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Parameterized complexity is a new and promising approach to the central issue
of how to cope with problems that are NP-hard or worse — as is so frequently the
case in the natural world of computing. The key idea is to isolate some aspect(s)
or part(s) of the input as the parameter, and to confine the seemingly inevitable
combinatorial explosion of computational difficulty to an additive function of
the parameter, with other costs being polynomial (called FPT complexity). An
example is the NP -complete Vertex Cover (“conflict resolution”) problem
that is now known to be solvable in less than 1.29k + kn steps for conflict graphs
of size n. This algorithm works well for k ≤ 200 and has several applications in
computational biology.
Many important “heuristic” algorithms currently in use are FPT algorithms,
previously unrecognized as such. Type-checking in ML provides another example.
Although complete for EXPTIME in general, it is solved in practice in time 2 k+n
for programs of size n, where the k is the nesting depth of declarations. Although
many naturally parameterized problems are in FPT, some are not. The rich
positive toolkit of novel techniques for designing and improving FPT algorithms
is accompanied in the theory by a corresponding negative toolkit that supports
a rich structure theory of parametric intractability. But the real excitement is in
the rapidly developing systematic connections between FPT and useful heuristic
algorithms — a new and exciting bridge between the theory of computing and
computing in practice.
The organizers of the seminar strongly believe that knowledge of parameterized
complexity techniques and results belongs into the toolkit of every algorithm
designer. The purpose of the seminar was to bring together leading experts from
all over the world, and from the diverse areas of computer science that have been
attracted to this new framework. The seminar was intended as the first larger
international meeting with a specific focus on parameterized complexity, and it
hopefully serves as a driving force in the development of the field.
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We had 49 participants from Australia, Canada, India, Israel, New Zealand,
USA, and various European countries. During the workshop 25 lectures were
given. Moreover, one night session was devoted to open problems and Thursday
was basically used for problem discussions in smaller groups (one outcome of
these is given in Gerhard Woeginger’s contribution).
Schloss Dagstuhl and its staff provided an ideal setting for a very fruitful week
of parameterized complexity studies. We are grateful to Dagstuhl and all partic-
ipants for an exciting and inspiring time.
Finally, we thank Jochen Alber, Frederic Dorn, and Jens Gramm (all Tübingen)
for helping in various ways to organize this meeting.
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1 Towards Optimal FPT–Algorithms

for Planar Graph Problems

Jochen Alber

A parameterized problem is called fixed parameter tractable if it admits a solving
algorithm whose running time on input instance (I, k) is f(k) · |I|α, where f is an
arbitrary function depending only on k. Skimming through the literature, typical
functions that appear for FPT-problems are, e.g., f(k) = ck (vertex cover),
f(k) = ck
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(treewidth), or even f(k) = kk (feedback vertex set), or
f(k) = k! (multidimensional matching).
In this talk I want to focus on obtaining a new qualitative behaviour of the
exponential function f by presenting different techniques for designing algorithms
where f(k) = c

√
k for various planar graph problems (see [1, 2, 3] for our recent

work on this issue).
In particular, I will concentrate on an approach followed in [2], where we coined
the notion of what we call the “Layerwise Separation Property” (LSP) of a planar
graph problem. Problems having this property include planar vertex cover,
planar independent set, or planar dominating set. We prove that the
LSP is sufficient for quickly computing a tree decomposition of a “yes”-instance
of the problem with guaranteed treewidth of O(

√
k), which then can be used

to solve the problem in the desired time. As a sideproduct of this, we derive
some theoretical results relating, e.g., the domination number or the vertex cover
number, to the treewidth of a planar graph.
Besides, I will report on first experimental results of our algorithms that were
implemented using the LEDA library.

References

[1] J. Alber, H. Bodlaender, H. Fernau, and R. Niedermeier. Fixed parameter
algorithms for planar dominating set and related problems. In Proc. 7th
SWAT, vol. 1851 of LNCS, Springer, pp. 97–110, 2000. Full version accepted
for Algorithmica.

[2] J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: expo-
nential speed-up for planar graph problems. In Proc. 28th ICALP, vol. 2076
of LNCS, Springer, pp. 261–272, 2001.

[3] J. Alber, H. Fernau, and R. Niedermeier. Graph separators: a parameterized
view. In Proc. 7th COCOON, vol. 2108 of LNCS, Springer, pp. 318–327,
2001.
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2 Efficient Algorithms for Horizontal Gene Trans-

fer Problems

Michael Hallett

This talks covers our efforts to develop a model for lateral gene transfer events
(a.k.a. horizontal gene transfer events) between a set of gene trees T1, T2, . . . , Tk

and a species tree S. To the best of our knowledge, this model possesses a
higher degree of biological and mathematical soundness than any other model
proposed in the literature. Among other biological considerations, the model
respects the partial order of evolution implied by S. Within our model, we
identify an activity parameter that measures the number of genes that are allowed
to be simultaneously active in the genome of a taxa and show that finding the
most parsimonious scenario that reconciles the disagreeing gene trees with the
species tree is doable in polynomial time when the activity level and number of
transfers are small, but intractable in general.

