
Dagstuhl Seminar 01341

Dependent Type Theory Meets Practical

Programming

19.08.2001–24.08.2001

organized by

Gilles Barthe (INRIA, Sophia Antipolis),

Peter Dybjer (Chalmers, Göteborg), and

Peter Thiemann (Freiburg)

Modern programming languagees rely on advanced type systems that
detect errors at compile-time. While the benefits of type systems have long
been recognized, there are some areas where the standard systems in pro-
gramming languages are not expressive enough. Language designers usually
trade expressiveness for decidability of the type system. Some interesting
programs will always be rejected (despite their semantical soundness) or be
assigned uninformative types.

There are several remedies to this situation. We argue that dependent
type systems, which allow the formation of types that explicitly depend on
other types or values, are one of the most promising approaches. These
systems are well-investigated from a theoretical point of view by logicians
and type theorists. For example, dependent types are used in proof assis-
tants to implement various logics and there are sophisticated proof editors
for developing programs in a dependently typed language.

To the present day, the impact of these developments on practical pro-
gramming has been small, partially because of the level of sophistication of
these systems and of their type checkers. Only recently, there have been
efforts to integrate dependent systems into intermediate languages in com-

1



pilers, for example, the TAL compiler (Morrisett and others1), and actual
programming languages, for example, Cayenne (Augustsson2) and DML (Xi
and Pfenning3). Additional uses have been identified in high-profile applica-
tions such as mobile code security. For example, proof carrying code (Necula
and Lee4) relies on a dependently typed lambda calculus to encode proof
terms.

Now the time is ripe to bring together researchers from the two com-
munities (type theorists and programming experts), and to further cross-
fertilization of ideas, techniques and formalisms developed independently
in these communities. In particular, the seminar shall make researchers in
programming languages aware of new developments and research directions
on the theory side; point out to theorists practical uses of advanced type
systems and urge them to address theoretical problems arising in emerging
applications.

The need for such a seminar became clear during the first interna-
tional Workshop on Dependent Types in Programming5, held in Göteborg
in March 1999. A second international Workshop on Dependent Types in
Programming6 has been held in Ponte de Lima in July 2000, but it is hard
to discuss the problems pointed out above in a one-day workshop.

1http://www.cs.cornell.edu/home/jgm/
2http://www.cs.chalmers.se/~augustss/
3http://www.ececs.uc.edu/~hwxi/
4http://www-nt.cs.berkeley.edu/home/necula/public_html/
5http://www.md.chalmers.se/Cs/Research/Semantics/APPSEM/dtp99.html
6http://www-sop.inria.fr/oasis/DTP00/index.html

2

http://www.cs.cornell.edu/home/jgm/
http://www.cs.chalmers.se/~augustss/
http://www.ececs.uc.edu/~hwxi/
http://www-nt.cs.berkeley.edu/home/necula/public_html/
http://www.md.chalmers.se/Cs/Research/Semantics/APPSEM/dtp99.html
http://www-sop.inria.fr/oasis/DTP00/index.html


Contents

1 Principal Typings Demystified: What They Are, Why You
Want Them, and Why Your Type System Doesn’t Have
Them 4

2 Rules for Final Coalgebras in Dependent Type Theory 4

3 A Type System for Certified Binaries 5

4 Generic Unification Generalized, or Datatypes Parameter-
ized over Typerecords 5

5 Designing Reliable, High-Performance Networks with the
Nuprl Proof Development System 6

6 PAL+: A Lambda-free Logical Framework 6

7 MLF: Raising ML to the Power of System F 7

8 Hindley-Milner with Local Constraints:
Extending Type Inference the Easy Way 7

9 Dependent Types in Type-Directed
Partial Evaluation 8

10 Polymorphic Lemmas and Definitions in
Lambda Prolog and Twelf 9

11 Inductive and Inductive-Recursive Definitions in Dependent
Type Theory 9

12 Randomized Algorithms in Type Theory 10

13 First-Class Polyvariant Functions, Co-Arity
Raising, and Threaded Specialization 10

14 Programming with Dependent Types:
Perspectives and Problems 11

15 Pure: A Functional Programming Language Based on Pure
Type Systems 12

16 Explicit Subtyping in Dependently Typed
Programming 12

17 Programmable Pattern Analysis (or ‘Greening the Left’) 13

3



1 Principal Typings Demystified: What They Are,
Why You Want Them, and Why Your Type
System Doesn’t Have Them7

Joe Wells, Heriot-Watt-University, Edinburgh (GB)

Let S be some type system. A typing in S for a typable term M is the
collection of all of the information other than M which appears in the final
judgement of a proof derivation showing that M is typable. For example,
suppose there is a derivation in S ending with the judgement A ` M : τ
meaning that M has result type τ when assuming the types of free variables
are given by A. Then (A, τ) is a typing for M .

