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The core problem of statistics and machine learning addresses the question how
can we efficiently find a statistical model to describe empirical data. Classical
statistical approaches to solve this problem have been complemented during the
last 15 years by Neural Computation, a very promising strategy to data anal-
ysis. The Dagstuhl seminar on “Inference Principles and Model Selection” —
the fourth in a series of Machine Learning and Neural Computation workshops
in 1994, 1997, 1999 and 2001 — was intended to review this exciting develop-
ment of the field and to discuss the foundation of statistical and computational
learning theory with its deep (and still unresolved) questions. The participants
represented all of the involved disciplines from statistics and computer science to
information theory and philosophy. The burning question of many participants if
there exist notions of inference studied in philosophy that machine learning has
overlooked so far came up in several sessions and especially in the first tutorial on
Philosophical Foundations (Matthias Hild). Three pioneers of the field, Sun-ichi
Amari, Phil Dawid and Vladimir Vapnik provided valuable insights how the field
of learning machines developed from the sixties up to today and what kind of
challenges are lying still ahead of us.

What have been the main conclusions of the seminar?
In contrast to the previous seminars, this workshop with its tutorials and short
position statements (rather than conference style talks) forced the participants to
concentrate on conceptual issues with as little obstruction as possible by technical
details. Common ground between Bayesian inference, statistical and computa-
tional learning theory and logical approaches to inference as well as concepts from
information theory have been observed and widely discussed.

The final discussion session summarized the following open issues of the field:

1. Tali Tishby reminded us that learning and information extraction goes be-
yond the issues of sample fluctuations which are extensively studied in the
Computational Learning Theory community. What are the correct infer-
ence principles to detect structures hidden in data?

2. How can we evaluate learning principles and algorithms? How should we
design good experiments?
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3. Is model selection or model combination more effective in structure detec-
tion?

4. How can we find more characterization results for learning algorithms?
What is an appropriate size of the validation set?

5. How should we proceed in non i.i.d. situations where data are dependent?
How can the concepts from classification and regression be extended to time
series analysis and to Markov random fields.

6. What is the correct number of inference levels?

Most of these questions will stay with us for the next decades but this workshop
has raised the awareness of all participants which parts of machine learning and
neural computation are based on fundamental principles and where we still have
to discover such a solid foundation.

Bonn, 30. Juli 2001 Joachim M. Buhmann

Remark:
These abstracts and links to slides are available at www-dbv.cs.uni-bonn.de/dagstuhl01.
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1 Information Geometry and Inference Princi-

ples

Shun-ichi Amari
RIKEN Brain Science Institute

Information geometry studies the intrinsic geometrical structure of a family of
probability distributions. The structure is uniquely defined from the principle of
invariance, giving a Riemannian metric (due to the Fisher information matrix)
and a dual pair of affine connections. It is useful in many problems related to
stochastic phenomena such as statistical inference, model selection, information
theory, control systems theory, etc.
We apply the method of information geometry to multilayer perceptrons, which
have nonlinear input-output relations depending on the modifiable parameters.
They are modified by learning from examples. When noises disturb the output,
the behavior of a multilayer perceptron is described by the conditional proba-
bility distribution of the output conditioned on the input, and the probability
distribution is parameterized by the modifiable parameters.
The parameter space, called the neuromanifold, is a family of probability distribu-
tions in which the learning process is represented by a trajectory. The stochastic
gradient learning method is most popular in on-line learning. However, when
the parameter space has a Riemannian structure, the gradient does not represent
the true steepest direction and should be replaced by the Riemannian or nat-
ural gradient. The backprop method is notorious for slow convergence, due to
plateaus. Such plateaus are created by the underlying geometrical structure, and
the natural gradient method is shown to have a very good convergence property.
It is, however, difficult to calculate the Fisher information matrix explicitly and
to invert it. We give an adaptive method of obtaining the inverse of the Fisher
information matrix directly.
If the neuromanifold is not so strongly curved, the natural gradient is not so
different from the ordinary gradient. This suggests that the neuromanifold is
strongly curved. We show many hierarchical structures such as multilayer per-
ceptrons, Gaussian mixtures, ARMA models in time series, etc., include singular
points in the parameter spaces, where the Fisher information matrix degenerates.
The singularities are given rise to by its inner symmetry, and occurs at the points
on which the system parameters become redundant. Model selection is important
when the true system lies in a neighborhood of such singularities.
Therefore, we need to analyze the behaviors of statistical inference and learning,
when the true system lies in a neighborhood of a singular point. The conven-
tional Cramer-Rao paradigm does not hold in such a case, because the Fisher
information is degenerate. The central limit theorem cannot be applied, either.
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One should remark that model selection is important in such a situation, but the
conventional theories of AIC and MDL are based on the Cramer-Rao paradigm
which does not hold. Hence, we need to have a new theoretical paradigm. The
Baysian framework should be also modified.
The present talk will discuss these aspects of geometry of neuro- manifolds in
connection with learning, inference and model selection.

