Design for Time—Predictability *

Lothar Thiele Reinhard Wilhelm
ETH Zirich Universitat des Saarlandes
Switzerland Saarbriicken, Germany

April 26, 2004
Abstract

A large part of safety-critical embedded systems has to satisfy hard real-time
constraints. These need sound methods and tools to derive reliable run-time guar-
antees. The guaranteed run times should not only be reliable, but also precise.
The achievable precision highly depends on characteristics of the target architec-
ture and the implementation methods and system layers of the software. Trends in
hardware and software design run contrary to predictability. This article describes
threats to time-predictability of systems and proposes design principles that sup-
port time predictability. The ultimate goal is to design performant systems with
sharp upper and lower bounds on execution times.

1 Acknowledgements

The participants of the Dagstuhl Perspectives Workshop on Design of Systems with
Predictable Behavior have greatly contributed to this article. They were Christoph
Berg, Uwe Brinkschulte, Jakob Engblom, Wolfgang A. Halang, Reinhold Heckmann,
Vesa Hirvisalo, Jozef Hooman, Jan Madsen, Peter Marwedel, Alexander Metzner, Erik
Norden, Peter Puschner, Christine Rochange, Martin Skambraks, Jorgen Steensgaard-
Madsen, Theo Ungerer, Ernesto Wandeler, and Wang Yi. We owe them our thanks for
the fruitful discussions during the workshop.

2 Introduction

Embedded systems can be distinguished from general purpose computing by several
characteristics such as the diversity of the the application domains, the limited available
system resources, and the heterogeneity of the requirements, constraints, specification
and implementation.

For example, embedded systems can be found as tiny nodes within a distributed
sensor network for environmental monitoring. In this case, the limited resources and
constraints mainly concern size, power consumption, computing, communication and
cost. Nevertheless, the whole system involves all layers of abstraction, from computer

*Results from Dagstuhl Perspectives Workshop on ”Design of Systems with Predictable Behavior”, L.
Thiele, R. Wilhelm, November 2003. Work reported herein is supported by ARTIST, the European Net-
work of Excellence in Embedded Systems, and the International Conference and Research Center in Schloss
Dagstuhl.

architecture to distributed operation. Usually, these systems do not impose hard real-
time constraints on the overall system behavior.

On the other hand, there are application domains such as automotive, air trans-
portation, mechatronics, and multimedia processing where there are less constraints
with respect to power consumption and size, but we are faced with high requirements
in terms of time predictability. Not only the correctness of the computations, the avail-
ability and safety of the whole embedded system are of major concern but also the
timeliness of the results. Missing deadlines of events may cause a catastrophic or at
least highly undesirable system failure. For example, in case of automotive, space and
mechatronics, the embedded system interacts with a physical environment that dictates
the necessary speed of executions. In the case of multimedia and contents production,
missing audio or video samples needs to be avoided under all circumstances. At the
same time, the overall embedded system usually contains heterogeneous computing re-
sources, memories, bus systems, operating systems and involves distributed computing
via global communication systems.

Because of cost constraints, there is a tendency to use components that are tailored
to the general purpose computing domain for the design of embedded systems, even
if there are high demands related to time predictability. Unfortunately, this does not
only concern hardware components such as microprocessors, bus systems and com-
munication networks but also software components such as operating systems and
middle-ware concepts. To make things even worse, even design tools and methods
are increasingly taken from the general purpose domain such as compilers, validation
and simulation tools, and design methods such as UML. At the same time, it appears
that approaches to improve the average case behavior of systems are often disastrous
to time predictability. Well known examples in the case of computer architectures are
various forms of caches and advanced speculation techniques to improve instruction
level parallelism.

It is the purpose of the paper to analyse the threats to time predictability, to analyse
the state of the art and to propose design principles that support time predictability. In
this sense, the paper serves as a tutorial and intends to initiate a research discipline that
looks at predictability in a synergistic manner and that involves all levels of abstraction
in embedded system design. Despite of the fact that the paper does not present specific
research results in the usual way, we think that a careful discussion of the notion of
time predictable systems and pointing out major deficiencies in the current state of the
art is of major importance to the embedded systems community.