3 Parameterized Problems in Automata Theory

Todd Wareham

Consider the Deterministic Finite State Automaton (DFA) Intersection problem,
which, given a set A of DFA over an alphabet Σ, asks if there is a string x ∈ Σ∗

that is accepted by every DFA in A. This problem underlies various problems in-
volving the composition and intersection of sets of finite state transducers (FST).
All of these problems have applications within natural language processing; un-
fortunately, all of these problems are NP-hard and their best known algorithms
compute the composite automaton by an iterative application of the pairwise
state Cartesian-product construction, which requires O(|Q||A|) time where |Q| is
the maximum number of states in any finite state automaton in A. Can we do
better?
In this talk, I apply techniques from parameterized complexity theory to assess
the non-polynomial time algorithmic options for a subproblem of these problems,
Bounded DFA Intersection, which requires x to be in Σk for a given k > 0 such
that k <= |Q|. This analysis shows that relative to the set of problem-aspects
{|A|, k, |Q|, |Σ|}, the only FPT algorithms are those whose running times are
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non-polynomial in sets {|Q|, |A|}, {|Σ|, k}, or {|Q|, |Σ|} or one of their super-
sets; all other possibilities have been ruled out by W-hardness results derived
by reductions from parameterized versions of the Longest Common Subsequence
and Dominating Set problems. All of the hardness results and various of the
algorithms also apply to the original problems mentioned above, including the
composition of restricted types of FST, e.g., p-subsequential FST.

References
[1] Wareham, H.T. (2000) ”The Parameterized Complexity of Intersection

and Composition Operations on Sets of Finite-State Automata.” In Pro-
ceedings of the Fifth International Conference on Implementation and Ap-
plication of Automata. Lecture Notes in Computer Science no. 2088.
Springer-Verlag; Berlin.

4 Complexity and Management Decisions

Detlef Seese

The analysis of many complex problems in different areas of application shows
that there seems to be a correlation between high complexity (NP-hardness)
of the problem and the existence of large grids (as minors) in the underlying
communication-structure defined by the problem. This criterion is specified and
analysed in different areas of application. It is given a survey on related results
in the areas of decidability of theories, graph algorithms, capital markets, risk-
management, auctions, VLSI circuits, neural networks, software engineering and
dynamical systems.
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5 Algorithmic Aspects of the Feferman-Vaught

Theorem

Johann Makowsky

(Based on joint work with B. Courcelle, J. Marino, J. Przytycki, E. Ravve, and
U. Rotics)

A. Tarski initiated the study of the behaviour of validity of formulas in structures
when passing to substructures, forming union of chains, or other algebraic oper-
ations. The Feferman-Vaught Theorem says how the truth value of a formula of
First Order Logic in a generalized product of structures depends on the factors
and the index set. For generalized sums this can be extended to Monadic Sec-
ond Order Logic MSOL (Laeuchli, Shelah, Gurevich). For finite structures this
can be used to check MSOL properties of structures and to compute polynomial
invariants (graph polynomials) of structures provided the structure was built in-
ductively using sum-like operations. Graphs of bounded tree width and bounded
clique width are built inductively using such operations. We give a precise def-
inition of sum-like operations on structures and survey algorithmic applications
in the realm of graph polynomials and link polynomials.

6 Applying Parameterized Complexity to DNA

Primer Design

Patricia Evans

(joint work with A. Smith and H.T. Wareham)

Designing universal DNA primers for a set of strings can be done by finding
substrings that are within a short Hamming distance from a substring of each
string. This problem is known as the Closest Substring problem, and is known
to be NP-hard. The use of long sequences and short substrings, with few errors,
make this problem a good target for parameterized complexity. Parameters for
the number of strings (m), length of strings (n), length of substring (l), and
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Hamming distance (k) are specified and examined. We provide a survey of the
fixed-parameter tractability of some of the parameterized variants of the problem,
and specify two algorithms. The first FPT algorithm is based on tabulation (with
parameters (|Σ|, l, and k), and the second is based on sets of similar substrings
with reduction to problem kernel (using parameters |Σ|, l, k, and m). Each
algorithm is suitable for different specific applications.

7 Recent Progress in Computing the Stability

Number

John Michael Robson

We present three improvements to a known recursive branching algorithm (Rob-
son, J.Alg 7, (1986), p. 425) for computing the stability number of an n vertex
graph which reduce the time complexity to O(2cn) for c slighly smaller than 1/4.
Firstly, we improve the analysis of the effectiveness of a dynamic programming
approach to handling small (≤ m vertex) induced subgraphs of non-regular graphs
of degree at most 9. Since it suffices to consider induced subgraphs which are
connected and have no vertex of degree 1, we can upper bound the number of
such subgraphs by n times the weighted sum of the 8-ary trees of size up to m
with weight equal to 2−number of leaves (the previous algorithm used weights all
equal to 1).
Secondly, a slightly more detailed case analysis of the neighbourhoods of a chosen
vertex of degree at most 3 together with a more systematic use of constants for all
cases bounding the factor by which the case is treated faster than the general case
give better information on the time required when the graph has a vertex of low
degree or when extra information is available on the stable sets to be considered.
Finally, where the minimum vertex degree d lies in [4, 7], the algorithm considers
the ball of radius 2 around one vertex A of degree d and applies the fact that
there is a maximum stable set containing either A or at least two neighbours
of A. For each of an exhaustive set of neighbourhood structures (i.e. partial
specifications of this ball), a set of recursive calls is generated which minimises
the time bound on the total computation provable by using the constants already
derived as described above. The analysis of this algorithm requires consideration
of more than 200, 000 neighbourhood structures and the d! permutations of the
neighbour vertices for each one and is, of course, carried out by computer.
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8 Finite variable logics capturing parameterized

complexity classes

Jörg Flum

(joint work with Martin Grohe.)