A principal typing in S for a term M is a typing for M which somehow
represents all other possible typings in S for M . It is important not to con-
fuse this notion with the weaker notion of principal type often mentioned
in connection with the Hindley/Milner type system. Previous definitions
of principal typings for specific type systems have involved various syntac-
tic operations on typings such as substitution of types for type variables,
expansion, lifting, etc.

This talk presents a new general definition of principal typings which
does not depend on the details of any particular type system. This talk
shows that the new general definition correctly generalizes previous system-
dependent definitions. This talk explains why the new definition is the
right one. Furthermore, the new definition is used to prove that certain
polymorphic type systems using ”for all” quantifiers, namely System F and
the Hindley/Milner system, do not have principal typings.

2 Rules for Final Coalgebras in Dependent Type
Theory

Anton Setzer, University of Wales, Swansea (GB)

with Peter Hancock, Edinburgh (GB)

We review some standard approaches for formulating interactive programs
in functional programming languages, and introduce our approach. In our
setting, we represent interactive programs as possibly non-wellfounded trees
with nodes labeled by interactive commands and having branching degree
over the response set corresponding to this command. We then raise the
problem, namely the need for rules for final coalgebras in dependent type
theory. Next, we show that elements of the final coalgebras corresponding
to interactive programs can be introduced as graphs, labeled by commands

7A corresponding paper is available at http://www.cee.hw.ac.uk/~jbw/papers/.

4

http://www.cee.hw.ac.uk/~jbw/papers/


and with arrows for every element of the corresponding response set into
another node. On this basis we define rules corresponding to coiteration and
corecursion. We indicate, why the successor for the co-natural numbers is
difficult to compute using coiteration and results in high complexity, whereas
with corecursion this is simple, similar to the fact that the predecessor is
difficult to compute for the natural numbers using iteration, but easy using
recursion. Finally we introduce constructions for defining elements of the
final coalgebras: while- and repeat loops, a fixed-point construction and
redirect, which allows to translate programs in a highlevel language into
a low level language by replacing commands of the high level language by
programs in the low level language. Redirect allows to refine programs in a
top down approach and to build libraries.

3 A Type System for Certified Binaries

Zhong Shao, Yale University, New Haven (USA)

A certified binary is a value together with a proof that the value satisfies a
given specification. Existing compilers that generate certified code have fo-
cused on simple memory and control-flow safety rather than more advanced
properties. In this talk, we present a general framework for explicitly repre-
senting complex propositions and proofs in typed intermediate and assembly
languages. The new framework allows us to reason about certified programs
that involve effects while still maintaining decidable typechecking. We show
how to integrate an entire proof system (the calculus of inductive construc-
tions) into a compiler intermediate language and how the intermediate lan-
guage can undergo complex transformations (CPS and closure conversion)
while preserving proofs represented in the type system. Our work provides
a foundation for the process of automatically generating certified binaries
in a type-theoretic framework. This is joint work with Bratin Saha, Valery
Trifonov, and Nikolaos Papaspyrou.

4 Generic Unification Generalized, or Datatypes
Parameterized over Typerecords8

Magnus Carlsson, Oregon Graduate Institute, Beaverton (USA)

We discuss a programming exercise in which we have generalized Tim Sheard’s
generic unification algorithm (ICFP’01) to cope with mutually recursive
term datatypes. The programming language of choice is Cayenne, where we

8The slides are available at http://www.cse.ogi.edu/~magnus/dagstuhl2001/unify.
ps.gz.

5

http://www.cse.ogi.edu/~magnus/dagstuhl2001/unify.ps.gz
http://www.cse.ogi.edu/~magnus/dagstuhl2001/unify.ps.gz


use dependent types to encode records of types for the recursive parameter
in the term datatypes.