2 Gradient Estimates in Reinforcement Learn-

ing

Peter Bartlett
BIOwulf Technologies, Inc.

We consider the problem of controlling a partially observable Markov decision
process (POMDP), so as to maximize the time average of a reward criterion.
For parameterized stochastic policies, one approach is to use the gradient of the
performance criterion with respect to the policy parameters. We present al-
gorithms to estimate these gradients from a single sample path, by relying on
mixing properties of the controlled POMDP. We give bounds on the estimation
and approximation errors fo these estimates for finite samples, in terms of a cer-
tain mixing time of the controlled POMDP. The variance of these Monte Carlos
estimates can be reduced using additive control variate methods. Two commonly
used approaches, reward baselines and actor-critic algorithms, are special cases.
We present bounds on the expected error for these algorithms, and derive the
baselines and critics that minimize these bounds. These results allow us to eval-
uate how suboptimal commonly used algorithms are, and lead to new algorithms
for gradient estimates.
(joint work with Evan Greensmith and Jonathan Baxter)
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3 Concentration inequalities and penalization meth-

ods in model selection

Stephane Boucheron
Laboratorie de Recherche en Informatique,
CNRS - Université Paris-Sud (FR)

Concentration inequalities constitute ”natural” extensions of the classical expo-
nential bounds for sums fo independent random variables. (Azuma-Hoeffdings,
Bennett, Bernstein). Concentration may be regarded as a ”new look at inde-
pendence”. The basic message may be formulated as follows: any function of
many independent random variables that is smooth in an appropriate sense is
almost constant. The definition of smoothness or alternatively of enlargement
of sets, starting from smoothness w.r.t. Hamming distance, to the recent for-
mulations by Talagrand, is not straightforward. Such extensions are very useful
when trying to characterize the fluctuations of quantities such as empirical VC-
dimension, empricial VC-entropies, Rademacher complexities. Those last results
can be obtained using the relatively transparent ”entropy method” proposed by
Ledoux - One of the killer applications of the concentration approach was the
tails of suprema of empirical processes indexed by bounded functions (Talagrand
96, Ledoux 97, Massart 2000, Rio 2001) Concentration inequalities deal with the
very topic of the Vapnik-Chervonenkis inequalities. In contrast to the latter, con-
centration inequalities only deal with fluctations around the mean, leaving the
characterization of this mean to chaining techniques (for empirical processes).
As far as model selection is concerned, concentration inequalities prove useful
in the design and anlysis of penalization strategies as advocated by Birgé and
Massart, Vapnik, etc. In the Structural Risk Minimization framework, we are
interested in selecting among a set of models F1, . . . , Fk, . . ., i.e. among a set of
estimates f̂1, . . . , f̂k, . . . obtained from some randomly collected data set Dn =
((x1, y1), . . . , (xn, yn)) such that the effective loss E[l(f̂(X), Y )] is minimal. (l
might be absolute, quadratic loss)
The basic idea is that one should minimize a penalized empirical risk

Ln(f̂k) =
n

∑

i=1

1

n
l(f̂k(xi), yi)

plus some penalty term pen(n, k). pen(n, k) should minimize the amount of
overfitting in Fk, i.e. L(f̂k − Ln(f̂k).
Concentration inequalities prove useful in designing and analyzing data-dependent

penalties. The latter constitute an important ingredient in any would-be practical
system with guaranteed performance.
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It remains the question to determine when such data-dependent penalization
techniques can achieve adaptivity in the Donoho-Johnstone sense.