We present descriptive characterizations of the main parameterized complexity
classes. For example, a problem Q on ordered graphs parameterized by natural
numbers is in W [1] if and only if for some s, every slice of Q is definable by a
formula of the form ∃x1 . . .∃xnψ, where ψ is a Boolean combination of formulas
of least fixed point logic containing at most s variables and only one fixed point
operator.

9 Probabilistic 3-SAT Algorithms

Uwe Schöning

We present a series of 3 algorithms for 3-SAT (which can be generalized to k-
SAT) based on the concept of local search from some randomly selected initial
assignment, and restart if no satisfying assignment is found. The first version
uses random initial assignments and a deterministic backtracking procedure to
search for a satisfying assignment within Hamming distance n/4 from the initial
assignment. It achieves the bound (1.5n) (where n is the number of variables).
The second algorithm replaces the backtracking search by a random walk, and
using a Markov chain analysis (gambler’s ruin problem) one can show the im-
proved bound ((4/3)n). The third algorithm, finally, looks out for “independent”
clauses and chooses the initial assignment for variables in independent clauses in
a biased way. It can be shown that the obtained bound is (1.3301n).
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10 Two Deterministic Algorithms for k-SAT

Edward A. Hirsch

(a survey of joint papers with Dantsin, Goerdt, S.Ivanov, Kannan, Kleinberg,
Papadimitriou, Raghavan, Schoening, Vsemirnov)

We survey two constructions for the derandomization of two families of ran-
domized algorithms for k-SAT. The first construction derandomizes Schoening’s
random walk algorithm and uses covering codes. The second construction deran-
domizes the randomized unit clause elimination algorithm of Paturi, Pudlak and
Zane, and uses projective geometry.

11 Recognizing More Random Unsatisfiable 3-

SAT Instances Efficiently

Andreas Goerdt

(joint work with Joel Friedman)

It is known that random k-SAT instances with at least dn clauses where d = dk

is a suitable constant are unsatisfiable (with high probability). This talk deals
with the question to certify the unsatisfiability of such a random 3-SAT instance
in polynomial time. A backtracking based algorithm of Beame et al. works for
random 3-SAT instances with at least n2/ logn clauses. This is the best result
known by now.
We improve the aforementioned bound by Beame et al. to n3/2+ε for any ε > 0.
Our approach extends the spectral approach introduced to the study of random
k-SAT instances for k ≥ 4 in previous work of the second author.
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12 Homeomorphic Embedding of k-Connected

Graphs in Graphs of Treewidth k

Torben Hagerup

(joint work with Arvind Gupta and Naomi Nishimura)

We study the problem of homeomorphic embedding of a guest graph G in a host
graph H , i.e., of deciding whether G has a subdivision isomorphic to a subgraph
of H . Matoušek and Thomas proved that the problem is NP-complete if G is
connected and H is of treewidth k, for some constant k, and that the problem
can be solved in polynomial time if G additionally is of bounded degree, but they
left open the corresponding question for H of constant treewidth k and G being
k-connected. We show that the latter problem can be solved in polynomial time

for every fixed k, namely in n(k

2
)+O(k) time. It is unknown whether (but seems

unlikely to us that) the problem is fixed-parameter tractable with parameter k.
The central part of our argument is a lemma showing that for tree decompositions
of H of a particular kind, two vertices u and v are separated in H by the vertices
in the bag of a node x of bag size k if and only if nodes whose bags contain u and
v are separated by x in the tree decomposition of H . This enables us to reduce
the number of combinations of partial solutions that need to be considered at x
from a potentially exponential to a polynomial level.

13 Fast Fixed-Parameter Tractable Algorithms

for Nontrivial Generalizations of Vertex Cover

Prabhakar Ragde

(joint work with Naomi Nishimura and Dimitrios Thilikos)

Our goal in this work is the development of fast algorithms for recognizing general
classes of graphs. We seek algorithms whose complexity can be expressed as a
linear function of the graph size plus an exponential function of k, a natural
parameter describing the class. In particular, we consider the class Wk(G), where
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for each graph G in Wk(G), the removal of a set of at most k vertices from G
results in a graph in G. (If G is the class of edgeless graphs, Wk(G) is the class
of graphs with bounded vertex cover.)
When G is a minor-closed class such that each graph in G has bounded maximum
degree, and all obstructions of G (minor-minimal graphs outside G) are connected,
we obtain an O((g + k)|V (G)| + (fk)k) recognition algorithm for Wk(G), where
g and f are constants (modest and quantified) depending on the class G. If G
is the class of graphs with maximum degree bounded by D (not closed under
minors), we can still obtain a running time of O(|V (G)|(D + k) + k(D + k)k+3)
for recognition of graphs in Wk(G).
Our results are obtained by considering minor-closed classes for which all ob-
structions are connected graphs, and showing that the size of any obstruction for
Wk(G) is O(tk7 + t7k2), where t is a bound on the size of obstructions for G. A
trivial corollary of this result is an upper bound of (k + 1)(k+ 2) on the number
of vertices in any obstruction of the class of graphs with vertex cover of size at
most k. These results are of independent graph-theoretic interest.
(This work was also reported at WADS 2001.)