3 Dé€finitions

The purpose of this section is to agree on the major terms that will be used throughout
the paper. We well deal with time predictability only. Nevertheless one should keep in
mind that a similar investigation could be made with other criteria in mind for which
predictability is of major importance.

In addition, we will abstract an embedded system by using conventional discrete
event notations. In particular, the system under consideration receives events and emits
events. To each event there is associated the time when it occurs and some (unspecified)
object to model data communication. If we would be interested in functional behavior,
we would specify the desired relation between the input and output data objects. In case
of time behavior the desired relation between the timing of input and output events is
given. For example, in a simple case one may require that the time difference between

a specified pair of input and output events may not be larger than a specified deadline.
What is considered to be an event and object very much depends on the respective
level of abstraction. For example, we may talk about the starting of a task on a single
processor and its finishing time, we may talk about starting a distributed algorithm and
when it delivers its results, or we may talk about the time for a memory access.

3.1 Execution Time

In terms of predictability, it will be very useful to define a set of parameters that de-
scribe essential properties. To this end, we will restrict ourselves on a very simple form
of required timing behavior, namely the time interval between a specified pair of events.
These events will be denoted as timing events and the time interval will be denoted as
execution time. Note that not all pairs of events are necessarily critical, i.e. there exist
deadline requirements. The relation between the major quantities are represented in

Cin 1

predictability

A
v

v

w.C. guarantee

> w.c. performance

0 lower best worst upper
bound case case bound

variation of execution time

Figure 1: Representation of the relations between measures related to the predictability
of system architectures.

e \Worst case and best case: The worst case and best case execution time is the
maximal and minimal time interval between the timing events under all admis-
sible system and environment states. In other words, we look at the final system
behavior in terms of the timing between the two events and consider all possible
initial system and environment states and all possible environment and execution
paths. It should be clear that the execution time may vary largely due to different
input data, and interference between concurrent system activities.

e Upper and lower bounds: Upper and lower bounds are quantities that bound the
worst case and best case behavior. These quantities are usually computed off-
line, i.e. not during the run-time of the system. Several methods do exist such as
analysis, simulation, emulation and implementation, see also the later discussion.
Upper and lower bounds are used in order to verify statically, whether the system
meets its timing requirements, e.g. deadlines.

e Statistical measures: Instead of computing bounds on the worst case and best
case behavior, one may also determine a statistical characterization of the run-
time behavior of the system, e.g. expected values, variances and quantiles. Aswe

are interested in time predictability for real-time systems, we will not consider
these models and methods in the paper.

The difference between the upper and lower bounds of the execution time is a
measure for the time predictability of the whole system. In order to classify different
causes for a low (or high) predictability, we need to be more precise on the reasons
for varying time intervals between events. As a precondition, we suppose that the
whole system under consideration is deterministic, i.e. two executions using the same
behavior of the environment and the same initial states will lead to the same timing
behavior.

o Interference: If there is a dependency between the execution time and some
non-observed external behavior, then we will say that the time interval is non-
deterministic with respect to the available information. Therefore, there will be
a difference between the worst case and the best case behavior. If the upper
and lower bounds are computed (or measured) using the same limited knowledge
about the whole system, then we clearly can not achieve a smaller interval be-
tween the upper and lower bounds. An example may be that the execution time
of a task may depend on its input data. Even if there is a simple relation between
input data and run-time, a large variance in computation time may result if we are
blind. Another example is the communication of data packets on a bus in case
of an unknown interference. If looking at the latter example, it becomes clear
that an embedded system can be constructed in a way that is time-insensitive to
interference and reduces this kind of uncertainty, for example by using bus pro-
tocols like TDMA. As a result, a low predictability may be caused by limited
knowledge, i.e. the system implementation is sensitive to relevant information
that is not known or is not easily available at design time.

e Limited analyzability: If there is complete knowledge about the whole system,
then the behavior of the system is determined. Nevertheless, it may be that be-
cause of the system complexity, there is no feasible way of determining close
upper and lower bounds on the execution time. For example, if a microproces-
sor architecture implements techniques like speculation, out-of-order execution,
branch prediction and complex cache replacement strategies, there is currently
no analysis method available that yields close bounds on the execution time.
Again, one could construct computer architectures containing concepts that can
be analyzed more easily.