4 Tracking a Small Set of Experts by Mixing

Past Posteriors

Olivier Bousquet
École Polytechnique, Centre de Mathématiques Appliqués,
Palaiseau (FR)

[slides available electronically, see preface]We examine on-line learning problems

in which the target concept is allowed to change over time. In each trial a master
algorithm receives predictions from a large set of n experts. Its goal is to predict
almost as well as the best sequence of such experts chosen off-line by partitioning
the training sequence into k+1 sections and then choosing the best expert for each
section. We build on methods developed by Herbster and Warmuth and consider
an open problem posed by Freund where the experts in the best partition are
from a small pool of size m. Since k >> m the best expert shifts back and forth
between the experts of the small pool. We propose algorithms that solve this
open problem by mixing the past posteriors maintained by the master algorithm.
We relate the number of bits needed for encoding the best partition to the loss
bounds of the algorithms. Instead of paying log n for choosing the best expert in
each section we first pay log

(

n

m

)

bits in the bounds for identifying the pool of m

experts and then logm bits per new section.
(joint work with M.Warmuth)

5 Learning and Combinatorial Optimization: The

noisy Traveling Salesman Problem

Joachim Buhmann
Institut für Informatik, Universität Bonn
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[Abstract available electronically, see preface]

Many problems in the real world which are modeled as combinatorial optimiza-
tion problems are stochastic in nature, i.e. the parameters defining the problem
are random variables. This fact is traditionally neglected when a combinatorial
optimization problem is formulated. I demonstrate with an example of the travel-
ing salesman, that the minimal solution computed on a single (training) instance
of a random problem can perform suboptimally on a second (test) instance. Com-
puter experiments provide empirical evidence that certain Markov Chain Monte
Carlo algorithms yield solutions which are more robust than the optimal training
solution. Learning is performed by sampling a typical permutation matrix or by
suitably averaging over TSP solutions.
The overfitting behavior of the ERM solution can be understood in terms of sta-
tistical learning theory. The MCMC algorithm computes an approximation to the
empirical risk and the approximation accuracy should be controlled by robustness
against overfitting. Too precise approximations of the training risk overfit a test
instance, whereas too crude approximations introduce an underfitting bias. A
generalization of the VC inequality quantifies this bias variance tradeoff. Large
deviations between training and test performance are bounded by Bernstein’s
inequality. The minimum of this bound determines the stop temperature for an
annealing scheme.
(joint work with Mikio Braun)

6 Hilbertian Learning

Stephane Canu
INSA de Rouen, France

Kernels and in particular Mercer or reproducing kernels play crucial role in the
statistical learning theory and functional estimation. But very few is known about
the underlying functional space where algorithms are looking for the solution.
How to choose it? How to build it? What is its relationship with regularization?
Introducing Hilbert-Schmidt operators helps to answer some of these questions.
This allow to introduce learnable frames as a powerful and promising functional
tool to build relevant kernels. Furthermore the learnable frames framework clarify
the relationship between kernels and parametric components. This is a theory for
semi-parametric learning. In particular wavelets are included in this framework
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together with their associated kernels.

7 Vicinal Risk Minimization

Olivier Chapelle
BIOwulf Technologies, Inc., Paris (FR)

The Vicinal Risk Minimization principle establishes a bridge between genera-
tive models and methods derived from the Structural Risk Minimization Princi-
ple such as Support Vector Machines or Statistical Regularization. We explain
how VRM provides a framework which integrates a number of existing algo-
rithms, such as Parzen windows, Support Vector Machines, Ridge Regression,
Constrained Logistic Classifiers and Tangent-Prop.
We will show how the approach implies new algorithms for solving problems usu-
ally associated with generative models. New algorithms are described for dealing
with pattern recognition problems with very different pattern distributions and
dealing with unlabeled data.

8 Bayesian and Prequential Inference for Model

Selection

A. P. Dawid
University College London, Dept. of Statistical Science, London
(GB)

[Abstract available electronically, see preface]

The Bayesian approach to inference allows us to express, in simple probabilistic
form, two kinds of uncertainty: both about an unknown parameter of an as-
sumed model, and about the model itself. It also very naturally allows us to
make predictions for as yet unobserved quantities, a feature that turns out to be
particularly valuable for model selection, as well as important in its own right.
In my talk I shall describe how the Bayesian approach naturally behaves in an

10



asymptotically desirable way in problems of model selection, without the need for
any extraneous or ad hoc ingredients such as regularisation, nor oversimplifying
assumptions such as independent observations. Some of the problems arising
with finite data-sets will also be considered.
I shall then generalise the Bayesian predictive approach by introducing the method-
ology of Prequential Analysis, which assesses and compares model directly in
terms of their 1-step ahead predictive performance. It is thus naturally suited
to the task of model criticism and model selection. An important result is the
availability of ”optimal” forecasts, based on an extension of Emprical Risk Min-
imisation, even when the model is incorrectly specified.

