. For the case that n = 1 mod 4, recently a test with failure
rate of 1/8190 and comparable running time as for the Grantham test was
established by the author. Already in 1980, Pomerance, Baillie, Selfridge,
and Wagstaff developed a very efficient probable prime test for which no
composite number is known that passes it. Based on their ideas we propose
a probable prime test which always has running time at most three times the
time as for the Miller-Rabin test. A composite integer n = 3 mod 4 will pass
our test with probability less than 1/131040.



4 Addition Chains and the Scholz Conjecture

Ken Nakamula (joint work with Hatem M. Bahig)

For an integer n > 0, an addition chain of length r is a sequence 1 = ag <
a; < --- < a, =n such that

a;, =a;+a, with 0<k<j<¢ for 0<i<r.

The step a; is called star if j = i — 1. An (°-chain is an addition chain
such that some of the ay,...,a, are underlined and, for 0 < i < r, a; is the
largest underlined element less than a;. We denote the minimum length of all
addition chains or all £°-chains for n by ¢(n) or £°(n) respectively. In 1937,
Arnold Schloz conjectured that, for all n > 1, we have

(2" =1)<n+{(n) -1
Clearly ¢(n) < ¢°(n). It is not known whether or not
l(n) =£°(n)

in all cases. If this is true, then the Scholz conjecture is also true. Let v(n)
be the number of 1’s in the binary representation of n
Proving some properties of nonstar steps in addition chains, we obtain

Theorem 1. Assume
5<v(n) <8 and {(n)=|logyn|+3.

If there is a shortest addition chain for n, then there is a shortest (°-chain
of the same length.

As a corollary, we have

Theorem 2. Assume either
v(n) <5
or
6 <v(n) <8 and ((n)= |logyn|+3.

Then £°(n) = £(n), and hence the Scholz conjecture is true.



5 An Introduction to Schimmler sorting

D. Bernstein

One can sort n? numbers on an nxn processor mesh in O(n) parallel compare-
exchange steps. Schimmler’s algorithm is a very simple algorithm that uses
8n — 8 steps. I explained (1) odd-even transposition sorting; (2) Schimmler
sorting; (3) the relevance of these results to integer factorization.

6 The “diagonal case” of Nagell’s equation

-1 _ p
z—1 =Y

P. Mihailescu

We investigate an approach to the diagonal case of Nagell’s equation, which is
based upon Abel series expansions of algebraic numbers generated by apply-
ing Stickelberger ideal elements to ideals which stem from presumed solutions
to the diagonal case.

7 Power integral bases in infinite parametric
families of simplest number fields

Istvan Gaal (Debrecen)

To find generators a of power integral bases {1, a, ... ,a" '} of number fields
K of degree n requires usually hard computations involving reduction meth-
ods and enumeration algorithms.

It is especially interesting to consider power integral bases in infinite para-
metric families of number fields and to try to describe their generators in a

8



parametric form. We consider this problem in the so called simplest para-
metric families of fields.

Power integral bases in the simplest cubic, simplest quartic and simplest
quintic number fields were considered formerly. The main topic of the talk
is to consider power integral bases in the simplest sextic fields. Denote by O
the order of the simplest sextic fields composed by the main order of their
cubic subfield and the main order of their quadratic subfield. It was shown
by 1.Gaél, P.Olajos and M.Pohst that the indices of all elements of O are
divisible by a constant, hence O has no power integral bases. This statement
is the consequence of a more general theorem.

8 Algorithms for divisor class groups of global
function fields

Florian Hef3

Algorithms for divisor class groups of global function fields Florian Hef,
University of Bristol

Given a global function field F'/k we consider two main tasks: 1. Compute
the structure of the divisor class group Cl =2 Z x Z/c1Z x - X Z]coyZ and
2. Find a method to compute images and preimages under the map Cl —
LXL|c1Lx-x L] cogl. Both tasks can be dealt with by an index calculus style
method which essentially computes S-units for a suitably chosen finite set S
of places. The expected running time of the method is subexponential of the
form exp(cy/glog(g)) (¢ > 0, g the genus) for fixed finite field size, a fixed
extension degree [F' : k(z)] and under a certain smoothness assumption. The
algorithm extensively uses a new (ideal theoretical) method for computing
Riemann-Roch spaces of divisors, which is useful in many other contexts as
well.