In summary, limited knowledge about the system environment and the system it-
self may yield a large variance in execution time, thereby decreasing predictability.
In addition, the limited analyzability of system architectures leads to worse bounds
on the execution time. As a consequence, there are two orthogonal but related ways
to improve the time predictability of embedded systems in general: (a) Reducing the
sensitivity to interference from non-available information and (b) matching implemen-
tation concepts with analysis techniques to improve analyzability.

There are several methods to determine bounds of the execution time as defined
above. Besides analytic methods based on formal models one may also consider sim-
ulation, emulation or even implementation. All the latter possibilities should be used
with care as only a finite set of initial states, environment behavior and execution traces
can be considered. As is well known, the corner cases that lead to a worst case or best
case execution time are usually not known and incorrect results may be obtained. The

huge state space of realistic system architectures makes it highly improbable that the
critical instances of the execution can be determined without the help of analytical
methods.

3.2 Predictability, Performance and Guarantees

Despite of the fact that the present paper is devoted to the design of time-predictable
systems, one should keep in mind that the performance in terms of timing is of major
importance also. Therefore, a system implementation that is highly predictable in its
timing but is very slow in computing for its cost can not be considered to be viable.

Our notion of performance is closely related to the execution time. Therefore,
we will distinguish between worst case, best case and average case performance. A
system that is designed to deliver a high average case performance is characterized
by low average case execution times. But as will be seen in the later sections of the
paper, this does not necessarily lead to a high worst case performance or low worst
case execution time. In the contrary, there are many examples where increasing the
average case performance leads to a reduced worst case performance. On the other
hand, systems very often not only need to deliver a high worst case performance for
real-time guarantees but also a high average case performance for other parts of the
application.

In case of hard real-time systems, there is the need of giving either run-time or
design-time guarantees on the worst case execution time. Therefore, we define the
notion of worst case and best case guarantee as the upper and lower bounds of the ex-
ecution time. In summary, we have defined and interpreted the following performance
and predictability measures:

e Predictability: The time predictability of a system is related to the difference
between upper and lower bound on execution time. A low predictability (large
difference between upper and lower bound) is caused by interference and limited
analyzability.

e Performance: The worst case and best case performance are related to the worst
case and best case execution time, respectively. The average case performance
measures the average execution time. Threats to a high worst case performance
are usually caused by interference from unavailable or unknown information
about the system or its environment.

e Guarantee: The worst case and best case guarantee are linked to the upper and
lower bound on the execution time. Small worst case guarantees may be caused
by interference and limited analyzability.

If we look at major system design tradeoffs such as static techniques vs. dynamic
ones, domain specific vs. general purpose designs or run-time vs. design-time tech-
niques, it is not clear at all what the individual impact is on predictability, performance
and guarantees. On the other hand, a detailed knowledge about the dependencies would
be of major importance in terms of designing predictable embedded systems with high
performance.

3.3 System Layers

As will be seen in later sections, these questions arise at all system layers. For the rest
of the paper we will distinguish between them as follows:

e Hardware Architecture: The hardware architecture layer contains all aspects be-
low the instruction set. For example it contains the microprocessor architecture,
1/0 systems, bus and memory structures. Predictability refers to the execution
times of instructions.

e Compiler: The compiler layer relates software programs in a high level language
to the hardware-software interface. We include also the analysis and optimiza-
tion tools conventionally associated to compilers. Timing events are related to
the execution times of single tasks without interference by others.

e Task Level: We suppose that the whole application is partitioned into tasks and
threads. Therefore, the task level refers to operating system issues like schedul-
ing, memory management and arbitration of shared resources. The major ad-
ditional influence with respect to the execution of tasks or whole applications
consisting of several tasks is the interference via task scheduling and shared re-
sources.

e Distributed Operation: Finally, we are faced with applications that run on dis-
tributed resources. The corresponding layer contains methods of distributed
scheduling and networking. On this level of abstraction we interested in end-
to-end deadlines.