9 Model Selection and Infinite Models

Zoubin Ghahramani
University College London,
Gatsby Computational Neuroscience Unit, London (GB)

[Abstract available electronically, see preface]

I will discuss two apparently conflicting views of Bayesian Learning. The first
invokes automatic Occam’s Razor (which results from averaging over the param-
eters) to do model selection, usually preferring models of low complexity. The
second advocates not limiting the number of parameters in the model and doing
inference in the limit of a large number of parameters if computationally possi-
ble. The first view lends itself to methods of approximating the evidence such
as variational approximations. I will briefly describe these and give examples.
For the second view, I will show that for a variety of models it is possible to do
efficient inference even with an infinite number of parameters. I will discuss pros
and cons of both views and how they can be reconciled.
(Joint work with Carl E. Rasmussen and Matthew J. Beal.)

10 Bagging equalizes influence

Yves Grandvalet
Université de Technologie de Compiegne,
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Dept. Genie Informatique, Compiegne (FR)

Bagging constructs an estimator by averaging predictors trained on bootstrap
samples. Bagged estimates almost consistently improve on the original predictor.
It is thus important to understand the reasons for this success, and also for the
occasional failures. It is widely believed that bagging is effective thanks to the
variance reduction stemming from averaging predictors. However, seven years
from its introduction, bagging is still not fully understood.
We provide experimental evidence supporting that bagging stabilizes prediction
by equalizing the influence of training examples. Bagging’s improvements/deteriorations
can be explained by the goodness/badness of highly influential examples, whereas
other arguments reach their limits. Finally, the reasons for the equalization ef-
fect support that other resampling strategies such as half-sampling should pro-
vide qualitatively identical effects while being computationally more efficient than
bootstrap sampling.

11 Kernel Methods

Isabelle Guyon
ClopiNet, Berkeley (USA)

Kernel methods address a wide variety of induction problems, including function
approximation (interpolation and regression), classification, density estimation,
clustering and solving linear operator equations. The history of kernel machines
started in the 19th century when Hilbert and Schmidt introduced integral equa-
tions of the form ∫

K(s, r)f(t)dt = F (s).

This triggered a lot of research on the conditions that the kernel function K(s, t)
must satisfy. In 1909 Mercer stated the equivalence of positive definite kernels
and valid ”dot products” that opened the doors to a lot of theoretical derivations.
Kernels then appeared in density estimation (Parzen Windows), classifiction and
regression (splines). Parzen windows type kernels are shift invariant and include
Gaussian kernels and potential functions. They were introduced in the 1960’s
(Parzen 1962, Aizerman et al. 1964). Kernels are also similarity measures and
include various dot products. One of the most widely used one is the polynomial
kernel (x · y)q, q being the polynomial degree. Kernels have been used in signal
processing (convolutions) and image processing. Using kernels in the preprocess-
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ing stes leads to a a nice unified framework of creating new kernels by combining
kernels. The duality between approximation functions linear in their parameters
f(x) = w · φ(x) and kernel approximationn functions

f(x) =
∑

k

αkK(x, xk)

is known since the 1960’s. It has known a regain of interest since 1992 when it
was first used in the context of support vector machines (SVMs). Since then a
lot of algorithms that exploit this duality have been derived. Many extensions of
the original simple kernel machines have been made allowing users to treat non-
vectorial inputs (strings, tree, sets) and fancy outputs (multiclass, mulitlabel,
sequences) and to address a variety of complex optimization problems. As of
today kernel machines span a wide range of applications with a wide spectrum
of sizes of input space and training data sets. The most popular kernels are the
Guassian kernel and the polynomial kernel (with its special case the linear kernel)
but specialized kernels are an active area of reserach.

