
Report of Dagstuhl Seminar 02481
Programming Multi Agent Systems based on Logic

[25/11/02 → 29/11/02]

Juergen Dix† Michael Fisher‡ Yingqian Zhang†

† Department of Computer Science, University of Manchester, U.K.
‡ Department of Computer Science, University of Liverpool, U.K.

6th December 2002

1 Nature and importance of the subject

Multi-agent systems are set to be the key technology for software organisation during the
next decade. While there have already been a number of multi-agent systems developed,
the programming technology available for constructing such systems is relatively imma-
ture. Hence, there is a need for a powerful, general purpose programming technology for
multi-agent systems.

The intention of this seminar is to bring together the leading researchers in these areas
and to foster interaction between the various groups and thus get a better understanding
of the ways in which multi-agent systems may be programmed in the future. As well as
targeting logical approaches, a key element is to consider the requirements for efficient
systems scaling within real world applications.

Over many years, work on computational logic has spawned research areas such as
knowledge representation (KR), nonmonotonic reasoning (NMR), automated deduction
(AR), and deductive databases (DDB). Each of these can be seen as an essential compo-
nent within multi-agent systems, as agents need to

• describe the world (KR),

• reason somehow about how the world behaves (AR),

• decide in the light of uncertain information (NMR), and

• deal with massive data stored in heterogeneous formats (DDB).

1



In parallel, work within the multi-agent systems community has involved developing,
often via logic, concepts concerned with communication languages and distributed com-
putation (CC), cooperation and teamwork (TW), and the dynamic development of agent
organisations (ORG). Again, each of these aspects can be seen as being required in com-
plex multi-agent systems, as agents need to communicate with other distributed agents
(CC), cooperate with other agents in order to achieve some goal (TW), and evolve, dy-
namically, organisational structures appropriate to the particular situation (ORG).

2 Goals of the Seminar

The seminar was set up in a way to allow ample time for discussions. We restricted the
presentations to 30-35 minutes and allowed 10-15 minutes time for discussion after each
presentation. This concept allowed for four talks in the morning and two talks after lunch.

We also set up four working groups: (1) Programming negotiation in agents, (2) Pro-
gramming deliberation/rationality in agents, (3) Information/Data management via logic-
based agents, (4) Programming cooperation in agents. Participants had been allocated to
these groups three weeks before the seminar started. Each working group was chaired by
two senior researchers1 who contacted the participants and distributed material before the
seminar. The groups met on Monday and Tuesday from 4-6 pm.

The idea behind these working groups was:

1. to identify key exemplars/problems that are relevant to that area;

2. to describe these exemplars/problems concisely/abstractly (can some of them be
used as benchmarks/prototypical examples to check particular frameworks against?);
and

3. to find out if, and to what extent, logic-based programming of multi-agent systems
is useful for solving these problems.

Results were presented on Thursday, where all participants met from 4-6 pm.

An ambitious outcome that we aimed for was

A set of challenge problems/exemplars for logic-based programming of multi-
agent systems. In addition, some criteria to determine whether a logic-based
approach is useful or not. Or a list of problems where other methods are
superior.

1With the exception of Working Group 4, where one of the co-chairs dropped out at the last moment.

2



3 Outcomes of the Seminar

A homepage for the seminar has been set up, at http://www.cs.man.ac.uk/
˜zhangy/dagstuhl, containing all the presentations, the results of the working groups,
and, last but not least, some photos of our official excursion: a wine tasting in Riol. As
can be seen from the programme of presentations available on that web site, the semi-
nar contained a wide variety of high-quality talks. Many participants commented on the
excellent programme.

The working group idea generally worked well, with the groups often meeting outside
their scheduled times. While the overall goal of the groups was perhaps too ambitious
(after just two meetings), some interesting results have already emerged. We are currently
trying to get the groups to continue their work (and, indeed, most seem keen) and hope
that something useful and publishable will come out of it.

Following interactions during the seminar, it was decided to propose a new workshop
on Languages, Tools and Techniques for Programming Multi-Agent Systems for AAMAS
2003 in Melbourne, Australia. This event is the most important conference on agent-
based systems and is held annually. Over 12 seminar participants are now involved in the
programme committee for this proposed workshop, and the time at Dagstuhl allowed us
to work together on the application.

It has also been decided by several participants of the seminar to set up a steering com-
mittee for organising and continuing the CLIMA workshop series (Computational Logic
in Multi-Agent Systems), which is closely related to the topic of the seminar.