One of the observations if looking at threats to predictability that cross-layer issues
play an increasingly role. Therefore, an approach that concentrates on intra-layer ef-
fects needs to be complemented by synergies between layers. This fact is well know
in the arena of optimizing the average case behavior, i.e. the partitioning of schedul-
ing and allocation to the compiler (static methods) on the one hand and the hardware
(dynamic methods) on the other.

4 Threatsto Predictability

As we have seen in the previous section, several orthogonal properties of systems and
system components reduce predictability, in particular when they appear in combina-
tions. Whereas we have been giving a very course classification in terms of analyz-
ability and interference, we will refine such properties in the following and classify
the presented threats according to these categories. At the end of this section, we will
present some experience with systems offering combinations of given and not given
sets of such properties.

Non-deterministic behavior of systems An embedded system works in and con-
trols a physical system mostly called the plant. The plant may or may be available
for analysis. Non-deterministic influence of the plant on the embedded system, e.g.
through sporadic interrupts make predictions of the overall system’s behavior diffi-
cult. Schedulability-analysis methods require at least the knowledge of lower bounds
on the frequency of interrupts. Low precision of these lower bounds and large vari-
ation in the distribution of interrupts contribute heavily to low quality of prediction
and resulting low resource utilization. A major cause of the low predictability in case
of non-deterministic behavior is the sensitivity of a design with respect to interfering
non-deterministic behavior.

High variability of execution times Modern processor features such as caches,
pipelines, and speculation cause a high variability of execution times for individual
instructions, for individual task activations, for context-switch times, and for whole
programs. This high variability, in particular in combination with other undesirable
system properties carries through to overall low predictability.

Non-analyzability of system components Certain system-construction principles
and means make the determination of run-time guarantees impossible because of the
undecidability of the halting problem. However, even for systems with guaranteed
termination the employed analysis methods will work well on systems with restricted
means and fail on unrestricted designs. The question is which methods we consider
for the purpose of the determination of run-time guarantees. There should be no reli-
gious preoccupation for one and against another method. The only criteria are precision
of the results and computational effort needed. Exhaustive simulation of all possible
executions of a system combined with an analysis of their performance is in general
unrealistic. On the other hand, simulation of a restricted subset of potential executions
can in general not deliver safe results. Safety, precision, and tolerable effort need to be
achieved by the chosen methods.

Complexity of designs The methods employed need computational efforts that de-
pends on certain systems parameters. System design should aim at keeping the param-
eters at favorable values.

4.1 Architectural Features

Computer architects traditionally optimize their design towards average-case per-
formance. The processor-memory bottleneck has led to architectures with caches,
pipelines, and control, data, and thread speculation. Experience with several processor
architectures has shown that a number of architectural features are responsible for its
degree of time-predictability [HLTWO03].

Local Non-Determinism Processors behave deterministically, i.e. given a certain ex-
ecution state, the successor state is uniquely determined by this state and any influence
from the processor’s environment, e.g. interrupts, inputs etc. Also the timing behavior
for the execution of the instruction in the given state and for this external influence is
uniquely determined. However, local non-determinism of the timing behavior is in-
troduced by caches, pipelines, speculation. It means that the timing behavior of an
individual instruction can not be determined locally, but depends on the execution his-
tory. This influential history can be arbitrarily long, as in the case of caches, or rather
short, as in the case of pipelines. The mentioned processor components introduce an
increasingly high variability of the execution times of instructions. The range for this
variation stretches from a few machine cycles to several hundred cycles. This variation
of instructions’ execution times may carry over to the execution times of tasks and to
context-switch times.

Interferences Between Processor Components Interference between architecture
components is at the heart of unpredictability at the processor level. It means that
one component’s activity has an effect on another component’s state mostly through
modifications of a shared resource. We will list some examples.

Branch prediction prefetches instructions along a control path before it actually
knows that this path will be taken. It loads these instructions into the instruction cache
if they are not already contained.

Unified data and instruction caches is one particular example of a shared resource.
The unified cache is used both by the fetch stage and the execution stage of the pipeline.
These interact on the cache; instruction fetch may evict data from the cache, and load-
ing data may evict instructions from the cache. In the case of a superscalar pipeline, the
order of memory accesses and cache replacements may not even be clear jeopardizing
precision of cache-behavior prediction.