12 Algorithmic Luckiness

Ralf Herbrich
Microsoft Research, Cambridge (GB)

[Abstract available electronically, see preface]

In contrast to standard statistical learning theory which studies uniform bounds
on the expected error we present a framework that exploits the specific learning
algorithm used. Motivated by the luckiness framework [Taylor et al., 1998] we are
also able to exploit the serendipity of the training sample. The main difference
to previous approaches lies in the complexity measure; rather than covering all
hypotheses in a given hypothesis space it is only necessary to cover the functions
which could have been learned using the fixed learning algorithm. We show how
the resulting framework relates to the VC, luckiness and compression frameworks.
Finally, we present an application of this framework to the maximum margin
algorithm for linear classifiers which results in a bound that exploits both the
margin and the distribution of the data in feature space.
(Joint work with Bob Williamson.)
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13 Inductive Reasoning

Matthias Hild
California Institute of Technology & Jet Propulsion Laboratory,
Pasadena

The paper reviews some of the problems of inductive reasoning that have been
discussed in the philosophical literature. The presentation is intended for an
interdisciplinary audience.

14 Gaps and Bridges between Inductive Infer-

ence and Statistical Learning Theory

Wolfram Menzel
Institute for Logic, Complexity and Deduction Systems
Computer Science Department, University of Karlsruhe (GE)

[Abstract available electronically, see preface]

These two worlds look totally different, hardly comparable to each other. Still,
both come from a common intuition to model phenomena of learning. Analysis
of their differences and possible relationship leads (among others) to three main
points:

• Probability measures on the power set of N are “finitary”, thus contrary to
all “Lebesque-style” ones.

• Uniformity as commonly required in learnability definitions of statistical
learning theory is a sensitive and crucial point.

• When a hypothesis space is parameterized, the relationship between dis-
tance measuring among parameters on the one hand, and among the meant
functions on the other hand seems to be important, at least in application
oriented approaches.

Results can be presented on two kinds of questions:

1. A tried combination of learning as “approximating in a uniform and arbi-
trarily good way” and as “finding an ultimate, stable regularity”.
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2. In the Inductive Inference scenario: Can hopes for some kind of “continuity”
or at least “compatibility” between distance measuring among programs
(parameters) and among computable functions ever be satisfied?

15 Assessing Reliability of Unsupervised Learn-

ing: a Resampling Approach

Klaus-Robert Müller
Frauenhofer Gesellschaft FIRST, Berlin and
Univ. of Potsdam, Am neuen Palais 10, Potsdam

When applying unsupervised learning techniques like ICA or temporal decorre-
lation, a key question is whether the discovered projections are reliable. In other
words, can we give error bars or can we assess the quality of our separation? We
use resampling methods to tackle these questions and show experimentally that
our proposed variance estimations are strongly correlated to the separation error.
We demonstrate that this reliability estimation can be used to select the ap-
propriate ICA-model to enhance significantly the separation performance, and,
most important, to mark the components that can really have a physical mean-
ing. Application to data from an MEG experiment underlines the usefulness of
our approach.
(Joint work with Frank Meinecke, Andreas Ziehe and Motoaki Kawanabe.)

16 Bias of Estimators and Regularization Terms

Noboru Murata
Department of Electrical, Electronics, and Computer Engineering,
Waseda University, Tokyo (JP)

[Abstract available electronically, see preface]

We deal with the role of regularization terms (penalty terms) from the view
point of bias of the minimum training error estimation. In the field of neural
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networks, for instance, regularization terms are often utilized to avoid over-fitting,
however most of the time cross-validation is chosen to determine the strength of
the regularization.
First we will clarify the bias of minimum training error estimation, which is
caused by the nonlinearity of the learning system and depends on the size of
training samples. Then taking this bias into account, we consider an appropriate
size of the regularization term which is minimizing the predictive errors. The
optimal size of the reguralization term in this sense is calculated from the second
and third order information of the loss function. When the learning system
has a large number of modifiable parameters, it is computationally expensive
to calculate the higher order information, thus we propose a simple method of
approximating the optimal size via a generalized AIC.

17 Models in Hyperbolic Space

Helge Ritter
Neuroinformatics Group, University of Bielefeld (GE)

A crucial question for model selection is the proper structural bias for the task
at hand. Hyperbolic spaces offer in certain cases an attractive alternative to the
usually employed Euclidean Rn, since they offer exponentially growing neighbor-
hoods already in d = 2. After a brief synopsis of recent work we present as an
example the use of the discretized hyperbolic plane for the creation of dimension-
reduced mappings of text-document data, exhibiting semantic relationships as
neighborhood in hyperbolic 2d-space.