14 Exact Solutions for Closest String and Re-

lated Problems

Jens Gramm

(joint work with Rolf Niedermeier and Peter Rossmanith)

Closest String is one of the core problems in the field of consensus word
analysis with particular importance for computational biology. Given k strings
of same length and a positive integer d, find a “closest string” s such that none of
the given strings has Hamming distance greater than d from s. Closest String

is NP -complete. In biological practice, however, d usually is very small.
We show how to solve Closest String in linear time for constant d (the ex-
ponential growth in d is O(dd)). We extend this result to the closely related
problems d-Mismatch and Distinguishing String Selection. Moreover,
we give a linear time algorithm for Closest String when k = 3 and d is arbi-
trary. Finally, the practical usefulness of our findings is substantiated by some
experimental results and an application in primer design.
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15 Parameterized Complexity of Type Check-

ing Logic Programs

Witold Charatonik

Regular types are known in logic programming already for more than 25 years,
but usually their definition is restricted to tuple-distributive regular sets of trees,
that is, sets recognizable by top-down deterministic tree automata. Types defined
this way were considered (by the logic-programming community) to be more
efficient than general regular types. On the other hand the automata-theory
community argued that general types are more expressive and the complexity of
main algorithms (type inference and type checking) is the same (EXPTIME) in
both cases.
In this talk we show that there is indeed a difference: the type checking problem
for regular directional types for logic programs is fixed-parameter tractable if the
types are restricted to be tuple-distributive, and is fixed-parameter intractable in
the general case.

16 Generalized Model-Checking Problems

Martin Grohe

A fundamental algorithmic problem, playing an important role in different areas
of computer science, is the following model-checking problem:
Given a finite relational structure A and a formula F of some logic L, evaluate
F in A.
The name model-checking is most commonly used for the appearance of the
problem in automated verification. However, the problem of evaluating a query
against a finite relational database is of the same type. Constraint satisfaction
problems in artificial intelligence can also be seen as model-checking problems.
Moreover, many of the best-known algorithmic problems can be directly trans-
lated into model-checking problems. Often, we are not only interested in a model-
checking problem itself, but also in certain variants, such as counting problems,
which we refer to as generalized model-checking problems.
Generalized model-checking problems admit a natural parameterization in terms
of the size of the input formula. I want to argue that parameterized model-
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checking problems provide a natural framework for parameterized complexity
theory and then discuss a number of recent results on the parameterized com-
plexity of generalized model-checking problems for first-order logic.

17 Structural Aspects of Parameterized Com-

plexity, with an “Expectation Principle”

Kenneth W. Regan

We study the complexity of parameterized languages L along other ”gradients”
k(n) of the parameter k besides fixed ones. Complexity along these gradients is
uniquely well-defined if we use the size of circuits Cnk computing Lnk = {x : |x| =
n,< x, k >∈ L} as the cost measure, though it is usual to speak of TM running
time. Call L “normal” if for all x, the set of values k such that < x, k >∈ L is
contiguous. Then we can associate to L one or both of the optimization problems
MaxL [MinL] by: given x, maximize [minimize] k such that L(x, k) holds. Given
a distribution D on instances x of a given size n, define one or both of

EMaxL(n) =
∑

x of size nMaxL(x) ∗ PrD(x)
EMinL(n) =

∑

x of size nMinL(x) ∗ PrD(x).

When we omit mention ofD, it is understood to be a ”natural”—usually uniform—
distribution on the instances. Then we can state the following informal “Expec-
tation Principles”:

EP1: If EMaxL(n) = Ω(ne) or EMinL(n) = Ω(ne) for some e > 0, then L should
be fixed-parameter tractable.
EP2: If L is W[1]-hard [and in the W[t]-hierarchy], then EMaxL(n) or EMinL(n)
should be bounded above by a polynomial in log(n).

We observe that a great many of the parameterized problems in the Downey-
Fellows monograph, mainly those over graphs or strings or matrices (which have
natural uniform distributions), abide by these principles. There are some tech-
nical difficulties, such as ”duality” whereby the parameter ”k” stands for n − k
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or some other quantity, and exceptions such as CUTWIDTH and BANDWIDTH
both having EMin(n) = n for uniformly random n-vertex graphs, but only
CUTWIDTH is FPT while BANDWIDTH is W[1]-hard. The following results,
building lightly on the subsequent talk by Venkatesh Raman, offer both support
and exception for the principles:

(1) Let Π be a hereditary graph property, and let L be the parameterized language
with MaxL(G) = maximize the number of nodes in G that induce a subgraph
with property Π. Then L is W[1]-hard iff EMaxL(n) is asymptotic to 2log(n)
under uniform distribution on n-vertex graphs, and L is FPT otherwise.
(2) Instead define L via MinL(G) = minimize the number of nodes whose re-
moval leaves a graph in Π. Except for the “all” property, EMinL(n) is always
asymptotic to n. It is known that whenever Π is defined by a finite set of for-
bidden subgraphs then L is FPT, in agreement with EP1, but when Π is the
set of 3-colorable graphs, L is hard for the W[t] hierarchy and hence in partial
exception to EP2.

We seek deeper connections to EP1 and EP2, and to study the complexity along
gradients defined by EMaxL(n) or EMinL(n).