Another important outcome of the seminar was to develop the details of a special issue of
Annals of Mathematics and Artificial Intelligence on the topic of “Logic-Based Agent Im-
plementation”. Again, interactions at the seminar led to the publication of the call for pa-
pers for this initiative; see http://www.csc.liv.ac.uk/˜michael/LBAI03.

3



4 Schedule

Monday 25th November

08:45 - 09:00 Juergen Dix and Michael Fisher
Welcome and Introduction

09:00 - 10:30 Joris Hulstijn
Multi-Agent Interaction Protocols and Dialogue Games

Chair: Renate Schmidt Paolo Torroni
A Logic-based Approach to Negotiation Dialogues

10:45 - 12:15 João Alexandre Leite
Languages of Updates

Chair: John-Jules Meyer Chiara Ghidini
Programming Individual Rational Agents

14:00 - 15:30 Amal El Fallah Seghrouchni
CLAIM: Computational Language for Autonomous, Intelligent
and Mobile Agent

Chair: Ulrich Hustadt Michael Schroeder
Arguments and Misunderstandings: A Fuzzy Approach
to Conflict Resolution in Open Systems

16:00 - 18:00 Working Group Discussion

Tuesday 26th November

09:00 - 10:30 Michael Fink
Answer Set Programming for Information Agents

Chair: Juergen Dix Yingqian Zhang
Monitoring Agents

10:45 - 12:15 Wenjin Lue
Adversarial Planning in Multiagent Systems based on Graphplan

Chair: Thomas Eiter Cees Witteveen
A Resource Logic for Multi-Agent Plan Merging

14:00 - 15:30 Viviana Mascardi
A Survey and Discussion of Logic-Based Languages to Model
and Program Intelligent Agents

Chair: James Harland Maurizio Martelli
CaseLP: A Prototyping Environment for Heterogeneous Agent Systems

16:00 - 18:00 Working Group Discussion

4



Wednesday 27th November

09:00 - 10:30 Benjamin Hirsch
Organising Logic Based Agents

Chair: Cees Witteveen Renate A. Schmidt
Agent Dynamic Logic

10:45 - 12:15 John-Jules Meyer
Agent programming in Dribble: from beliefs to goals with plans

Chair: Chiara Ghidini Mehdi Dastani
Programming the Deliberation Cycle of Cognitive Agencies

14:00 Photo Session (in front of chapel)
15:30 - 22:00 Excursion (Wine tasting)

Thursday 28th November

09:00 - 10:30 Ullrich Hustadt
Scientific Benchmarking for Agent-Method Logics

Chair: Katsumi Inoue Ken Satoh
Speculative Computation in Multi-Agent System

10:45 - 12:15 Frieder Stolzenburg
Specification and Analysis of Multi Agent Systems

Chair: Chiaki Sakama Oliver Obst
Diagnosis in Simulated Soccer

14:00 - 15:30 Katsumi Inoue
Speculative Computation by Consequence Finding

Chair: Ken Satoh Chiaki Sakama
Default reasoning in multi-agent systems

16:00 - 18:00
Chairs: M. Fisher and J. Dix Results of the working groups

Friday 29th November

09:00 - 10:30 James Harland
Agents via Mixed Mode Computation in Linear Logic

Chair: João Leite Emil Weydert
Agents and Uncertainty - Induction of preferences

10:45 - 12:15 Guido Boella
Normative Multi Agent Systems

Chair: Michael Fisher Rafael Bordini
Progress in BDI Logic Programming with AgentSpeak(L)

5



Collected Abstracts

Multi-Agent Interaction Protocols and Dialogue Games
by Joris Hulstijn

In an open and dynamic environment like the Internet, interaction protocols need to be
defined and reasoned about in a more flexible way. This paper proposes a methodology
for the design and verification of flexible interaction protocols for agent communication.
The method combines dialogue games, which constitute rules that indicate if a sequence
of dialogue acts can be called coherent, with an extended version of Veltman’s update
semantics, in which the semantic content of each dialogue act is interpreted as an update
of a particular information state. We define updates for the semantic content of questions
and answers and of proposals, counterproposals and suggestions. Formal coherence rela-
tions are presented for dialogue games of cooperative information exchange and a version
of negotiation.

A Logic-based Approach to Negotiation Dialogues
by Paolo Torroni

Negotiation for multi-agents is a way to reach an agreement on topics of common interest.
Dialogue is a way to perform negotiation among two parties. We present a framework for
agent dialogue and negotiation, based on Abductive Logic Programming (ALP).