Register overlays ???

Interferences between processor components are responsible for so-called Timing
Anomalies [LS99]. These are contra-intuitive influences of the (local) execution time
of one instruction on the (global) execution time of the whole program. A locally faster
execution of an instruction can lead to a globally longer execution time of the whole
program or speed up the program by more than this instruction’s speed up. The first
case is critical for the determination of worst-case execution times, because it does not
allow the analysis to continue with a locally favorable assumption. A locally slower
execution may lead to a globally shorter execution time. This analogously is critical
for the determination of best-case execution times. The general case is the following.
An example is the following. The assumption that an instruction is in the instruction
cache, may result in an overall shorter execution time of the program, e.g., if it prevents
a costly branch misprediction.

Timing anomalies necessitate conservative, i.e., upper approximations to the dam-
ages potentially caused by all cases or forces the analysis to follow all possible scenar-
ios.

Unfortunately, as [LS99, Lun02] have observed, the worst case penalties imposed
by a timing anomaly need not be bounded by an architecture-dependent, but program-
independent constant, but may depend on the program size. This is the so-called
Domino Effect. This domino effect was shown to exist for the Motorola PowerPC
755 in [Sch03].

Non-predictable Variability We have described above how variability is caused by
architectural features. This variability does not harm as long as it can be well bounded
for a concrete system. However, it may for principle reasons be hard to control. One ex-
ample for this are systems with virtual memory and translation-lookaside buffers. TLB
misses implemented by linear search or by hashing need not have constant penalties.

Concurrency in Combination with Updating Shared Resources As stated above,
shared resources decrease the chance to predict the behavior. This problem is ag-
graveted by several forms of concurrency, e.g., super-scalarity, out-of-order execution,
and dynamically scheduled multi-threading.

DMA may completely ruin predictability. DRAM refresh can sometimes be amor-
tized over the interval between two refreshs, since it happens independently of program
actions. However, analysis methods have to careful at program points where control-
flow paths are merged, because partially amortized DRAM refreshs may suggest to
chose a wrong worst-case path [AP01].

Implicit Actions Analyses are sensitive against implicit side effects as they are often
created through aliases. A part of the execution state is changed using one name,

and this change is observed through another name. One example for this are memory
mapped registers, i.e., registers that are identified with memory cells.

Stochastic Protocols in Networking Only stochastic guarantees can in general be
given, if stochastic protocols are used in a system.

4.2 Software

Software design and implementation influence system predictability in several ways.
Software may be automatically synthesized from formal specifications. In this case,
the code-synthesis method is responsible for the predictability quality. Software may
be handwritten in an appropriate or inappropriate programming language. The use of
particular features of the language may have a strong influence on system predictability.
The chosen software architecture, e.g., as a static of dynamic set of tasks or structured
around a broker of some middleware will also influence predictability.

Pointers Programs with pointers including pointers to functions are hard to analyze
statically. Data structures built in the heap from dynamically allocated memory cells
in general allow only the prediction of asymptotic execution times. These are of little
use for hard real-time systems.

An indirect call through an unresolvable function pointer, i.e., a function pointer
whose target is not clear to the analysis, has an unknown and therefore maximally
desastrous effect on the execution state. It can decrease precision enormously.

Dynamic Task Creation Dynamically growing sets of tasks do not allow for offline
scheduling and thus for static run-time guarantees. For these reasons, they are usually
forbidden in hard real-time contexts.

Dynamic Method Binding The object-oriented programming style, although attrac-
tive as a software development methodology, introduces dynamics into the execution
time by the dynamic binding of methods to calls. Although in general the class hier-
archy is static and thus the search for the right method is statically bounded, dynamic
dispatch enlarges the variability of execution times.

Garbage Collection (GC) Garbage-collected languages offer strong support for
memory cleanness, e.g., the absence of dangling references and of freeing aliased mem-
ory. However, standard garbage collection methods may block program execution for
quite some time undermining real-time performance. Specific real-time garbage col-
lection methods have been developed [BCRO03], which attempt to spread the GC effort
over the execution time and thus guarantee a bounded response.