18 Deciding Hamiltonicity in Graphs of Bounded

Treewidth

Walker M. White

Courcelle’s Theorem states that, for any fixed k and any monadic second order
property of graphs, we can construct an automaton that accepts exactly the parse
strings of graphs of treewidth k that have this property. The proof of this theorem
gives us a method for implementing the automaton; each state corresponds to a
test set, or a collection of graphs that represent possible extensions of the parse
string.
The difficulty in implementing Courcelle’s Theorem is that the automata can be
quite large. For example, the test sets in the automaton for deciding whether a
graph of treewidth k is Hamiltonian or not have 2tt! many elements. This means
that the naive implementation of this automaton has 22tt! many states. One
possible solution to this problem is to avoid constructing the entire automaton
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while processing the parse string. Instead we build the automaton dynamically,
only constructing states as they are needed.
We demonstrate how to use the test sets to dynamically construct the automaton
for Hamiltonicity. This gives us an algorithm for determining whether or not a
parse string of length n for a graph of treewidth k is Hamiltonian in time O(2 tt!n).
We conclude with a discussion of the difficulty in applying these techniques to
Courcelle’s Theorem in general.

19 Parameterized Complexity of Finding Sub-

graphs with Hereditary Properties

Venkatesh Raman

(joint work with Subhash Khot, Princeton University, USA)

We consider the parameterized complexity of the following problem: Given a
graph G, an integer parameter k and a non-trivial hereditary property Π, are
there k vertices of G that induce a subgraph with property Π? This problem has
been proved NP-hard by Lewis and Yannakakis. We show that if Π includes all
trivial (edgeless) graphs but not all complete graphs or vice versa, then the prob-
lem is complete for the parameterized class W [1] and is fixed parameter tractable
otherwise. Our proofs of both the tractability and hardness involve nontrivial
use of the theory of Ramsey numbers.
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20 On the Parameterized Complexity of Lay-

ered Graph Drawing

Naomi Nishimura

(Joint work with V. Dujmovic, M. Fellows, M. Hallett, M. Kitching, G. Liotta,
C. McCartin, P. Ragde, F. Rosamond, M. Suderman, S. Whitesides, D. Wood)

We consider graph drawings in which vertices are assigned to layers and edges are
drawn as straight line-segments between vertices on adjacent layers. We prove
that graphs admitting crossing-free h-layer drawings (for fixed h) have bounded
pathwidth. We then use a path decomposition as the basis for a linear-time
algorithm to decide if a graph has a crossing-free h-layer drawing (for fixed h).
This algorithm is extended to solve a large number of related problems, including
allowing at most k crossings, or allowing at most r edge deletions to leave a
crossing-free drawing (for fixed k or r). If the number of crossings or deleted
edges is a non-fixed parameter then these problems are NP-complete. For each
setting, we can also permit downward drawings of directed graphs and drawings
in which edges may span multiple layers, in which case the total span or the
maximum span of edges can be minimized. In contrast to the so-called Sugiyama
method for layered graph drawing, our algorithms do not assume a preassignment
of the vertices to layers.

21 A Fast Parameterized Face Cover Algorithm

Faisal N. Abu-Khzam

(joint work with Michael A. Langston)

A face cover of a plane graph, G, is a set of faces whose boundaries contain all
vertices of G. When k is fixed and a face cover of size at most k exists, finding
such a cover can be accomplished in linear time. Both the O(12kn) method of

Downey-Fellows and the O(c
√

kn+n2),where c = 336
√

34 method of Alber et al rely
on reductions to planar dominating set. We present a direct O(5kn) algorithm.
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22 Call Control with k Rejections

Thomas Erlebach

Given a set of connection requests (calls) in a communication network, the call
control problem is to accept a subset of the requests and route them along paths
in the network such that no edge capacity is violated, with the goal of rejecting
as few requests as possible. For the problem of computing a solution that rejects
at most k requests, we give FPT algorithms for tree networks with arbitrary
capacities and for trees of rings with unit capacities.

23 Parametric Aspects of Parallel Complexity

Theory

Klaus-Jörn Lange

The use of reducibilities of polynomial growth in parallel complexity theory often
leads to inadequate models which are unable to measure appropriately parameters
like speed-up or efficiency. On the other hand, the use of linear time reducibilities
doesn’t yield any systematic framework adequate for the classification of parallel
problems. Parameterized complexity offers tools to handle these questions. The
talk presents a rather old idea to apply reductions of linear growth slicewise to
languages. This approach is demonstrated by the example of fixed vs. general
membership problems. This allows one for example to give evidence for certain
fixed wordproblems to lie in P but not in a fixed DTIME(nk). A proof of this
fact would imply P 6= NP !
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24 Parameterized Counting

Venkatesh Raman

(joint work with V. Arvind, IMSc. Chennai)

We look at the counting versions (both exact and approximate) of many pa-
rameterized problems whose decisions versions are fixed parameter tractable. We
describe examples of fixed parameter tractable problems, whose counting versions
are also fixed parameter tractable, as well as examples whose counting versions
are W[1]-hard.

