J. Knoop (TU Wien, AT), J. Lee (Seoul National Univ., ROK), S.
Midkiff (Purdue Univ., US), D. Padua (Univ. of lllinois, US)
(Editors)

Hardware and Software Consistency Models:
Programmability and Performance

Dagstuhl Seminar 03431 — October 19 to October 24, 2003
Dagstuhl-Seminar-Report No. 399

SCHLOSS DAGSTUHL

INTERNATIONALES
BEGEGNUNGS-

UND FORSCHUNGSZENTRUM
FUR INFORMATIK




ISSN 0940-1121

Herausgegeben von IBFI gem. GmbH, Schloss Dagstuhl, 66687 Wadern,
Germany.

Das Internationale Begegnungs- und Forschungszentrum fiir Informatik
(IBFI) Schloss Dagstuhl ist eine gemeinniitzige GmbH. Sie veranstal-
tet regelmaRig wissenschaftliche Seminare, welche nach Antrag der
Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium
mit personlich eingeladenen Géasten durchgefiihrt werden.

Gesellschafter:

— Gesellschaft fiir Informatik e.V. — Bonn
— TH Darmstadt

— Universitat Frankfurt

— Universitat Kaiserslautern

— Universitat Karlsruhe

— Universitat Stuttgart

— Universitat Trier

— Universitat des Saarlandes

ii



03431 — Hardware and Software Consistency Models: Programmability and Performance

Motivation

Hardware consistency models define the order that events that occur on one processor,
or memory subsystem, appear to occur to other processors or memory subsystems. We
use Memory model to refer to the equivalent software concept. A memory model can
be defined as part of the semantics of the programming language. The memory model
defines the order that memory references in thread of a program, written in the language,
should appear to other threads, written in the same language. A memory model defines
the order that memory references in a thread of a computer program are mandated
by the semantics of a language or other piece of system software to appear to occur
in other threads in the computer program. Until recently, these issues were largely the
province of specialists who designed memory subsystems and processor cache protocols,
implementors of operating systems, and database architects. The design of consistency
and memory models was skewed towards providing high performance at the expense
of usability or programmability. There are at least two contributing factors for this.
First, processors were expensive, and never quite fast enough, requiring performance
be maximized. Second, multithreaded programming was used almost exclusively in the
design of widely used components such as database systems and operating systems. Thus
very labor intensive approaches to programming these consistency models was acceptable.
Most ordinary programmers never had to deal with memory consistency issues.

The widespread availability of explicitly parallel programming targeting shared mem-
ory systems has changed this equation. In particular, Java, OpenMP, C+#, P-Threads,
and distributed shared memory systems have forced programmers to be aware of the un-
derlying semantics of the memory model. And, in all of these systems, poor performance,
incorrect programs and lack of portability can result from an improper understanding of
the underlying model. Thus knowledge that was formerly required of a relatively small
number of specialists is now required of large numbers of programmers in fact, required
of the typical programmer. Given that the systems written by these typical program-
mers are not as widely disseminated as the systems written by the specialists, the cost
of coping with the vagaries of consistency models is relatively much higher. Moreover, as
the complexity of operating systems and middleware grows, the complexity of hardware
and consistency models and software memory models leads to subtle errors in the code,
degrading software reliability.

These changes in the tradeoffs between programmability and performance in memory
models have sparked renewed research into how to design both consistency and memory
models. Topics of intense interest include

e What are the trends in hardware and software consistency models?

e What is the performance loss associated with moving towards simpler consistency
and memory models? How much loss is acceptable?

e How can hardware consistency models be made simpler for programmers with ac-
ceptable losses in performance?



03431 — Hardware and Software Consistency Models: Programmability and Performance

e What compiler techniques can be used to mask the complexity of hardware con-
sistency models, or mask the performance costs of simpler hardware consistency
models?

e How can memory models be designed to allow programmers to more easily write
correct programs? What are the costs of doing this in terms of missed compiler
optimization opportunities and additional synchronization overhead in modern out-
of-order processors?

e Can compile-time analyses and optimizations mitigate some of these costs, and if
so how?

e Are heuristic approximations to expensive compile-time analyses sufficient?

e What idioms and software engineering tools can be used to increase programma-
bility in the face of complex memory models?

We have two large goals for the seminar. First, we would like to foster discussions
about the usability and performance requirements of consistency models in the different
areas where these are important issues (architecture and hardware, databases, and pro-
gramming languages) and give knowledgeable members of the fields the opportunity to
learn from the experiences of their colleagues in different fields. From these discussions,
we hope to come to a better understanding of the tradeoffs and possibilities thatcan
be exploited by researchers and practitioners in each of these areas, and to come up
with important research questions that will yield broadly applicable results. Because of
Dagstuhl’s schedule allowing for mix of unstructured discussion in a congenial environ-
ment and more formal presentations, we see it as an ideal setting for bringing together
members of these different communities to tackle these diffcult issues.



03431 — Hardware and Software Consistency Models: Programmability and Performance

Participants

— Adve, Sarita (University of Illinois — Urbana)

— Antoniu, Gabriel (IRISA — Rennes)

— Arvind, (MIT — Cambridge)

— Boehm, Hans J. (HP Labs — Palo Alto)

— Bougé, Luc (IRISA — Rennes)

— Chatterjee, Siddhartha (IBM TJ Watson Research Center — Yorktown Heights)
— Choi, Jong-Deok (IBM TJ Watson Research Center)

— Cintra, Marcelo (University of Edinburgh)

— Cohen, Albert (UPMC — Paris)

— Falsafi, Babak (Carnegie Mellon University — Pittsburgh)
— Hill, Mark D. (University of Wisconsin — Madison)

— Horspool, Nigel (University of Victoria)

— Kessler, Christoph W. (Linkoping University)

— Knoop, Jens (TU Wien)

— Lee, Jaejin (Seoul National University)

— Manson, Jeremy (University of Maryland — College Park)
— Midkiff, Samuel P. (Purdue University)

— Moreira, José (IBM Systems and Technology Group)

— Padua, David (University of Illinois — Urbana)

— Petersen, Paul (Intel Corporation — Champaign)

— Pugh, William (University of Maryland — College Park)
— Puntigam, Franz (TU Wien)

— Rauchwerger, Lawrence (Texas A&M University)

— Schuster, Assaf (Technion — Haifa)

— Sura, Zehra N. (University of Illinois — Urbana)

— von Praun, Christoph (IBM TJ Watson Research Center — Yorktown Heights)
— Wong, Chi-Leung David (University of Illinois — Urbana)
— Yelick, Katherine (University of California — Berkeley)