5 Designing Reliable, High-Performance Networks
with the Nuprl Proof Development System9

Christoph Kreitz, Cornell University, Ithaca (USA)

Formal methods tools have greatly influenced our ability to increase the re-
liability of software and hardware systems. Extended type checkers, model
checkers and theorem provers have been used to detect subtle errors in pro-
totype code and to clarify critical concepts in system design. Automated
theorem proving now has the potential to support a formal development of
reliable systems at the same pace as designs that are not formally assisted,
provided it is engaged at the earliest stages of design and implementation.

An engagement of deductive methods at this stage depends on a formal
language that is able to naturally express the ideas underlying the software
systems, a knowledge base of formalized facts about systems concepts that
a design team can use in its discussions, and a theorem prover capable of
integrating a variety of different proof techniques while providing assurance
for the correctness of the joint result.

The Nuprl Logical Programming Environment provides an expressive
type theory and a theorem proving environment for the development of
verified algorithmic knowledge and is capable of supporting the formal design
and implementation of high-performance network systems.

The presentation briefly discusses aspects of Nuprl’s type theory as well
as the system’s features and architecture. We also describe how the Nuprl
LPE was used in the verification of protocols for the Ensemble group com-
munication toolkit, in verifiably correct optimizations of Ensemble protocol
stacks, and in the formal design and implementation of new adaptive net-
work protocols.

6 PAL+: A Lambda-free Logical Framework10

Zhaohui Luo, University of Durham, Durham (GB)

A lambda-free logical framework takes parameterisation and definitions as
the basic notions to provide schematic mechanisms for specification of type
theories and their use in practice. The framework presented here, PAL+, is a
logical framework for specification and implementation of type theories, such

9http://www.cs.cornell.edu/home/kreitz/Abstracts/01dagstuhl-dependent.

html
10The full paper, to appear in J of Functional Programming, can be found at http:

//www.dur.ac.uk/zhaohui.luo/PALPLUS.JOURNAL.ps.gz

6

http://www.cs.cornell.edu/home/kreitz/Abstracts/01dagstuhl-dependent.html
http://www.cs.cornell.edu/home/kreitz/Abstracts/01dagstuhl-dependent.html
http://www.dur.ac.uk/zhaohui.luo/PALPLUS.JOURNAL.ps.gz
http://www.dur.ac.uk/zhaohui.luo/PALPLUS.JOURNAL.ps.gz


as Martin-Lof’s type theory or UTT. As in Martin-Lof’s logical framework,
computational rules can be introduced and are used to give meanings to
the declared constants. However, PAL+ only allows one to talk about the
concepts that are intuitively in the object type theories: types and their
objects, and families of types and families of objects of types. In particular,
in PAL+, one cannot directly represent families of families of entities, which
could be done in other logical frameworks by means of lambda abstraction.

PAL+ is in the spirit of de Bruijn’s PAL for Automath. Compared
with PAL, PAL+ allows one to represent parametric concepts such as fam-
ilies of types and families of non-parametric objects, which can be used by
themselves as totalities as well as when they are fully instantiated. Such
parametric objects are represented by local definitions (let-expressions).

We claim that PAL+ is a correct meta-language for specifying type the-
ories (e.g., dependent type theories), as it has the advantage of exactly
capturing the intuitive concepts in object type theories, and that its imple-
mentation reflects the actual use of type theories in practice. We shall study
the meta-theory of PAL+ by developing its typed operational semantics and
showing that it has nice meta-theoretic properties.

7 MLF: Raising ML to the Power of System F

Didier Remy, INRIA Rocquencourt, Le Chesnay (F)

with Didier Le Bottlan

We propose a type system MLF that generalizes ML with first-class poly-
morphism as in system F. We perform partial type reconstruction. As ML
and as opposed to system F, each typable expression admits a principal type,
which can be inferred. Furthermore, all expressions of ML are well-typed,
with a possibly more general type than in ML, without any need for type an-
notation. Only abstraction over values that are used polymorphically must
be annotated, which allows to type all expressions of system F as well.

8 Hindley-Milner with Local Constraints:
Extending Type Inference the Easy Way

Jacques Garrigue, Kyoto University, Kyoto (J)

We propose a new way to mix constrained types and type inference, where
the interaction between the two is minimal. By using local constraints em-
bedded in types, rather than the other way round, we obtain a system which
keeps the usual structure of an Hindley-Milner type system. In practice, this
means that it is easy to introduce local constraints in existing type inference
algorithms.