25 News on the ICALP’2001 paper by Liming

Cai and David Juedes

Gerhard J. Woeginger

The paper “Subexponential parameterized algorithms collapse the W-hierarchy”
by L. Cai and D. Juedes (Proceedings of ICALP’2001, Springer LNCS 2076,
pp. 273-284, 2001) states the following main result: In case some MAX SNP-
hard problem can be solved in subexponential time, then W[1]=FPT. On thurs-
day Aug/02/2001 (during the Dagstuhl seminar on parameterized complexity)
a working group of ten people met, and discussed, and tried to understand the
arguments of this paper. The talk summarizes the observations and conclusions
of this working group.
(1) The proof of Lemma 3 (pages 278 and 279) is fatally flawed. The removal
of the conflicting unit clauses (x) and (¬x) messes up the calculations of the
argument.
(2) There is no easy repair of the proof of Lemma 3. It can be shown that if for
some c ≥ 3 and some r > 1/2 the problem Max c-Sat(r,1) is contained in XP,
then P=NP. For that reason, any argument along the lines of the current proof
should be doomed.
(3) The whole proof of the main result of Cai and Juedes breaks down.
(4) There might be hope to save the main result by centering the argument not
around Max c-Sat, but around the following parameterized variant of Vertex
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Cover: Given a graph G = (V,E) and a parameter k, does there exist a vertex
cover with k log |V | vertices?

26 Open Problems

Benny Chor

Constructing phylogenetic (or evolutionary) trees from biological data is a clas-
sical problem in biology, and it still is a major challenge today. Most realistic
formulations of the problem, which take errors into account, give rise to hard
computational problems. Here, we concentrate on one specific method: quartet
based tree reconstruction.
The input is a list of m quartets over n species. Each quartet is an unrooted
binary tree on four species. A given quartet is consistent with a binary unrooted
tree T if the subtree induced by T on the four leaves is the same as the given
quartet. The goal is to construct a binary tree with the n species in its leaves,
such that the total number of the satisfied quartets is maximized.
For a full input list (m =

(

n
4

)

, where each 4 tuple of species is represented by

one quartet) it is easy (O(n4) time) to solve the decision problem “is there a tree
satisfying all m quartets?”. For smaller values of m, however, even the decision
problem is NP complete. The corresponding maximization problem is MAX SNP
hard.
Currently, the best EXACT algorithm runs in time O(m3n). Values of n in
the range 20 to 30 are of significant biological interest (e.g. when considering
mammalian evolution). A trivial randomized algorithm (pick a random binary
tree) satisfies m/3 of quartets. This algorithm is easily derandomized.
From the point of view of parameterized complexity, it is known that given the
full list (m =

(

n
4

)

), answering “is there a tree which satisfies all but k quartets”

is in FPT (dependence on k is 4k).

Interesting problems:

1. Smaller exponent for an exact algorithm (e.g. 2n instead of 3n).
2. A different parameterized approach, capable of handling a fixed proportion
cm quartets’ errors.
3. An FPT algorithm for satisfying k + (m/3) quartets.
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Rod G. Downey

Some problems:

1. Say somethings about the W-hierarchy. That is, make progress on any of the
outstanding questions of separation, randomized collapse, collapse propagation,
or the relationship between unknown memberships and collapse. For instance (as
Mike Hallet asked at the workshop), one might hope to prove something like: if
BANDWIDTH is in W [P ] then W [P ] = FPT .

2. Many of the known FPT algorithms use treewidth, and seem genuinely fea-
sible if one is given a tree decomposition. However, there seems to be no really
practical tree decomposition algorithm. Find one.

3. Investigate the structure of FPT. Reductions that are polynomial time in
both n (the input size) and k (the parameter) may be useful here, or perhaps
parametric logspace reductions. Hierarchies of automata are another possibility.

4. Investigate the practicality of COLOR CODING. The constants are, at present,
horrendous in the derandomized versions of this FPT technique.

5. Develop other general parameters to explain the tractability of inputs for
classes of problems which are theoretically intractable. (Treewidth, for example,
has proven to be quite general.) So the parameter is the “topology” of the input
— are there other possibilities?

6. Is there any hope for the Cai-Juedes approach? Is there the possibility of an
FPT algorithm with a O(1 + e)k additive exponential parametric contribution
for VERTEX COVER, for any e > 0, or is there a theory of thresholds that can
be shown to apply here? How does the classical theory of, e.g., approximation
thresholds, relate to this issue?

Mike Fellows

Some More Problems:
(1) Although the Cai-Juedes paper of ICALP 2001 turned out to be flawed, it
nevertheless raised some extremely interesting possibilities and fresh perspectives.
In particular, they initiated a program of “optimal” FPT algorithms that is still
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viable, despite the collapse of their main theorem, and is, I think, one of the most
important new ideas in the field. To be specific, their main theorem would have
provided the starting point for proving an endless horizon of concrete results such
as:
(a) There can be no FPT algorithm for Vertex Cover with a running time of
2o(k)nc unless FPT= W [1].
(b) There can be no FPT algorithm for Planar Vertex Cover with a running

time of 2o(
√

k)nc unless FPT= W [1].
(c) There can be no FPT algorithm for Planar Dominating Set with a run-

ning time of 2o(
√

k)nc unless FPT= W [1].
The statement (c) would show that the new techniques and FPT results for planar
problems presented at the workshop by Jochen Alber (and just a few weeks earlier
at ICALP) are in some sense “optimal”. This is still an extremely interesting and
viable program, and results of Cai and Juedes that do hold up include that (a)
implies (b) implies (c), and that all three statements are implied by the following:
Conjecture: The k logn Vertex Cover problem is complete for W [1].
There were various discussions at the workshop concerning the plausibility of this
conjecture, and no consensus. My intuition favors the conjecture.
The natural way to attack this would be to try to encode the k-Independent