The framework is based on an existing architecture for logic-based agents, and extends
it by accommodating dialogues for negotiation. In particular, the agent knowledge rep-
resentation is mapped into an abductive logic program. The framework comes together
with an execution model, which includes an agent life cycle la Kowalski-Sadri, com-
bining reactivity with rationality, and abductive reasoning capabilities in the agents. We
present the framework in the context of resource reallocation.

In this presentation, we outline the agent knowledge representation, the negotiation lan-
guage, the protocols followed by agents that engage in a dialogue, the concept of policies
expressed by dialogue constraint, and we show a correspondence between this framework
and ALP. We present some examples of agents, characterized by having different policies.

We define the notion of sequences of dialogues for solving a resource reallocation prob-
lem, and finally we introduce the idea of agents with multiple negotiation policies, asso-
ciated with the notion of negotiation stages. As agents step through a sequence of stages
they will have to do more ’thinking’ and disclose more about themselves. If one stage
fails to produce a deal amongst the agents, they may agree to move to the next stage where
there is a better chance of a mutually agreeable deal.

6



We conclude by giving some formal results about the negotiation framework. Such results
may apply in the general case of abductive agents or in the specific case of some classes of
agent systems. They include: ability of the agents to produce dialogues, conformance of
policies to protocols, termination, duration, and convergence of the negotiation process,
ability to solve resource reallocation problems, classes of problems that can be solved by
specific policies, and subsumption of policies.

Languages of Updates
by João Alexandre Leite

Logic programming has often been considered less than adequate for modelling the dy-
namics of knowledge changing over time. In this talk we take a guided tour of recent
developments towards overcoming such drawback. Starting with Dynamic Logic Pro-
gramming (DLP), we go through the Language of Dynamic Updates (LUPS), and the
Knowledge And Behaviour Update Language (KABUL), to finally reach a simple though
quite powerful approach to modelling the updates of knowledge bases expressed by gen-
eralized logic programs, by means of a new language, christened EVOLP (after EVOlving
Logic Programs). The approach was first sparked by a critical analysis of previous efforts
and results in this direction, and aims to provide a simpler, and at once more general, for-
mulation of logic program updating, which runs closer to traditional logic programming
(LP) doctrine. From the syntactical point of view, evolving programs are just generalized
logic programs (i.e. normal LPs plus default negation also in rule heads), extended with
(possibly nested) assertions, whether in heads or bodies of rules. From the semantics
viewpoint, a model-theoretic characterization is offered of the possible evolutions of such
programs. These evolutions arise both from self (or internal) updating, and from external
updating too, originating in the environment. This formulation sets evolving programs
on a firm basis in which to express, implement, and reason about dynamic knowledge
bases, and opens up a number of interesting research topics with great applicability to
Multi-Agent Systems.

Programming Individual Rational Agents
by Chiara Ghidini

In this talk we introduce a logical model of rational agency incorporating the key no-
tions of ability, (bounded) belief, and confidence, the last of these capturing a flexible
motivational attitude. Since the logical basis we propose is relatively simple, formal de-
scriptions are amenable to both direct execution and formal verification. In addition, we
provide two examples characterising aspects of a rational agent that uses the variabil-
ity of resource bounds, and the motivational attitude of confidence in order to act in a
sophisticated way.

7



CLAIM: A Computational Language for Autonomous,
Intelligent and Mobile Agents

by Amal El Fallah-Seghrouchni and Alexandru Suna

This talks proposes a language called CLAIM as a Computational Language for Au-
tonomous Intelligent and Mobile agents.

CLAIM allows to design Multi-Agent Systems (MAS) that support both stationary and
mobile agents. Agents designed thanks to CLAIM are endowed with cognitive capabili-
ties (e.g. reasoning), are able to communicate with others (send and receive several kinds
of messages) and are mobile.

The primitives of mobility are inspired from the ambient calculus.

The language CLAIM is supported by a multi-platform system (SyMPA) compliant with
the standard MASIF (OMG specifications); i.e. agents can be distributed over several
platforms and can move from one to another with respect to MASIF specifications.

This talks presents the main features of our language CLAIM and describes the most sig-
nificant aspects of SyMPA implementation (e.g. the protocols of migration). It goes on to
highlight the expressiveness of our language and discusses its main properties (complete-
ness in particular).