7



Eventhough our system is notably weaker than general constraint-based
type systems, making it unable to handle subtyping for instance, it is power-
ful enough to accomodate many features, from simple polymorphic records
a la Ohori to Objective Caml’s polymorphic variants, and accurate typing
of pattern matching (i.e. polymorphic message dispatch), all these through
tiny variations in the constraint part of the system.

9 Dependent Types in Type-Directed
Partial Evaluation

Andrzej Filinski, University of Copenhagen, Copenhagen (DK)

Type-directed partial evaluation, a refinement of normalization by evalua-
tion, is based on reconstructing the syntax of normal-form lambda-terms
from their meanings in a special model. However, even though the term
language is typed, the usual presentation of the syntax-extraction algorithm
actually works with representations of potentially untypable terms, since it
is somewhat awkward to keep explicit track of the type and scope of bound
variables in a term, as it is being constructed.

In this talk, we consider a dependently-typed variant of the syntax ex-
traction procedure, which now works with a type family of explicitly well-
typed and well-scoped lambda-terms, in either de Bruijn index or de Bruijn
level notation. The construction is based on a Kripke-style interpretation,
where the worlds correspond to typing contexts and world passage is context
extension.

The straightforward expression of the dependently-typed algorithm is
conceptually simple, but computationally awkward, since every passage be-
tween worlds in the Kripke interpretation requires an explicit weakening
transformation of the partially constructed term. Instead, we introduce a
construction based on ”delayed weakening”, in which a term is represented
as a function that can reconstruct the appropriate concrete term with re-
spect to any sufficiently late world. With this representation, it becomes
possible to limit all uses of weakening transformations to individual free
variables only – a trivial operation for de Bruijn levels, and also very simple
for de Bruijn indices.

Finally we show that, by uniformly suppressing the parts of the program
that only maintain typing and scoping evidence, we can recover the stan-
dard Berger-Schwichtenberg algorithm for untyped representations. In this,
partially constructed terms are expressed as functions from natural numbers
(effectively representing context lengths) to concrete syntax. In other words,
extracting the essential computational content of the dependently-typed al-
gorithm gives a natural justification of the efficient, untyped variant.

8



10 Polymorphic Lemmas and Definitions in
Lambda Prolog and Twelf

Amy Felty, University of Ottawa, Ottawa (CDN)

In applications of logic to software safety and security, such as proof-carrying
code, the implementation of the proof checker for the core logic is inside
the trusted code base (TCB). The tools for constructing proofs, however,
need not be in the TCB, because the proofs constructed by them can be
checked. We show that lemmas and definitions can be implemented with a
great economy of expression in Twelf and Lambda Prolog, and thus the code
needed to check them does not greatly complicate the TCB. Both Twelf and
Lambda Prolog are known to be well-suited for expressing and implement-
ing logics and inference systems; Twelf implements a dependently-typed
meta-language, while Lambda Prolog does not. We illustrate by encoding
a higher-order logic and a lemma and definition mechanism for it in both
Twelf and Lambda Prolog. The encoding maps both terms and types of
the object logic (higher-order logic) to terms of the meta-language (Twelf
or Lambda Prolog). We compare the features of these two meta-languages
for our purposes, and discuss the possibility of using a hybrid system to
implement a proof-carrying code system.

11 Inductive and Inductive-Recursive Definitions
in Dependent Type Theory

Peter Dybjer, Chalmers University of Technology, Göteborg (S)

We give an introduction to the theory of inductive and inductive-recursive
definitions in type theory, by showing some examples. Firstly, we show two
examples of inductive definitions essentially using dependent types: (i) the
type of well-orderings, that is, well-founded trees with varying branching
factor, and (ii) the type of n-tuples (lists of a certain length). We also point
out how the latter can be defined either inductively, by introduction rules,
or by recursion on n.

We then give an example of an inductive-recursive definition, the si-
multaneous inductive definition of the type of lists where all elements are
different, and the recursive definition of the freshness relation. The new
feature here is that an introduction rule (the type of the constructor cons)
refers to the freshness relation, although the latter is defined by recursion on
the structure of the elements which are being generated. This feature is not
present in usual inductive definitions, where structural recursion can be only
be performed on an already given inductively generated structure. We also
show an application due to Bove and Capretta, where inductive-recursive
definitions arise in the analysis of the termination of functions defined by

9



nested recursion. Finally, we show how universes a la Tarski arise as special
kinds of inductive-recursive definitions. More generally, as shown by Dyb-
jer and Setzer, inductive-recursive definitions subsume a variety of powerful
universe constructions, and greatly increase the proof-theoretic strength of
constructive type theory.