Set problem directly into the k logn Vertex Cover problem. Some useful
gadgets are available (based on constructions introduced by Cai and Juedes), but
one may argue that a normal many:1 reduction is impossible. The usual sort of
many:1 combinatorial reduction of (G, k) to (G ′, k′) allows G to be computably
recovered from G′. The difficulty this raises is that because Vertex Cover is
2k-kernelizable, we would then (normally) be provided the means to computably
represent an arbitrary (e.g., Kolmogorov random) n-vertex graphG by a structure
G′ of size 2k′ logn, for the proposed reduction, and this will not be possible.
Elbow-deep in gadgeteering this issue arises quite concretely. So what does this
mean for the above conjecture? It might only mean that we will have to use
Turing reductions to show W [1]-hardness. The k logn Vertex Cover problem
belongs to W [P ] — this is not very difficult to prove — but how does one show
that it belongs toW [2]? Those whose intuition is that the k lognVertex Cover

problem is easier than W [1] might start here!
(2) Polynomial time is tolerated as a mathematical model of tractability because
it is usually quite well-behaved: if you can do it in polynomial time, then nor-
mally the exponent in your polynomial is at most 2 — in some rare extreme
cases maybe 6 — and there is some sort of consensus that if your exponent is
greater than 3 then your P-time algorithm is useless for practical purposes. If you
present an algorithm that is O(n1000), then most folks would not consider this
as deserving the commercially honored label of “polynomial time” in the usual
way. Eventually, the research community that is concerned with polynomial-time
approximation schemes will begin to recognize this and begin to apply the in-
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evitable tool of Bazgan’s Theorem in order to elucidate when PTAS’s cannot be
improved to EPTAS’s. (To state my prejudices quite plainly, I think it is a bit of
a scandal that so little attention is currently being paid to the difference between
a PTAS and an EPTAS.)
To review the issues, a PTAS computes a solution that is within a factor of (1+ǫ)
of optimal in time that is polynomial for each ǫ. For example, Khanna and Mot-
wani described three planar logic problems in a FOCS ’96 paper that have PTAS’s
running in time O(n35k2

), where k = 1/ǫ. This is polynomial for each fixed ǫ,
for sure, but for a 20% approximation we are looking at a polynomial-time algo-
rithm that is O(n875). It would be much better if we could get an EPTAS (efficient
PTAS — terminology due to Cesati and Trevisan) with a running time of, for
example, O(2kn3), which would purchase quite good approximations. However,
Cai, Fellows, Juedes and Rosamond have shown (manuscript available) that all
three of these optimization problems considered by Khanna and Motwani have
W[1]-hard associated parameterized problems, and so by Cristina Bazgan’s theo-
rem (later and independently proved by Cesati and Trevisan), they probably do
not have EPTAS’s. There are lots of PTAS’s for which this rather well-motivated
issue has not yet been explored. Get ’em while they’re hot!
There is much more to explore here. The goodness of an approximation algorithm
can be expressed in a variety of ways, with the PTAS regime of “... within
a factor of (1 + (1/k)) of optimal,” being only one of a wide variety of ways
to frame the question. One would of course expect to have to pay more for a
better approximation, and the goodness of the approximation (however this is
expressed) is an obvious parameter. There really are just two basic ways that a
polynomial running time can become more expensive for better approximations:
by blowing up the degree of the polynomial, or by blowing up the constant in
front. Some examples of how to use this perspective:
(a) Is it W [1]-hard to approximate a minimum dominating set in an n-vertex
graph to within a factor of (logn)1/k? (David Johnson showed in 1974 that an
approximation to within a factor of (1 + logn) can be computed in polynomial
time.)
(b) Is it W [1]-hard to find a dominating set in a tournament that is within a
factor of (logn)1/k of minimum size, or can this be done in FPT time? This can
easily be accomplished in polynomial time when k = 1.
(c) Is there a straightforward combinatorial reduction showing that it is W [1]-
hard to approximate a minimum coloring of an n-vertex graph to within a factor
of n1/k of optimal?
The reductions that might prove such things would presumably require new kinds
of gadgets, but this is not necessarily a big obstacle — nothing of this sort has
so far been attempted.
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Henning Fernau

We study several versions of parameterized enumeration. The idea is always to
have an algorithm which outputs all solutions (in a certain sense) to a given
problem instance. Such an algorithm will be analyzed from the viewpoint of
parameterized complexity. We show how to apply enumeration techniques in a
number of examples. In particular, we give a fixed-parameter algorithm for the
reconfiguration of faulty chips when providing so-called shared spares.
Kernelizations as well as search trees (which are the most prominent ways to
devise fixed-parameter decision algorithms) are very useful techniques also for
parameterized enumeration.
Remarkably, lower bounds and non-membership can be shown for several ex-
amples of enumeration problems and enumeration classes. In contrast, in the
classical area of decision problems, mostly only relativized assertions of this kind
are obtainable.