18 Optimal Inductive Inference Under an Algo-

rithmic Prior Reflecting Maximally Efficient

Data Generation

Jürgen Schmidhuber
IDSIA, Lugano
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Solomonoff’s optimal but noncomputable strategy for inductive inference assumes
the observations are drawn from a recursive prior. Here we make the additional
assumption that the process computing the data is optimally efficient, and that
the cumulative prior probability of all data whose computation costs at least
O(n) time is inversely proportional to n. Since in fact there exists a very simple,
general, asymptotically optimal algorithm for all computable data, we can ex-
plicitly extract the corresponding speed prior, and derive a computable strategy
for optimal inductive reasoning.

19 Stability of Posterior Estimates for Kernels

Alex Smola
Australian National University, Machine Learning Group, Canberra
(AU)

Maximum a posteriori approximation is a popular technique for Gaussian Pro-
cesses, since the value of the negative log-posterior can be used as an indicator
of how plausible a certain hypothesis happens to be. The minimum of the reg-
ularized risk functionals in Support Vector Machines can be used for a similar
purpose.
We prove that the minimum of the negative log-posterior and the regularized
risk functional are concentrated random variables, provided the likelihood (or
loss function) is a log-concave function.

20 Statistical Inference and Relevant Informa-

tion Encoding

Naftali Tishby
The Hebrew University of Jerusalem, School of Computer Science
& Engineering (IL)

The ”Information bottleneck method” is an unsupervised non-parametric data
organization technique that aims at extracting the relevant information in one
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random variable with respect to another one. Given a joint distribution, p(x, y),
this method constructs a new variable X̂ (or T ) that infers partitions (soft) over
the values of X that are informative about Y .
Many problems can be cast into this general framework, such as: time series pre-
diction, supervised and unsupervised learning, noise filtering, feature extraction,
etc. It can be formulated as a tradeoff between two mutual information measures:

L[p(x̂|x)] = I(X; X̂) − βI(X̂; Y )

which as a closed set of self-consistent equations has to be satisfied at the station-
ary points of this langrangian for every value of the positive Lagrange multiplier
β. We have proved the general convergence of an iterative algorithm - similar to
the Blahut Arimoto algorithm in Rate-Distortion theory - that finds the optimal
tradeoff and partition p(x̂|x). The algorithm has an agglomerative greedy version
which has been applied successfully to problems such as document classification,
gene expression analysis, spectral analysis and neuronal coding. We have recently
extended the method to multivariate cases, by using the Lagrangian

L = IG1(X1, . . . , Xn, T ) − βIG2(X1, . . . , Xn, T )

where IG1,2 are multiinformations of a Bayesian net.

21 Optimal aggregation of classifiers in statisti-

cal learning

Alexandre Tsybakov
Université Paris VI, URA - CNRS (FR)

The problem of statistical learning can be considered as a problem of nonpara-
metric estimation of sets where the risk is defined by means of a specific distance
function between sets associated to the misclassification error. The rates of con-
vergence of classifiers depend on two parameters: the complexity of the class of
candidate sets and the ”margin” parameter. The dependence is explicitly given,
in particular the optimal rates up to O(n−1) can be attained where n is the
sample size, and the proposed classifiers have the property of robustness to the
margin. The main result of the paper concerns optimal aggregation of classifiers:
we suggest a classifier that automatically adapts both to the complexity and to
the margin, and attains the optimal fast rates, up to a logarithmic factor.
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22 Development of Statistical Learning Theory

Vladimir Vapnik
AT&T Labs / Holloway College London (GB)

The development of Statistical Learning Theory is considered from the point of
view of foundations of statistics. Two different foundatiaons of classical statis-
tics are considered: the Glivenko-Cantelli-Kolmogorov (theoretical) approach,
and Fisher’s (simplified) applied approach. In the early 60s, it was realized
that Fisher’s approach is not sufficiently powerful for solving high-dimensional
problems. Therefore, a theory continuing the ideas of the theoretical approach
(Kolmogorov appraoch) was developed. Initially, it was rejected by the statis-
tics community, which is why it found its home in computer science. Now, it
is a well-developed branch of science studied by both statistics and computer
sciences.