Arguments and Misunderstandings: A Fuzzy Approach to
Conflict Resolution in Open Systems

by Michael Schroeder and Ralf Schweimeier

Expressive knowledge representation will be an important feature of the semantic web.
Facts as represented in a table of a relational database or by RDF can be extended along
three axes:

1. Rules & amp; deduction can be added: the very core of RuleML.

2. Negation can be added to express positive and negative knowledge.

3. Fuzziness can be added to express uncertainty.

How can we reason with these extensions? We will use argumentation as an elegant
mechanism to define the semantics of rules, negation, and fuzziness. Arguments attack
each other and an argument is acceptable if it can be defended against any attack. De-
pending on which kinds of attack and defence we allow a different notion of justified
arguments results. We will present a framework to relate these notions and show which
ones are identical and which ones relate to other approaches such as put forward by Dung,
Prakken and Sartor, and WFSX by Alferes, Damasio, and Pereira. Next we show how to
interpret fuzziness in the light of negation and define an appropriate semantics.

8



With such expressive knowledge representation at hand, can we apply and use it on the
semantic web? The semantic web is open and the use of different ontologies will lead to
misunderstandings, since concept names and predicate arity etc. may mismatch. To this
end, we use our approach and embed fuzzy unification into it. Fuzzy unification unifies
any atoms, but scores their similarity. This enables us to reason in the light of missing
and mismatching terms and predicate names.

Answer Set Programming for Information Agents
by Thomas Eiter and Michael Fink

Today, the search for specific information on the World Wide Web faces several prob-
lems, which arise on the one hand from the vast number of information sources available,
and on the other hand from their intrinsic heterogeneity, since standards are missing. A
promising approach for solving the complex problems emerging in this context is the
use of multi-agent systems of information agents, which cooperatively solve advanced
information-retrieval problems. This requests for providing advanced capabilities, such
as search and assessment of information sources, query planning, information merging
and fusion, dealing with incomplete information, handling of inconsistency, and so on.

In this talk, our focus is on the role which answer set programming techniques can play
in the realization of reasoning capabilities for information agents. In particular, we are
interested to see in how they can be used, extended, and further developed for the needs
of this domain of application. As an example task of information agents we consider the
selection of relevant information sources in automated query answering and we present an
approach for information-site selection, which is based on the answer set programming
paradigm. We report experimental results obtained in a particular application domain,
discuss advantages and drawbacks, and point out possible extensions and open issues.

Monitoring Agents
by Yingqian Zhang, Juergen Dix

joint work with Thomas Eiter, Michael Fink and Axel Polleres

There are many challenges in multi-agent system. Given a task, it is difficult for agent
designers to model/specify a ”proper” multi-agent system. Moreover, there are lots of
uncertainties in MAS due to the dynamic environment, coordination and communication
among agents. If a single agent fails to act on a predefined action, it can bring the whole
system disruption. Thus, it is a critical task to monitor the real-time behavior of MAS. In
our approach, we build a MAS from a viewpoint of system domain, that is, to convert the
modelling problem to the planning problem. We use a planning system to, first, specify
the collaboration of agents in a MAS; then, verify the actual behaviors of the agents.

9



The planning system we are using is ”action language K”, which can formulate a planning
problem based on the given task. We consider monitoring a Gofish MAS as an example
task. According to the plan formulation, a Gofish Post Office MAS has been developed to
simulate the package delivery service. Furthermore, a monitor agent has been modelled,
which exploits DLV K system to obtain a set of plan. Checking the action consistency,
this monitor agent can detect the communication states between Gofish agents.

Adversarial Planning in Multiagent Systems based on
Graphplan
by Wenjin Lue

We study the problem of adversarial planning in the context of multi-agent system envi-
ronments. In this context we present GamePlan, an algorithm that takes into account the
open and unpredictable nature of such environments. Unpredictability manifests itself
here as follows: what an agent assumes to hold at one stage of its interaction with the
environment may change as a consequence of the unpredictable, and possibly adversar-
ial, actions of other agents in that environment; such actions take place at later stages of
the interaction. Gameplan is based on Graphplan, a general purpose and efficient plan-
ner for STRIPS domains, where a plan is a compact structure represented as a graph
specifying the flow of properties holding as a result of various actions taking place in
the environment. Like Graphplan, Gameplan has the property that useful information
for constraining search can quickly be propagated through the graph as it is being built.
Unlike Graphplan, however, Gameplan constructs the planning graph by labelling each
action level with the agent who will eventually execute this action, while the solution
extraction is adapted to one that can be handled by a conditional planer to deal with the
adversarial and uncertain behaviours of other agents in the environment.