9 On Minimal Discriminants

Jirgen Kliiners

In this talk we present a database for number fields up to degree 15. The
database contains about 100000 fields. It includes at least one polynomial f
with Gal(f) = G for every transitive group G up to degree 15. In fact, such
polynomials are given for most of the combinations of groups and possible
signatures. Here we restrict ourselves to the problem of computing minimal
discriminants for fields with given Galois group and signature. It is well
known that up to degree 6, complete results can be obtained using techniques
based on the geometry of numbers. The same techniques were successfully
applied to complete the degree 7 case.

Cohen, Diaz y Diaz, and Olivier computed all minimal discriminants for
imprimitive octic extensions containing a quartic subfield. Their approach
uses class field theory to generate relative quadratic extensions. Here we
generalize this approach to some meta-abelian groups. Especially Frobenius
groups are suited for our new method. We compute all minimas for octic
extensions containing only a quartic subfield. Furthermore we determine the
minimal discriminants for two primitive groups in degree 8. We give the
minimas for all Frobenius groups in prime degree up to degree 13.

This is a joint work with Claus Fieker and Gunter Malle

10 The Index Calculus Method using non-
smooth polynomials

Theo Garefalakis and Daniel Panario

We study a generalized version of the index calculus method for the discrete
logarithm problem in [F,, when ¢ = p", p is a small prime and n — oo.
The database consists of the logarithms of all irreducible polynomials of
degree between given bounds; the original version of the algorithm uses lower
bound equal to one. We show theoretically that the algorithm has the same
asymptotic running time as the original version. The analysis shows that the
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best upper limit for the interval coincides with the one for the original version.
The lower limit for the interval remains a free variable of the process. We
provide experimental results that indicate practical values for that bound.
We also give heuristic arguments for the running time of the Waterloo variant
and of the Coppersmith method with our generalized database.

11 NF'S polynomial selection algoritms for dis-
crete logs computation

[gor Semaev

The number field sieve (NFS) is a method for factoring integers and discrete
logs computation. Let N be an integer number to be factored or N = p be
a prime number in a prime finite field of order p. At first the prerequisite of
the NFS was a congruence

f(m)=0 (mod N),
where f(X) is an irreducible polynomial in Z[X] and m € Z. The main

parameter of the method is n = deg f(X). The other ones such as m and

the coefficients of f(X) may be bounded by N T in absolute value. It is
easy to find such congruence for any given N and n. We have here the two
polynomials f(X) and X — m having the common root m modulo N.

One can use nonlinear polynomials f(X), g(X) with a common root modulo
N. We have the following congruence

Res (f(X),9(X))=0 (mod N)

for these polynomials. Using nonlinear poynomials increases the probability
of finding relations for factoring and in the discrete logs computation with
the NFS.

Generally it is very difficult to find nonlinear polynomials f(X), g(X) with
small coefficients such that the congruence for their resultant holds. We see

Res (f(X),9(X)) = O(f"g]")
for fixed ny = deg f, ny = deg g, where

|fl=]aoX™ + o XM+ oy, | = ml_ax|ai|
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and
o] = X" + X7 by | = mmax .

We consider the the following problem: Given N (or N = p), n; and ny, find
f(X) of degree n; and g(X) of degree ns such that

f| ~ |g| ~ N7
and

Res (f(X),9(X))=0 mod N,

but
Res (f(X), (X)) # 0.

For ny = ny = 2 and any integer N this problem was solved by P. Mont-
gomery. The main result of this talk is a solution of this problem for n; = 2
and any natural ns. But this holds only for prime numbers p.

12 Average time analysis of Hensel lifting

Shuhong Gao

We present an average time analysis of a Hensel lifting based factorisation
algorithm for bivariate polynomials over finite fields. It is shown that the
average running time is almost linear in the input size. This explains why
the Hensel lifting technique is fast in practice for most polynomials.

12



13 New computations concerning the Cohen-
Lenstra class number heuristics

Herman te Riele (joint work, in progress, with Hugh C. Williams)

A fast algorithm is presented to compute the class number h of the real
quadratic field K = Q(,/p), where p is a prime = 1 mod 4. This algorithm
is based on the infrastructure idea of Shanks to determine the regulator of
K and then it uses the Extended Riemann Hypothesis to rapidly estimate
L(1, x,) and compute an accurate estimate h of h with help of the analytic
class number formula. In most cases it is possible next to prove that h = h,
with the use of an improvement by Williams of an upper bound of Bach of
the error in the estimate of L(1, x,).