12 Randomized Algorithms in Type Theory

Christine Paulin-Mohring, Université Paris Sud, Orsay (F)

with Philippe Audebaud, ENS Lyon

and Richard Lassaigne, Université Paris 7

We study how to specify and prove randomized algorithms in type theory.
Our goal is to build an environment for reasoning on randomized algorithms
on top of the Coq proof assistant. This work presents a shallow embedding
of a functional language with randomized constructions into type theory and
a set of rules to analyse the probabilistic behavior of programs expressed in
this language.

It is known that there is a natural representation of randomized pro-
grams constructions as operations on distributions on the state. Instead
to interpret an imperative program as a function from state to state, it be-
comes a function from distribution on state to distribution on state. Pre and
post conditions are generalised to real-valued functions on state, with val-
ues in the segment [0,1]. The fact that a program satisfies a certain pre and
post-condition is generalised to the fact that for any input distribution, the
measure of the precondition is less than the measure of the post-condition
for the output distribution of the program. The purpose of this talk is to
show how to apply this technics for doing an interpretation of functional
randomized algorithms inside a pure functional type theory. We show that
the interpretation of programs corresponds to a monadic transformation
(τ → (τ → [0, 1]) → [0, 1]). We discuss a possible representation of [0,1]
in type theory which enjoys the expected properties. We finally propose a
system for reasoning on randomized programs.

13 First-Class Polyvariant Functions, Co-Arity
Raising, and Threaded Specialization

Peter Thiemann, Universität Freiburg, Freiburg (D)

Tag removal is a transformation that eliminates unnecessary type tags at
runtime. Tag removal is useful by itself to improve performance but it also
plays a central role as a post-pass for partial evaluation of typed languages.

10



It is an important stepping stone to achieve (so-called) Jones-optimal spe-
cialization.

John Hughes has achieved Jones-optimal specialization using type spe-
cialization, which “somehow” removes the tags. We examine the ingredients
of type specialization and identify first-class polyvariant functions, co-arity
raising, and threaded specialization as the essential requirements to achieve
Jones-optimal specialization. We extend a standard partial evaluator with
first-class polyvariant functions, co-arity raising, and threaded specializa-
tion. We demonstrate its ability to achieve Jones-optimal specialization by
specializing a typed interpreter for a simply-typed applied lambda calculus
so that no run-time tagging operations remain in the specialized program.
Hence, we claim that first-class polyvariant functions and co-arity raising
along with threaded specialization perform a task similar to tag removal.

The main technical contributions are the specification of a generalized
binding-time analysis for polyvariant functions and co-arity raising, a struc-
tural operational semantics for the corresponding specializer, and a type
soundness proof of the analysis with respect to the specializer. The lat-
ter proof establishes the correctness of our implementation with respect
to the specification of specialization in the form of a type system. As a
new implementation technique, our partial evaluator makes essential use of
threaded specialization where multiple specializations are started concur-
rently. Hence, our work provides an operational specification of a large and
essential part of Hughes’s type specialization.

14 Programming with Dependent Types:
Perspectives and Problems

Randy Pollack, University of Edinburgh, Edinburgh (GB)

I like programming with dependent types; it allows precise discrimination in
typing. However, there are some problems. Pattern matching, the main tool
for eliminating datatypes in functional programming, causes problems with
type dependency. In the talk I give an example where pattern matching
is intuitive and much more convenient than the usual elimination rule for
a datatype: programming the ‘head’ function for vectors. Then I give a
series of examples of programming with heterogenous association lists that
get more and more difficult. Finally the ‘assoc’ function for heterogenous
association lists with no duplicate labels is so difficult that a new approach
is needed. I show a technique of Conor McBride that works in this example,
and many others, but which lacks a general formulation as yet.

Moral: Equality in intentional type theory is a problem. (Lennart Au-
gustsson can be seen nodding his head in agreement.) Question: Is exten-
sional type theory the answer?

11



15 Pure: A Functional Programming Language
Based on Pure Type Systems

Johan Jeuring, Utrecht University, Utrecht (NL)

with Jan-Willem Roorda

We present a functional programming language based on Pure Type Systems
(PTSs). We show how we can define such a language by extending the PTS
framework with algebraic data types, case expressions and definitions. To
be able to experiment with our language we present an implementation of a
type checker and an interpreter for our language.