A Resource Logic for Multi-Agent Plan Merging
by Mathijs de Weerdt and Cees Witteveen

We discuss a logic-based framework for investigating multi agent plan merging. Us-
ing a multi-sorted language, we distinguish resource predicates and constraint predicates.
Fully instantiated resource predicates are used to express simple resource facts. Con-
straint predicates are used to connect resource predicates and to state conditions that have
to be fulfilled in order to use resource facts. Goals are also expressed using resource and
constraint predicates. An agent has to produce certain resources satisfying goal expres-
sions, given some set of initial resources. To this end an agent is able to use a set of
primitive actions? Actions are schemata that consume and produce resource facts. Plan
schemes are partially ordered sets of actions. Plans are plan schemes where the resources
consumed (inputs) and resources produced (outputs) are fully instantiated. Using a tran-
sition systems semantics we are able to prove that plans behave like actions. We define

10



a plan reduction process as a process where actions are removed from an existing plan
without affecting goal realizability. Plan reduction can be modelled as a serial refinement
process that removes actions without affecting the partial order relation between the re-
maining set of actions. Plan merging in our framework comes down to serial refinement
while taking into account the privacy of the plans of the parties involved. An application
area where this multi-agent plan merging idea can be applied is the improvement of ride
plans in transportation.

A Survey and Discussion of Logic-Based Specification
Languages for Intelligent Software Agents

by Viviana Mascardi

Agent-Oriented Software Engineering (AOSE) is the research field aiming at finding ab-
stractions, languages, methodologies and toolkits for modeling, verifying, validating and
prototyping complex applications conceptualized as Multi-Agent Systems (MASs). A
very lively research area studies how formal methods can be used for AOSE; the ARPEG-
GIO open framework belongs to this area and aims at developing an open framework
where logic-based formal specification languages and logic-based executable languages
can be integrated to provide the means for specifying and prototyping a MAS choosing
the most suitable language for each feature to model and implement. This talk presents a
survey of six logic-based executable agent specification languages that have been chosen
for their possibility to be integrated in the ARPEGGIO framework: Congolog, AGENT-
0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf.
The dimensions along which the languages have been compared are: - Time: is time dealt
with explicitly in the language? Are there operators for defining complex timed expres-
sions? - Sensing: does the language provide the constructs for sensing actions (namely,
actions which sense the environment)? - Communication: are communication primitives
provided by the language? Is it necessary for an agent to know details of another agent’s
implementation in order to communicate with it, or communication takes place on a more
abstract level? - Modularity: Does the language provide constructs for defining modules,
macros and/or procedures? - Concurrency: Does the language allow to model concur-
rency of actions within the same agent? Does it support concurrency among executing
agents? - Nondeterminism: Does the language support nondeterminism? In which way?
- Semantics: Is a formal semantics of the language defined? If yes, which?

CaseLP: a Prototyping Environment for Heterogeneous
Multi-Agent Systems

by Maurizio Martelli

This talk describes CaseLP, an environment for the rapid prototyping of Multi-Agent
Systems (MASs). CaseLP provides the developer with heterogeneous languages for the

11



specification, design and implementation of the MAS components and their interactions,
and an engineering methodology for the realization of the prototype following a sequence
of clear steps. CaseLP agents are characterized by their architecture, the roles they play in
the MAS, the ontologies they understand, their internal program, and their state. CaseLP
offers semi-automatic compilers for implementing executable code starting from the het-
erogeneous specifications of the agents’ components and tools for running and debugging
the resulting prototype. The high-level specification languages range from rule-based
ones to graphical ones to object-oriented ones. One specification language provided by
CaseLP is executable, allowing the early verification and testing of the specification. The
prototype implementation language is based on Prolog, and a graphical user interface is
provided to help the MAS developer to iteratively test, debug, and refine design and im-
plementation choices. CaseLP has been proven useful for engineering MAS prototypes in
application domains ranging from vehicle monitoring to remote video-encoding of mail
pieces, from distributed health-care management to decision support systems. Many of
these applications were developed for industrial partners.

Organising Rational Agents
by Benjamin Hirsch

In this talk we address the task of organising multi-agent systems in order to collectively
solve problems. We base our approach on a logical model of rational agency comprising
a few simple, but powerful, concepts. While many other researchers have tackled this
problem using formal logic, the important aspect of the work described here is that the
logical descriptions of the agents are directly executable using the Concurrent MetateM
framework, allowing the execution of agents described in a combination of temporal,
belief and ability logics. Here, we are particularly concerned with exploring some of
the possible logical constraints that may be imposed upon these agents, and how these
constraints affect the ability of the agents to come together to collectively solve problems.