Preliminary experiments are reported in which the primes = 1 mod 4 are
counted with A = 1 and h = 3, in twenty consecutive intervals of length 109,
starting with the interval [1,10%]. The computed fractions of primes with
h =1 and h = 3 are 0.758820 and 0.122495, respectively, and these agree
reasonably well with the Cohen-Lenstra heuristics which predict fractions
0.754458 and 0.125743, respectively.

14 (j-extensions of number fields

Henri Cohen

In recent years, there has been considerable progress in methods for finding
asymptotic estimates for the number Ny ,,(G, X) of extensions of degree n of
a number field K whose Galois group of the normal closure is isomorphic to G
and whose absolute discriminant is bounded by X. In particular, for K = Q
such a formula is known for all abelian groups G, for G = D, the dihedral
group of order 8, for G = A4 the alternating group, and conjecturally for
G - 54.

For an arbitrary number field K the situation is much less satisfactory. In a
difficult 50-page (submitted) paper, the author together with F. Diaz y Diaz
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and M. Olivier solve the problem for G = CY, the cyclic group of prime order
(. Even the case ¢ = 2, which was known before, is not trivial.

Although it would seem tempting to use class field theory for these problems,
it is a fact that only Kummer theory can give satisfying answers, in particular
by using a well-known theorem of Hecke giving the relative discriminant of
a cyclic Kummer extension of prime degree /.

It would be nice to have an analogous theorem for higher powers of ¢. The
first problem to be solved is to find an explicit p-integral basis for a Kummer
extension of prime degree ¢. This is in principle already done by Hecke,
but the result (too long to be given here) is quite amusing and involves
both the solution of the Hecke congruences (not surprising), but also all the
“derivatives” of a given polynomial in the primitive element.

In the special case of Cj-extensions, hence with ¢ = 2, we can then go on and
find completely explicitly the generalization of Hecke’s theorem. It is quite
plausible that this can be done in general, although I do not yet know the
details. In the C4-case, what is also quite amusing is that the result involves
not only solving Hecke congruences of the type 32 = a (mod p*), but also
22 =~ (mod p*) where

_ia—ﬁQ
=53

— 3. (mod p¥)

The next step is to use this to compute Ny 4(Cy, X) when ¢ € K, but I have
not done that yet.

15 On the Computation of (zalois Groups

K. Geifller

Methods for computing Galois groups over the rationals are well known. We
focus on the method of Stauduhar which in particular allows us to compute
efficiently Galois Groups of higher degrees. In order to extend Stauduhar’s
algorithm to other coefficient rings, such as algebraic number fields F' or
rational function fields over () and finite fields £, two problems arise:

(i) The representations of the roots ay, ... , a,, of the polynomial f, whose
Galois group we would like to calculate.
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(ii) How to perform the inclusion test; in other words how to decide whether
a combination of the «a; is an element of the maximal order of F, Q(z)
or Fy(x).

We give possible solutions for these problems for the above fields. Moreover
we describe our implementation and present some experimental results for
irreducible polynomials over F' and Q(z) up to degree 23.

16 Correction factors for primitive root den-
sities

Peter Stevenhagen

It follows from the work of Artin and Hooley that, under assumption of the
generalized Riemann hypothesis, the density of the set of primes ¢ for which
a given rational number z is a primitive root modulo ¢ can be written as an
infinite product Hp A, of local factors times a somewhat complicated correc-
tion factor reflecting the fact that the quadratic field Q(y/x) is contained in
certain cyclotomic fields. We show that correction factors of this nature also
admit a description in terms of local contributions, and apply this to evalu-
ate the densities for a number of generalizations of Artin’s original primitive
root problem.

This is joint work with Pieter Moree and Hendrik Lenstra.

17 Polynomial Factorization over Local Fields

David Ford, Sebastian Pauli and Xavier-Francgois Roblot

The factorization algorithm of Ford, Pauli, and Roblot is included in Pari/GP
2.1.1. Comparisons with other systems, using examples known to be “diffi-
cult”, show considerably better performance.
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The new algorithm of Pauli has expected compexity
O (N3+Evp(disc @) log!t pF 4 N2T ey, (disc @)* T log' ™ pk) ,

an improvement of O (N (N + v,(disc ®))) over previously published results.
Two examples of the operation of Pauli’s algorithm are given in detail.