Middleware Object-oriented design is often combined with using middleware. A
required service may reside on the same processor as its client or may have to be
loaded from a remote server. The variance of service times will be very large due to
the alternatives of local or global access, network latency, contention etc.

4.3 Task Level

There is a long history in real-time task scheduling. Well developed, and even sup-
ported by (forgotten) programming languages. Examples are as follows:

e Resource sharing, priority inversion

Variation in execution times and context-switch times due to caches

Dynamic non-real-time scheduling

Dynamic task creation

Interrupts

On the other hand, these efforts have not been sufficiently linked to the lower sys-
tem layers such as task level analysis and compilers. In addition, the results on dis-
tributed real-time systems are not directly applicable to embedded systems and there-
fore, also links to upper system layers are still open.

4.4 Distributed Operation
e Distributed real-time systems
e Communication-centric designs
o Different models of computation and communication in one application
e Need for heterogeneous implementations
o High-level design space exploration needs reliable estimation
e Composability required from application domains

e Resource sharing

45 Between layers

Scheduling on several levels There may be several instances of scheduling in a
multi-layered system. Some of it may happen offline if guarantees are to be derived or
if the hardware requires it. Other scheduling will be executed online either by hard-
ware or by scheduler tasks. Viewing layers bottom up, an EPIC or VLIW architecture
requires instruction scheduling to be done by a compiler. In contrast, in a superscalar
architecture, scheduling is done by the hardware. A multi-threaded processor architec-
ture will again perform dynamic scheduling since the threads are not completely in-
dependent, but share resources. The software threads mapped to the processor threads
will also be subject to some scheduler realized in software. Uncoordinated scheduling
on these two levels probably offers the biggest surprises.

e Compiler vs. Hardware Architecture
e Local vs. distributed task scheduling

e Communication and computation

10

Compiler responsible Processor responsible
Architectural concepts | EPIC/VLIW Superscalar
Memory Scratchpad memory Caches
Speculation
Properties:
Focus large small
Available information | only static also dynamic
Complexity in algorithms in hardware
heuristics required high energy costs
Adaptability low high
Heap difficult to analyze
Predictability high low

Figure 2: The static vs. dynamic issue between architecture and compiler

Inter-Level Dependencies Several layers can interfer on shared resources. For ex-
ample, task scheduling may experience varying context-swith costs even for the same
combination of preempting and preempted tasks, because a dynamically scheduled pro-
cessor may have different cache states at preemption points and therefore different
cache reloading costs.

5 Increasing Predictability

Upon first thought, one would expect to find here the negation of all the properties
listed in the introduction of Section 4. However, such a simplistic approach would lead
to constraints on system design non-acceptable for their purposes. A simple micro-
controller without caches and pipelines would have none of the properties discussed in
Subsection 4, but would most likely not deliver the necessary performance. An embed-
ded system not admitting interrupts would often not fit into the physical context it was
designed for.

Successful Research Research, particularly in Europe, has been successful in sev-
eral relevant fields. The problem of WCET determination for single tasks and quite
complex processors has been solved [WETWO04, FHL 01]. Commercial tools are
available. Industrial experience regarding precision, analysis times, and ease of use
is positive. Schedulability Analysis for Non-distributed Targets is very well under-
stood [But97, TBW94]. Modular performance analysis for distributed implementa-
tions of real-time systems has been developed and implemented [?, ?]. The principle
of Time-Triggered Architecture (TTA) enforcing determinsim in the communication
behavior of distributed systems has been brought to industrial maturity. Synchronous
languages, such as Esterel, Lustre, and Signal for the specification of reactive systems
are in routine use in highly safety-critical domains.

5.1 Architecture

LRU caches have not only been shown to have the best behavior in theory, they also
have the best known predictability properties of all cache associative architectures.

11

Higher degrees of predictability can be achieved if static decisions instead of
dynamic decisions are being used. A number of techniques have been developed.
Compiler-Directed Memory Management using scratchpad memory [SWLMO2] orig-
inally developed to decrease energy consumption also increases time predictability.
Predictable behavior can be expected of multi-threaded architectures only if they are
statically scheduled [URi03]. Parallelism instead of speculation is used in EPIC archi-
tectures.