23 Predictive complexity: theory, possible ap-

plications, and open problems

Volodya Vovk
Royal Holloway, University of London (GB)

This talk will give a high-level review of some applications of Kolmogorov’s no-
tion of complexity and its variants to the problems of inference and model se-
lection. We will argue that approaches to inference can be broadly classified
as belonging to either ”Bayesian” or ”Popperian” paradigm. Kolmogorov com-
plexity and its generalization, predictive complexity, are technical tools useful
in both paradigms. In particular, we will discuss the use of Kolmogorov and
predictive complexity in the MDL principle and its generalization, ”Complexity
Approximation Principle”; the latter will be contrasted with the Bayesian-type
approach of the theory of prediction with expert advice. The notion of predictive
complexity makes it possible to generalize the usual notions of randomness and
information to a wide class of loss functions; this generalization allows us to for-
malize interesting questions about the limits of inference. Several open problems
about predictive complexity will also be stated.
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24 On-line learning - Methods and Open Prob-

lem

Manfred Warmuth
University of California, Santa Cruz, Dept. of Computer Science
(USA)

[Abstract available electronically, see preface]

An ”on-line” learning algorithm sees the examples one at a time and incurs a loss
on each new example based on its current hypothesis. This hypothesis is updated
on-line as more examples are seen. We are given a comparison class of predictors.
The loss of the on-line algorithm on a sequence of examples is typically larger
than the loss of the best off-line predictor in the comparison class. The goal of
the learner is to bound the additional loss of the on-line algorithm over the best
off-line predictor on an arbitrary sequence of examples. Such bounds are called
”relative loss bounds” and quantify the price of hiding the future examples from
the learner.
We discuss method for deriving on-line algorithms and for proving relative loss
bounds. No background is required. We will stay at a high level and discuss
directions for future research.
The key tool we use is Bregman divergences. They are used as loss functions and
as measures of ”distance” between two members of the comparison class.
We discuss families of algorithms that are characterized by different Bregman
divergences. The two main families are the gradient descent and exponenti-
ated gradient family. The former family includes all the kernel based algorithms
and the latter family is motived by the minimum relative entropy principle (i.e.
information theoretic motivation). We contrast the merits of both families of
algorithm.

25 Reinforcement Learning with Many Param-

eters

Chris Watkins
Royal Holloway, Dept. of Computer Science, University of London
(GB)
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In my talk, I described a (well-known) reinforcement learning algorithm, the ”Rel-
ative Payoff Process”, which can be motivated both as a simple and biologically
feasible learning method, and as a simple model of evolution. The performance
of the RPP was compared to that of genetic algorithms, and, surprisingly, it
emerged that genetic algorithms have some desirable properties: th expected fit-
ness of the next generation bred from a selected population is independent of
the population size; the expected fitness of the next generation is concentrated
about the expected value; and there is a better bound on the improvement in
expected fitness in one generation for a genetic algorithm than for the reinforce-
ment learning algorithm. Hence the comparison of GAs with a reinforcement
learning approach to a similiar problem revealed that GAs had some advantages.

26 Constructive Model Building

Chris Williams
Institute for Adaptive and Neural Computation
Division of Informatics, University of Edinburgh (GB)

Much work in statistical modelling consists of fitting the parameters of a given
model to data, and can be carried out e.g. in a maximum likelihood or Bayesian
setting. However, there is also the question of model structure choice, for example
the number of components in a mixture model or a search over belief network
structures.
In this talk I will give an overview of different methods that have been used
in constructive model building approaches, where the structure of the model is
built up depending on the data. I have identified three main approaches: (1)
constructive learning by repeated re-representation, (2) constructive learning by
data merging, (3) constructive learning as (greedy) search. Examples of models
from these categories will be given.
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27 SVM and VC Theory (Statistical Learning

Theory)

Robert Williamson
Australian National University, Dept. of Telecommunications En-
gineering, Canberra (AU)

I presented a high-level view of the core insights of statistical learning theory.
Considering as the goal of learning the minimization of expected risk, I con-
sidered three main induction principles for abstract learning algorithms: ERM
(Empirical Risk Minimization), SRM (Structural Risk Minimization), DSRM
(Data-Dependent SRM). I explained why convering numbers were the ”right”
qunatity to consider in analysing ERM. I explained the difficulties of DSRM and
indicated how the so called luckiness framework was one way to rigorously reason
about DSRM. I also pointed out relationships with the work of Jack Kieffer, Kylie
Minogue and Britney Spears.
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