18 On Minimal Expansions in Redundant
Number Systems: Algorithms, Quantita-
tive Analysis, and Extensions

Clemens Heuberger (partly joint work with Helmut Prodinger)

We study redundant g-ary digit expansions

!
n= E ;¢
=0

with arbitrary integer digits €; € Z for positive integers n and ¢ > 2. We call
such an expansion minimal if 147+ Z;ZO |e;| is minimum. The binary case
q = 2 (partly with other cost functions) has been studied by several authors,
motivated by applications from cryptography and coding theory.

There is not a unique minimal expansion. We define the notion of a reduced
expansion of n in base ¢. For all n and bases ¢, there is a unique reduced
expansion, and this expansion minimizes the costs under investigation.

The syntactical properties of such expansions are characterized. This enables
us to determine the jth digit of a minimal expansion from the knowledge of
the jth and (j + 1)th digits of the “standard” g-ary expansion, i. e., the
unique expansion with digits 0, ..., ¢ — 1. This leads to a straightforward
algorithm for the calculation of minimal expansions. Additionally, we give
an explicit formula for the jth digit of a minimal expansion without having
to calculate the other digits. This formula makes it possible to calculate the
expected costs of minimal expansions.

Finally we deal with the question whether such results can be generalized to
other number systems, for instance canonical number systems in an algebraic
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number field. We give a negative answer for the case of the ring of Gaussian
integers and bases —a + 1.

References:

1. C. Heuberger and H. Prodinger, On Minimal Expansions in Redundant
Number Systems: Algorithms and Quantitative Analysis, to appear in
Computing.

2. C. Heuberger, Minimal Redundant Digit Expansions in the Gaussian
Integers, to appear in J. Theor. Nombres Bordeaux.

19 Two - Descent

F. Lemmermeyer

Let E : y* = x(2% +ax+b) be an elliptic curve defined over Q; for computing
the rank of its Mordell-Weil group it is sufficient to decide whether certain
curves T : N? = rM* + sM?e* + te* (with given r,s,t € Z) have rational
points. Using a trick due to Lagrange it can be shown that if 22 = rm? +
sme + te? has a rational point, then the curves T' can be factored over @,
and studying these factors over the p-adic completions of Q@ often allow us
to conclude that T" does not have a rational point.

20 Number-theoretic Graphs?

Amin Shokrollahi

Often in traditional coding theory one proves properties of codes using al-
gebraic or combinatorial tools, and then tries to find decoding algorithms
that decode as many errors as predicted by the theory. In contrast, low-
density parity-check codes come equipped with efficient algorithms. Here,
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one tries to identify those codes in the class on which the algorithm performs
particularly well, i.e., for which the algorithm can correct lots of errors.

In this talk I will give a short introduction into these codes. As it turns
out, for decoding erasures, one needs an expansion property of the bipartite
graph underlying the codes. I will give some examples of number-theoretic
graphs that have expansion for very small sets, and will pose the problem of
designing other number-theoretic graphs for which larger sets expand.

21 Jacobians of Elliptic Curves with Com-
plex Multiplication

A. Weng

We present a generalization of the well-known complex multiplication method
for elliptic curves due to Atkin and Morain to hyperelliptic curves. This
algorithm constructs a curve whose Jacobian has complex multiplication by
the maximal order in a given CM-field.

We give examples for genus 2 and 3.

22 Factoring N = pg®> with the Elliptic Curve
Method

Edlyn Teske

Various cryptosystems have been proposed whose security relies on the diffi-
culty of factoring integers of the special form N = pg?. To factor integers of
that form, Peralta and Okamoto introduced a variation of Lenstra’s Elliptic
Curve Method (ECM) of factorization, which is based on the fact that the

Jacobi symbols (%) and (%) agree for all integers a, ged(a,q) = 1. The

authors report that this variation is by a factor of about log p faster than the
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Basic Variant of ECM.

We report on an implementation and extensive experiments with that vari-
ation, which have been conducted in order to determine the speed-up com-
pared with an improved variant of ECM called the Standard Continuation.
Our results indicate that the Standard Continuation is expected to factor
N = pg* about twice as fast as the Jacobi symbol variant. Thus, integers of
the form N = pg? (p ~ ¢) still seem to be no easier to factor with ECM than
numbers of the form N = pg (p = q).

This is joint work with Peter Ebinger from Karlsruhe University, Germany.