5.2 Software

Model-Based Designh and Code Synthesis Model-based design is frequently used
in embedded systems development. The code synthesized from formal specifications
is often very cleanly structured. This supports its analysis for WCETSs. High precision
can be achieved [TSH*03].

Coding Guidelines Coding guidelines restricting the implementation language to a
disciplined subset are an alternative. A recent survey undertaken by the ARTIST work-
ing group on Timing Analysis [WETWO3] has shown that developers were willing to
adopt coding guidelines.

Specification Formalisms Statecharts, synchronous languages.

5.3 Task Leve
Enforced determinism

e Models of computation

— Ghiotto
— Process networks

e Static scheduling

5.4 Distributed Operation
e Time Division Multiple Access (TDMA)
e Time Triggered Architecture (TTA)

5.5 Combining Layers

The design principle globally asynchronous, locally synchronous (GALS) seems to
support the disciplined designs of synchronous languages on the lower level and the
independent development of a systems’ components on the higher level. It has the po-
tential to offer a homogeneous semantic foundation for systems development [GMO02].

12

6 What’'sMissing?

A new discipline Design for Predictability should be developed. Safety-critical em-
bedded systems should not exhibit surprising behavior. Our main concern in this paper
is Time Predictability. However, predictability in energy consumption is a related and
highly desirable property, in particular for mobile devices. Predictability in space con-
sumption excludes memory-overrun problems on the one side and allows to reduce
system costs, which is of high interest for mass products.

The design rules to be developed concern the design of all systems components, of
the system architecture, and of the coordination between components. They also con-
cern the methods used in implementing systems and the tools used in the development
process.

6.1 Estimation

Performance analysis including computation and computation.

Rough estimates on the task level The current and probably also the future system
development processes [con04] require that rough estimates of the timing behavior
of single tasks be determined in order to choose a provisional task distribution, which
may be corrected later, when all system components are available and the full hardware
specification is known.

6.2 Integration of WCET

Currently, WCET tools work more less in a stand-alone fashion. Little integration
is available with preceding passes such as code synthesis and compilation and with
subsequent passes such as schedulability or performance analyses. This may lead to a
considerable loss in precision.

With performance analysis

Schedulability analysis requires knowledge of the WCETS of the tasks to be sched-
uled. On modern processors with caches and pipelines the high variability of execu-
tion times carries over to the context-switch times. These may vary depending on the
amount of useful state when a task is preempted. More precisely, task T, preempting
task Ty may destroy more of the execution state of T than task Tz preempting Ty. This
damage to the execution state, e.g. cache contents, has to be restored when T resumes.
This will take time, which has to be accounted for. Computing the upper bound to all
the potential damages is possible, but is too imprecise if the variance is high. Comput-
ing the damages for all combinations of preemptor and preempted task for all program
points will suffer from combinatorial explosion. Limiting preemption to certain pro-
gram points, preferably with little useful state, has been proposed and experimentally
tested [LLM'98, Sch03].

Many safety-critical embedded systems are developed in a model-based design pro-
cess. The actual implementation is obtained by code synthesis. Not all information
available at the specification level is being transferred into the code and thus made
accessible to compiler analyses and optimization. Similarly, compiler and timing anal-
ysis offer some synergy so far unexploited. The compiler usually has information that
is hard to extract from the target code.

13

6.3 Multi-Layered Systems

The trend in the design of complex embedded systems both in the aeronautics and in
the automotive domains goes towards multi-layered designs. A real-time operating
systems (RTQOS) is running on the target hardware scheduling the periodic tasks and
handling interrupts for sporadic tasks. The tasks of the system are constructed using
real-time middleware. Distributed tasks communicate via messages.

Coordination mechanisms have to be developed to ensure a predictable behavior.
Consider the scheduling done on the architectural, the single-node operating system,
and the distributed system level. Lack of coordination will lead to unpredictability.

The analysis machinery for multi-layered systems does not exist. It is hard to imag-
ine, how halfways precise timing predictions can be obtained with unconstrained multi-
layered systems.