This is joint work with Michael Fisher and Chiara Ghidini.

Proof Methods for Multi-Agent Systems
by Renate Schmidt and Dmitry Tishkovsky

We propose families of logics which provide formal means for specifying and reasoning
about dynamic aspects (actions), informational aspects (knowledge and belief) and mo-
tivational aspects (wishes, goals, commitments) of agents. One family of logics, called
agent dynamic logics (ADL logics), are based on the combination of propositional dy-
namic logic and propositional modal logics. We consider a number of extensions of ADL
with axiom schemata formalising interactions between knowledge and commitment (ex-
pressing an agent’s awareness of its commitments), and interactions between knowledge

12



and actions (expressing no learning and persistence of knowledge after actions). The de-
ductive systems are proved sound and complete with respect to a Kripke-style semantics.
Moreover, ADL logics have the small model property and are decidable.

In the second part we introduce a family of so-called BDL logics which are based on a
new formalisation and semantics of the test operator of propositional dynamic logic and
a representation of actions which distinguishes abstract actions from concrete actions.
The new test operator, called informational test, can be used to formalise the beliefs and
knowledge of particular agents as dynamic modalities. This approach is consistent with
the formalisation of the agents’ beliefs and knowledge as K(D)45 and S5 modalities. It
also avoids an unwanted side-effect of the interaction of knowledge operators with the
classic test operator encountered in ADL logics. Properties concerning the preservation
of informativeness, truthfulness and belief are proved for a derivative of the informational
test operator. It is shown that common belief and common knowledge can be expressed
in BDL logics. As a consequence, these logics are more expressive than propositional
dynamic logic with an extra modality for belief or knowledge. However, the logics are
still decidable and in 2EXPTIME. Versions of the considered logics express natural ad-
ditional properties of beliefs or knowledge and interaction of beliefs or knowledge with
actions. A simulation of PDL can be constructed in one of these extensions.

Agent Programming in Dribble: from Beliefs to Goals Using
Plans

by John-Jules Meyer (joint work with B. van Riemsdijk and W. van der Hoek)

To support the practical development of intelligent agents, several programming lan-
guages have been introduced that incorporate concepts from agent logics: on the one
hand, we have languages that incorporate beliefs and plans (i.e., procedural goals), and
on the other hand, languages that implement the concepts of beliefs and (declarative)
goals. We propose the agent programming language Dribble, in which these features of
procedural and declarative goals are combined. The language Dribble thus incorporates
beliefs and goals as well as planning features. The idea is, that a Dribble agent should be
able to select a plan to reach a goal from where it is at a certain point in time. In order
to do that, the agent has beliefs, goals and rules to select plans and to create and modify
plans. Dribble comes with a formally defined operational semantics and, on top of this
semantics, a dynamic logic is constructed that can be used to specify and verify properties
of Dribble agents. The correspondence between the logic and the operational semantics
is established.

13



Programming the Deliberation Cycle of Cognitive Agencies
by Mehdi Dastani

This talk presents the specification of a programming language for implementing the de-
liberation cycle of cognitive agents. The mental attitudes of cognitive agents are assumed
to be represented in an object language. The implementation language for the deliber-
ation cycle is considered as a meta-language the terms of which denote formulae from
the object language. Without losing generality, we use the agent programming language
3APL as the object language. Using the meta-deliberation language, one can program the
deliberation process of a cognitive agent. We discuss a set of programming constructs that
can be used to program various aspects of the deliberation cycle including the planning
constructs.

Scientific Benchmarking for Agent-Method Logics
by Ullrich Hustadt

In this talk I will first discuss the lack of automated theorem provers for agent logics
and consider for which component logics of well-known agent logics working automated
theorem provers are publicly available. I will then discuss the problem of how we can
assess such theorem provers. I propose a hypothesis-driven design of the empirical anal-
ysis of different decision procedures which we refer to as scientific benchmarking. The
approach is to start by choosing the benchmark problems for which, on the basis of an-
alytical considerations, we expect a particular decision procedure to exhibit a behaviour
different from another decision procedure. Then empirical tests are performed in order
to verify the particular hypothesis concerning the decision procedures under considera-
tion. As a case study, I apply this methodology to compare different decision procedures
for propositional temporal logic. We define two classes of randomly generated temporal
logic formulae which we use to investigate the behaviour of two tableaux-based temporal
logic approaches using the Logics Workbench, a third tableaux-based approach using the
STeP system, and temporal resolution using two provers called TRP and TRP++.