Judy Goldsmith

In Burago, et al.’s 1996 paper [1], they show that the optimal policy for a POMDP
with deterministic observations and at most m states per observation can be
approximated to within an additive constant ε in time polynomial in the size of
the POMDP and 1/ε. The complexity is O(nm).
My question is where this problem falls in the W -hierarchy.
The problem can be restated as follows. A POMDP can be described as a graph
G = 〈V,E〉 and a finite set of actions that determine transition probabilities from
each vertex (for each v ∈ V and a ∈ A, the probabilities t(v, a, w) add up to 1 over
all w ∈ V ). There is a set of vertices G, the goal vertices; the goal of the controller
is to pass through G with high probability. This task is made more difficult by
the fact that the controller may have incomplete information about the current
vertex at each time when an action must be chosen. This is represented by a
coloring h : V → C such that for each c ∈ C, |h−1(c)| ≤ m. The controller only
learns the color of the current vertex, though it may access the entire history of
the graph traversal (as a sequence of colors) for its decision-making.
The proof can be sketched as follows. At each time step, the controller can
maintain a probability distribution over states, indicating the probabilities of
being in each possible state. Because of the bounded multiplicity of colors, at
most m states have positive probability at any time. The value function mapping
a control policy to expected values for each such distribution is continuous. For
each color c, the m-simplex of probability distributions over the support of c
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(the states mapped to color c) can be partitioned into poly(m, 1/ε) many sub-
simplices so that any value function will vary by at most ε over each sub-simplex.
Then one can approximate the actual optimal value function on the corners of
the sub-simplices, and take a linear extension of those values for interior points
on the simplices.
Can this method be extended? Are there other methods?
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Venkatesh Raman

Given a 2-CNF formula F withm clauses on n variables, and an integer parameter
k, is there an assignment to the variables that satisfies at least m−k clauses of F ?
Is this problem FPT or W-hard?
I know of at least three problems that (parametrically) reduce to this question.
This problem is clearly W[P]-hard for c-CNF formulas for c > 2, as we can re-
duce (in polynomial time) c-CNF satisfiability question to this problem even for
constant k.

Ken Regan, Martin Grohe, Jörg Flum

Consider HITTING CLIQUE: graph G, parameter k, does G have a set U of k
vertices such that every k-clique in G has nonempty intersection with U? This
is in Flum-Grohe’s class “A[2]”, but not known to be in W[2] or in the W[t] hi-
erarchy at all. Is it? More generally, what relationships can we establish among
W[t], A[t], and Downey-Fellows-Regan’s “H[t]” classes?
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Todd Wareham

Robot Motion Planning. Given a robot in an environment composed of some
set of obstacles and initial and final positions of the robot within this environment,
the motion planning problem involves finding a sequence of motions that move
the robot from the initial to the final position without intersecting any of the
obstacles. Though polynomial-time algorithms are known for this problem for
very limited kinds of robots, e.g., line segments, disks, rectangles (see [5] and
references), the best known algorithm for arbitrarily complex robots requires
O(nk(logn · dO(k) + 2dkO(k2))) time [1], where k is the degrees of freedom of
movement, n is the number of polynomials required to describe the surfaces of
the robot and its environment, and d is the maximum degree of these polynomials
[5]. The terms exponential in d and k in these running times are not daunting
because values of d and k in practice are typically small, e.g., d = 4 for a polygonal
robot in a planar polygonal environment and k ≤ 7 for industrial robot arms.
It is thought unlikely that algorithms such as that in [1] can eliminate the n k

term in their running time because such algorithms must compute all points in
a special k-dimensional space called FP space, and the number of points in this
space is O(nk) in the worst case [5, Theorem 3.1]. However, this does not rule
out the existence of other algorithms that are fixed-parameter tractable relative
to k.
A formal definition of the problem described above is as follows [3]:

d-Dimensional Euclidean generalized mover’s problem (dD-GMP, d ∈
{2, 3})
Instance: A set O of obstacle polyhedra, a set P of polyhedra which are freely
linked together at a set of linkage vertices V such that P has k degrees of freedom
of movement, and initial and final positions pI and pF of P in d-dimensional
Euclidean space.
Question: Is there a legal movement of P from pI to pF , i.e., is there a continuous
sequence of translation and rotations of the polyhedra in P such that at each point
in time, no polyhedron in P intersects any polyhedron in O and the polyhedra
in P intersect themselves only at the linkage vertices in V ?

Let k-dD-GMP denote the parameterized version of this problem in which k is
the parameter. Reif [3] showed that 3D-GMP is PSPACE-hard. Cesati and
Wareham [2] in turn used Reif’s reduction to show that k-3D-GMP is W[SAT]-
hard. This ruled out the existence of the most desirable type of FPT algorithms
for motion planning. However, many open problems remain:

1. Does k-3D-GMP become fixed parameter tractable if additional problem-
aspects describing the complexity of the robot’s environment, e.g., number
/ surface-complexity of obstacles, are added to the parameter? Reif’s reduc-
tion essentially encodes a Turing machine’s state in the robot and encodes
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computations as paths through a hideously complex maze of obstacles. Such
an obstacle-set is not a realistic model of instances of motion-planning prob-
lems encountered in practice.

2. Is k-2D-GMP fixed-parameter tractable? Much motion planning is done
relative to robots that effectively operate in two dimensions on factory
floors.

3. What is the fixed-parameter status of more realistic parameterized motion-
planning problems that incorporate moving obstacles, optimality constraints
on motion plans, and uncertain robot motion (see [3, 4, 5] and references)?
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