Cross-Layer Timing Interfaces

6.4 Supporting an Incremental Development Process

Currently, all high-precision WCET tools require the availability of fully linked exe-
cutables with all allocation details. Component-based development of real-time sys-
tems should be supported by an incremental development process, where components
are analyzed as they are produced or imported and the timing behavior of the whole
system is conservatively composed of the predictions derived for its components.

6.5 Computation and communication

Better understand the interdependencies between resource sharing on computation and
communication. Performance estimation of distributed embedded systems.

References

[APO1] Pavel Atanassov and Peter Puschner. Impact of DRAM refresh on the
execution time of real-time tasks. In Workshop on Application of Reliable
Computing and Communication, December 2001.

[BCRO3] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. SIGPLAN Not.,
38(1):285-298, 2003.

[But97] Giorgio Butazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer, 1997.

[con04] The ARTIST consortium. Roadmap on hard real-time development envi-
ronments, 2004. to be published in the Springer Lecture Notes Series.

[FHLT01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
H. Theiling, S. Thesing, and R. Wilhelm. WCET Determination for a
Real-Life Processor. In T.A. Henzinger and C. Kirsch, editors, Embedded
Software, volume 2211 of Lecture Notes in Computer Science, pages 469
— 485. Springer, 2001.

14

[GM02]

[HLTWO03]

[LLM*98]

[LS99]

[Lun02]

[Sch03]

[SWLM02]

[TBW94]

[TSH*03]

[URIi03]

[WETWO3]

[WETWO04]

A. Girault and C. Ménier. Automatic production of globally asyn-
chronous locally synchronous systems. In A. Sangiovanni-Vincentelli
and J. Sifakis, editors, 2nd International Workshop on Embedded Soft-
ware, EMSOFT' 02, volume 2491 of LNCS, pages 266-281, Grenoble,
France, October 2002. Springer-Verlag.

Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard
Wilhelm. The influence of processor architecture an the design and
the results of WCET tools. |EEE Proceedings on Real-Time Systems,
91(7):1038-1054, 2003.

S. Lee, C.-G. Lee, Lee M., S. L. Min, and C. S. Kim. Limited Preemptible
Scheduling to Embrace Cache Memory in Real-Time Systems. In Pro-
ceedings of the ACM SIGPLAN LCTES 98 Workshop on Languages,
Compilers and Tools for Embedded Systems, pages 51-64, June 1998.

T. Lundquist and P. Stenstrém. Timing anomalies in dynamically sched-
uled microprocessors. In 20th | EEE Real-Time Systems Symposium, 1999.

Thomas Lundqvist. A WCET Analysis Method for Pipelined Micropro-
cessors with Cache Memories. PhD thesis, Chalmers University of Tech-
nology, Goteborg, Sweden, 2002.

Joern Schneider. Combined Schedulability and WCET Analysis for Real-
Time Operating Systems. PhD thesis, Saarland University, 2003.

S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program
and data objects to scratchpad for energy reduction. In DATE Conference
2002, 2002.

K. Tindell, A. Burns, and A. Wellings. An Extensible Approach for An-
alyzing Fixed Priority Hard Real-Time Tasks. The Journal of Real-Time
Systems, 6(2):133-151, March 1994,

Stephan Thesing, Jean Souyris, Reinhold Heckmann, Famantanantsoa
Randimbivololona, Marc Langenbach, Reinhard Wilhelm, and Christian
Ferdinand. An abstract interpretation-based timing validation of hard real-
time avionics software systems. In Proceedings of the Performance and
Dependability Symposium, San Francisco, CA, June 2003.

Theo Ungerer, Borut Robič, and Jurij Šilc. A survey of pro-
cessors with explicit multithreading. ACM Comput. Surv., 35(1):29-63,
2003.

Reinhard Wilhelm, Jakob Engblom, Stephan Thesing, and David B.
Whalley. Industrial requirements for wcet tools - answers to the artist
questionnaire. In WCET 2003, pages 25-29, 2003.

Reinhard Wilhelm, Jakob Engblom, Stephan Thesing, and David Whal-
ley. The determination of worst-case execution times —introduction and
survey of available tools—. submitted, 2004.

15