Speculative Computation in Multi-Agent System
by Ken Satoh

In this talk, we present a method of problem solving in multi-agent systems when com-
munication between agents is not guaranteed. Under incomplete communication envi-
ronments such as the Internet, the communication might fail and a reply might be signifi-
cantly delayed. Therefore, research of problem solving under incomplete communication
is very important.

To solve the problem, we propose a method using abduction. Abduction is a way of
reasoning where some hypothesis will be used to complement unknown information. The

14



idea is (1) When communication is delayed or failed, then we use a default hypothesis as a
tentative answer and continue computation (2) When some response is obtained, we check
consistency of the response and the current computation. If the response is consistent with
the current used hypothesis, we continue the current computation; otherwise, we discard
the current computation and seek another alternatives.

We call this process ”speculative computation”. In this talk, we give a method for specu-
lative computation and prove correctness of this method.

Specification and Analysis of Multi Agent Systems
by Frieder Stolzenburg

In this talk, a framework is introduced, which allows us to express declarative aspects of
multiagent systems by means of (classical) propositional logic and procedural aspects of
these systems by means of state machines (statecharts). Nowadays statecharts are a well
accepted means to specify dynamic behavior of software systems. They are a part of the
Unified Modelling Language (UML). We describe in a rigorously formal manner, how
the specification of multiagent systems in general and its verification by model checking
can be done, integrating different methods from the field of artificial intelligence. As ex-
ample application domain, we will consider robotic soccer.

Using model-based diagnosis in multi-agent systems to make
assumptions about spatial properties

by Oliver Obst

In this talk we present a method to build a hypothesis on the condition of the environment
in which a robotic multi-agent team moves. Initially the robots have a default assumption
about the conditions of the floor and on how moving under these condition works. For
certain parts of the environment however, the default assumption may be wrong and mov-
ing around does not work in the expected way. Now the robotic team builds a hypothesis
on the conditions of the yet unvisited part of the environment, so resources can be saved
by avoiding areas that possibly also contain obstacles.

For a description of the environment and of the observations of the robots, we use propo-
sitional formulae in a way similar to computing a diagnosis for electrical circuits. To
actually compute the hypothesis, we need to compute models of the given set of clauses,
where the extension of the ab-literal is minimal. The description of the environment can
be generated automatically, and the proposed method is flexible so that different kinds of
topologies can be covered.

15



Speculative Computation by Consequence Finding
by Katsumi Inoue

Joint work with Koji Iwanuma

This work is concerned with a multi-agent system which performs speculative computa-
tion under incomplete communication environments. In a master-slave style multi-agent
system with speculative computation, a master agent asks queries to slave agents in prob-
lem solving, and proceeds computation with default answers when answers from slave
agents are delayed. In this work, we first provide a semantics for speculative computa-
tion using default logic. Speculative computation is considered in which reply messages
from slave agents to a master are tentative and may change from time to time. In this
system, default values used in speculative computation are only partially determined in
advance. Next, we propose a procedure to compute speculative computation using a first-
order consequence-finding procedure SOL with the answer literal method. The use of
a consequence-finding procedure is convenient for updating agents’ beliefs according to
situation changes in the world. Then, we further refine the SOL calculus using condi-
tional answer computation and skip-preference in SOL. The conditional answer format
has a great advantage of explicitly representing how a conclusion depends on tentative
replies and defaults. This dependency representation is important to avoid unnecessary
recomputation of tentative conclusions. On the other hand, the skip-preference method
has the great ability of preventing irrational/redundant derivations. Finally, we imple-
mented a mechanism of process maintenance to avoid duplicate computation when slave
agents change their answers. As long as actual answers from slave agents do not conflict
with any previously encountered situation, the obtained conclusions are never recom-
puted. We applied the proposed system to the meeting-room reservation problem to see
the usefulness of the framework.

Default and Cooperative Reasoning in Multi-Agent Systems
by Chiaki Sakama

A multi-agent system (MAS) consists of agents which generally have incomplete infor-
mation as individuals. In artificial intelligence a single agent performs default reasoning
in face of incomplete information. In a multi-agent setting, however, the situation is bit
different from the case of a single agent. There are two different sources of incomplete
information in a multi-agent environment. One is due to incomplete belief with respect
to an agent’s internal world, and the other is due to incomplete knowledge about its ex-
ternal world. In the former case an agent can perform default reasoning by itself, while
in the latter case an agent should perform cooperative reasoning with other agents. To
realize default and cooperative reasoning in MASs, it is necessary to distinguish differ-
ent sources of incompleteness which may arise in a knowledge base. In this study, we
represent an agent’s knowledge base by logic programming, and introduce a framework
of default and cooperative reasoning for MASs. We first provide a declarative semantics

16



of an MAS using the notion of belief sets. Belief sets characterize the mental state of
an agent and distinguish different types of incompleteness which may arise in an MAS.
Next we provide a proof procedure for MASs, which solves a given query by default and
cooperative reasoning in a top-down manner. The procedure is sound under the belief set
semantics when an agent’s knowledge base is given as a stratified normal logic program.
We discuss further extensions and optimization issues.