23 Algorithms for the Hardware Implemen-
tation of F,» and F,5 Arithmetic using
Splitting Fields

Erich Wehrhahn

The motivation for the implementation of Fyi2 and Fyi5 is given by the need
to implement error correcting codes with data blocks of 32640 bits. The
candidates for the codes are Reed-Solomon in Fsi12 (operands +*/) and BCH
in Fo1s (operands +*) . The implementation uses composite fields that have
AND and XOR basic hardware components in [y and a first extension ei-
ther to Fas or Fy: based on a primitive polynomial. The second extension
to the Fyi2 or Fyis fields is performed with a rational function such that the
composite field is defined also by a primitive polynomial. The results of the
different implementations are compared for the gate count used for the arith-
metic operations. The open problems are: the efficient root determination
of polynomials and the recursive implementation of the Massey-Berlekamp
Algorithm.
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24 Woltman’s conjecture on the Lucas-Lehmer
test

H. W. Lenstra, Jr.

Let p be an integer, p > 1, and put ¢ = 27 — 1. Let s € Z/qZ, and define
the sequence (s;)52, of elements of Z/qZ by s; = s, s;11 = s7 — 2. Then one
has s,_1 = 0 if and only if the following three conditions are satisfied: ¢ is
prime; the Jacobi symbol (%) equals 1; and (%2) = —1. This is the Lucas-
Lehmer primality test. For all odd values of p, the Jacobi symbol conditions
are satisfied if s is one of 4, 10, and % (modulo ¢). Suppose now that p > 2,
and that s,_; = 0. Then ¢ is prime and p is odd, and s2_, = 2 = (2?+1)/2)2
(in Z/qZ), so one has s, 5 = € - 2PTD/2 for a unique sign € = €(s, p) € {+1}.
George Woltman observed in 1996 that for 29 of the 30 values of p that
are at most 216091 one has €(4,p) - €(10,p) = —1 or 1 according as p = 1,
3mod 8 or p = 5, 7mod 8, the sole exception being p = 5. Similarly, one
can observe that one has e(%, p) = p mod 4 for every value of p that one tries
except p = 5. In the lecture it was shown that these observations hold in full
generality for p # 5. The proof makes use of class field theory. It is taken
from the Berkeley Ph.-D. thesis of S. Y. Gebre-Egziabher.

25 Independence of Rational Points on Hy-
perelliptic Curves

Michael Stoll

Consider the following question. Let C/Q : 3 = f(x) be a hyperelliptic

curve of genus g > 2, and let J denote its Jacobian. Map C(Q) > P +—
2P — (2)x) € J(Q). Given a subset S C C(Q), to what extent are its
elements independent in J(Q)? More precisely: Can we bound r(S), the rank
of the subgroup generated by the images in J(Q) of the elements of S, from
below in terms of the size of S7

In general, nothing is known about this question. However, when we restrict

to quadratic twists of a given curve, there is the following result, which may
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be extracted from a paper by Joe Silverman (J. London Math. Soc., 1993).

Theorem. There is a constant v(C) such that for all quadratic twists Cy
of C and all subsets S C Cy(Q), we have

r(S) > log#S —7(C).

This gives us some information when the set S is very large. By contrast, we
prove the following. Note that we can eliminate trivial relations by requiring
S and S’ to be disjoint, where P +— P’ is the hyperelliptic involution.

Theorem. For all but finitely many quadratic twists Cy of C', we have
r(S) =#5

for all subsets S C Cy(Q) such that SN S =0 and #S < g. If we suppose
the twisting factor d to be a squarefree integer, then the exceptions all have d
divisible only by primes not larger than 2#4S+1 or by primes of bad reduction
for C.

Clearly, this result is best possible, apart from the bound on the size of the
set S. This restriction is inherent in the method of Chabauty-Coleman, which
we use for the proof.

26 Computing the Modular Degree of an El-
liptic Curve

M. Watkins

Let E be a rational elliptic curve of conductor N and X (V) be the modular
curve that classifies cyclic N-isogenies. By the work of Wiles and others, it
is known that there is a surjective morphism from Xy(/N) onto E. As both
Xo(N) and E can be viewed as Riemann surfaces (or algebraic curves), this
mapping has an associated degree, which is the modular degree. There is a
known ”class-number” formula that relates the modular degree to a special
value of some L-function, in this case, that of the symmetric square of the
elliptic curve. This allows us to compute the modular degree via computa-
tion of the special L-value to sufficiently high precision, a task for which a
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generic technique already exists. We report on data from over 50000 curves
that we have considered, and comment on heuristics of Cohen-Lenstra type
concerning how often a given odd prime should divide the modular degree.