PTSs are well suited as a basis for a functional programming language
because they are at the top of a hierarchy of increasingly stronger type sys-
tems. The concepts of ‘existential types’, ‘rank-n polymorphism’ and ‘de-
pendent types’ arise naturally in functional programming languages based
on the systems in this hierarchy. There is no need for ad-hoc extensions to
incorporate these features.

The type system of our language is more powerful than the Hindley-
Milner system. We illustrate this fact by giving a number of meaningful
programs that cannot be typed in Haskell but are typable in our language.
A ‘real world’ example of such a program is the mapping of a specialisation
of a Generic Haskell function to a Haskell function.

Unlike the description of the Henk language by Simon Peyton Jones and
Erik Meijer we give a complete formal definition of the type system and the
operational semantics of our language. Another difference between Henk
and our language is that our language is defined for a large class of Pure
Type Systems instead of only for the systems of the lambda-cube.

16 Explicit Subtyping in Dependently Typed
Programming

Thorsten Altenkirch, University of Nottingham, Nottingham (GB)

I introduce a notion of subtyping which is a specialisation of the Pi-type,
the inhabitants of such types are called coercions. Essentially coercions
are eta-long forms of the identity or may refer to other or hypothetical
coercions. Subtypings are propositional, i.e. there is at most one coercion,
hence coherence holds automatically. I also discussed how subtyping for
product types can be derived from subtyping for coproduct types.

This is related to Zhaohui Luo’s coercive subtyping. However, one im-
portant difference is that we restriuct subtypings such that extensionally
there is at most one coercion between any two types.

12



17 Programmable Pattern Analysis (or ‘Greening
the Left’)

Conor McBride, University of Durham, Durham (GB)

My doctoral work equips the dependently typed functional programmer with
a translation from structurally recursive programs presented in a pattern-
matching style to programs expressed in terms of the basic elimination op-
erators with which inductive datatypes are traditionally equipped. This
translation exploits the fact that dependently typed elimination operators
resemble induction principles, explicitly giving the constructor pattern be-
ing analysed in each case. By contrast, fold operators in Hindley-Milner
languages make no obvious connection between the types of the functions
passed in and the patterns to which they correspond.

In this talk, joint work with James McKinna, I propose to take the
pattern-specific types of elimination operators as specifications of the com-
ponents from which allowable systems of patterns may be constructed, with
the semantics of the resulting programs being given by whatever implements
those operators. As well as supporting the analysis by constructors (which I
colour red), available ‘for free’ with each datatype, we may now specify and
implement admissible notions of pattern, putting defined (green) symbols
on the left-hand sides of programs. The intuitive first-order style of pro-
gramming with patterns thus acquires a new compositionality, generalising
and giving a direct semantics to Wadler’s proposed notion of ‘view’.

Of course, in order to use a derived notion of matching, we must write
the (usually recursive) higher-order function which implements it. By ex-
ploiting the same translation from pattern matching programs to operator
applications, these operators themselves may also be presented in a first-
order style.

On a technical level, this work shows that dependent types give us the
leverage we need to extend the analytical power of a programming language
simply by programming in it. More widely, it suggests that we should be
prepared to learn afresh how to write programs, and how to choose which
programs to write.

13


	Principal Typings Demystified: What They Are, Why You Want Them, and Why Your Type System Doesn't Have Them
	Rules for Final Coalgebras in Dependent Type Theory
	A Type System for Certified Binaries
	Generic Unification Generalized, or Datatypes Parameterized over Typerecords
	Designing Reliable, High-Performance Networks with the Nuprl Proof Development System
	PAL+: A Lambda-free Logical Framework
	MLF: Raising ML to the Power of System F
	Hindley-Milner with Local Constraints:Extending Type Inference the Easy Way
	Dependent Types in Type-DirectedPartial Evaluation
	Polymorphic Lemmas and Definitions inLambda Prolog and Twelf
	Inductive and Inductive-Recursive Definitions in Dependent Type Theory
	Randomized Algorithms in Type Theory
	First-Class Polyvariant Functions, Co-ArityRaising, and Threaded Specialization
	Programming with Dependent Types:Perspectives and Problems
	Pure: A Functional Programming Language Based on Pure Type Systems
	Explicit Subtyping in Dependently TypedProgramming
	Programmable Pattern Analysis (or `Greening the Left')