Agents via Mixed Mode Computation in Linear Logic
by James Harland

Agent systems based on the Belief, Desire and Intention model of Rao and Georgeff have
been used for a number of successful applications. However, it is often difficult to learn
how to apply such systems, due to the complexity of both the semantics of the system
and the computational model. In addition, there is a gap between the semantics and the
concepts that are presented to the programmer. In this paper we address these issues by
re-casting the foundations of such systems into a logic programming framework. In par-
ticular we show how the integration of backward- and forward-chaining techniques for
linear logic provides a natural starting point for this investigation. We discuss how the
integrated system provides for the interaction between the proactive and reactive parts of
the system, and we discuss several aspects of this interaction. In particular, one perhaps
surprising outcome is that goals and plans may be thought of as declarative and proce-
dural aspects of the same concept. We also discuss the language design issues for such
a system, and particularly the way in which the potential choices for rule evaluation in a
forward-chaining manner is crucial to the behaviour of the system.

Agents and Uncertainty - Induction of preferences
by Emil Weydert

Uncertainty is a major issue for real-world agents, especially in a multi-agent context.
However, the classical decision-theoretic paradigm - maximum expected utility - is not
directly applicable because the requirement of a unique probability and utility distribu-
tion is quite demanding. In fact, we cannot expect to summarize complex mental states,
confronted to highly heterogeneous incoming information, by simple valuations. That’s
why we propose a two-stage process, where the complex informational and motivational
structures are first mapped to a simplified partial representation to which we may then
apply a suitable kind of decision-theoretic strategy.

We illustrate this approach with a logical framework based on a logic of histories, of
conditional beliefs (with a quasi-probabilistic ranking semantics) and of conditional de-
sires (with a standard utility semantics). In the cognitive deliberation step, we start with
nonmonotonic conditional completion procedures, before we apply a further defeasible

17



inference notion to extract the preferences, which specify the actions (in our framework).
Canonical ranking construction strategies have turned out to be reasonable and useful in
this context. A major advantage of this approach is that it allows us to combine the quan-
titative and the qualitative perspective in a flexible way.

Normative Multi Agent Systems
by Guido Boella

In this presentation paper sanction-based obligations are formalized in a qualitative de-
cision theory. In particular, we formalize an agent who attributes mental attitudes such
as beliefs, goals and desires to the normative e.g. legal, moral system which creates
and controls its obligations. The wishes (goals, desires) of the normative system are the
commands (obligations) of the agent. The agent reasons about what counts as a violation
and when and which sanctions are applied. The agent behavior is determined by its inter-
pretation of the obligations, as well as by its agent type. Since the agent is able to reason
about the normative system behavior, our model accounts for many ways a norm can be
violated without the risk of being sanctioned.

Progress in BDI Logic Programming with AgentSpeak(L)
by Rafael H. Bordini

In this talk, I overview recent work that has been done on AgentSpeak(L), a BDI agent-
oriented logic programming language. The first strand of this work is on extensions
of AgentSpeak(L) aimed at turning it into a more practical programming language; we
call the extended language AgentSpeak(XL). In particular, it allows the use of decision-
theoretic task scheduling for the automatic generation of efficient intention selection
functions. An interpreter for this language has been implemented. We then overview
our framework for proving BDI properties of AgentSpeak(L) agents based on its opera-
tional semantics. This framework has been used to show which of the asymmetry thesis
principles are satisfied by AgentSpeak(L) agents. The most recent strand of work is on
algorithmic verification for AgentSpeak(F) agents, a restricted version of AgentSpeak(L)
to ensure that finite state models of such agents can be generated. We can then automat-
ically translate AgentSpeak(F) agents into the model specification languages of existing
LTL model checkers. We also convert specifications written in a simplified form of BDI
logic into LTL, so that we can use model checking for the verification of AgentSpeak(F)
multi-agent systems according to BDI specifications. I conclude the talk by mentioning
ongoing and future work.

18