27 Modular Curves of Positive Genus and El-
liptic Curve Cryptosystems

Andreas Enge (joint work with Reinhard Schertz)

We present a class of functions on modular curves X°(N) whose values gen-
erate ring class fields of imaginary quadratic orders. This is used to develop
a new algorithm for constructing elliptic curves over finite fields with known
complex multiplication and thus with known group order. Applications of
this algorithm are elliptic curve primality proving and the construction of
secure elliptic curve cryptosystems. The difficulties arising when the genus of
XO(N) is not zero are overcome by computing certain modular polynomials.
Being a product of four n-functions, the proposed modular functions are
a natural generalisation of the Schlafli functions examined by Weber and
usually employed to construct CM-curves. Unlike the Schlafli functions, the
values of the examined functions generate any ring class field of an imaginary
quadratic order regardless of the congruences modulo powers of 2 and 3 satis-
fied by its discriminant. For discriminants to which both classes of functions
apply, we compare their relative efficiency.
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28 Visualising [11[2] in Abelian surfaces over
Number Fields

Nils Bruin

We consider an elliptic curve
E:y> =2+ ay2® 4+ asx + ag

over a number field K. Its set of rational points E(K) forms a finitely gen-
erated commutative group. We have that F(K) ~ Z" x E(K)"™", where
E(K)* C E(K) is the finite subgroup of elements of finite order. This
group is effectively and in practice usually easily determinable. In order to

determine 7, the rank of E(K), it would be sufficient to determine the size
of F(K)/2E(K). From Galois-cohomology we obtain

0 — E(K)/2E(K) — H'(K,E[2]) —» HY(K, E)

The middle term, H'(K, E[2]), classifies twists of E 2 E, that is, unramified
E[2]-covers T — E that are isomorphic to E — E over K. The image of
E(K)/2E(K) corresponds to T' € H' (K, E[2]) with T # (. An effectively
determinable approximation of E(K)/2E(K) is given by the Selmer-group

SO(E/K)={T € H'(K, E[2]) : T(K,) # 0 for all completions K, of K}.
The error in this approximation is defined to be the Tate-Shafarevich group
0 — B(K)/2E(K) — S?(E/K) — II(E/K)[2] — 0.

It is represented by T that have points locally at all primes of K but not
globally over K.

Given an elliptic curve £ and a T € S@(E/K) that we suspect to have
a non-trivial image in II(E/K)[2], we can do the following. We compute a
value d € K so that T(K(\/d)) # 0. We use that

tk(E(K(Vd))) = tk(E(K)) + k(B (K)),

where
ED d(y)? =2+ ay2® + asz + ag.

We get an upper bound on tk(E(K (v/d))) by computing S@(E/K (V/d)). If
we can get a sufficiently high lower bound on rk(E@(K)) (for instance, by
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exhibiting sufficiently many independent points on E(¥(K)), then we can
show that the rank bound obtained from S (E/K) is not sharp.
A rather striking example is given by

E:y? =2 — 2222 + 21z + 1.

We find #S@(E/Q) = 16 and tk(E(Q)) > 2. Furthermore, we get #3%(E® /Q) =
16 and rk(E®)(Q)) > 2. However, we compute #52 (E/Q(/2)) = 16. There-
fore, we find that #1(E/Q)[2] = #UI(E?/Q)[2] = 4.
We see that £/Q and F? /Q mutually visualise I11[2] in the sense of Cremona-
Mazur in the Weil-restriction R /3),0(E)-
We do not need to restrict to Abelian surfaces that are Weil-restrictions of
elliptic curves. Note that E : y> = F(z) is a double cover of P! by (z,y) — .
Let

L:2*=d(z—a)and C =L xp1 E.

Then C' is a curve of genus 2 given by y? = F(2?/d + a). Apart from E and
L, the curve C also covers

E':(y)? =d(x —a)F(z).
This implies that
rk(Jaco(K)) = rk(E(K)) 4+ rk(E'(K)).

We can bound the left hand side from above by determining the 2-Selmer
group of Jace.

For instance, if we choose a = 1, d
rk(Jaco(Q)) < 5 and rk(E(Q)) =
HIT(E/Q)[2) = 4.

An advantage of the latter construction is that the two degrees of freedom (a
and d) allow us solve for visualisation of two elements of S?(E/K) simulta-
neously. This helps because, conjecturally, I1I[2] always has square order.

= —1 in the example above, we find
3. Again we find 1k(E(Q)) = 2 and
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