
04101 Abstracts Collection

Language Engineering for

Model-Driven Software Development

� Dagstuhl Seminar �

J. Bézivin1 and R. Heckel2

1 University of Nantes, France
Jean.Bezivin@sciences.univ-nantes.fr

2 Universität Dortmund, Germany (on leave from Paderborn)
reiko@upd.de

Abstract. From 29.02. to 05.03.04, the Dagstuhl Seminar 04101 �Lan-
guage Engineering for Model-Driven Software Development� was held in
the International Conference and Research Center (IBFI), Schloss Dag-
stuhl. During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts
of the presentations given during the seminar as well as abstracts of se-
minar results and ideas are put together in this paper. The �rst section
describes the seminar topics and goals in general. Links to extended ab-
stracts or full papers are provided, if available.

04101 Summary � Language Engineering for Model-driven
Software Development

Jean Bézivin, Reiko Heckel

This paper summarizes the objectives and structure of a seminar with the same
title, held from February 29th to March 5th 2004 at Schloss Dagstuhl, Germany.

Keywords: Dagstuhl Seminar 04101

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/10

04101 Discussion � A Taxonomy of Model Transformations

Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp

This report summarises the results of the discussions of a working group on
model transformation of the Dagstuhl Seminar on Language Engineering for
Model-Driven Software Development. The main contribution is a taxonomy of
model transformation. This taxonomy can be used to help developers in deciding
which model transformation approach is best suited to deal with a particular
problem.

Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/25

http://drops.dagstuhl.de/opus/volltexte/2005/10

2 J. Bézivin, R. Heckel

Keywords: Taxonomy, model transformations

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/11

Models as �rst class entities

Jean Bézivin (Université de Nantes)

In November 2000, the OMG made public the MDATM initiative, a particu-
lar variant of a new global trend called model engineering. The basic ideas of
model engineering are germane to many other approaches such as generative
programming, domain speci�c languages, model-integrated computing, softwa-
re factories, etc. MDA may be de�ned as the realization of model engineering
principles around a set of OMG standards like MOF, XMI, OCL, UML, CWM,
SPEM, etc. Similarly to the basic principle �Everything is an object� that was
important in the 80's to set up the object-oriented technology, we suggest, in
model engineering, that the basic principle �Everything is a model� may be key
to identifying the essential characteristics of this new trend. To assess this prin-
ciple, we need to characterize the two associated relations, nameley the relations
of �representation� and �conformance�.

Keywords: MDE, MDA, Model Transformation

See also: Novatica Journal, Special Issue, March-April 2004

Application of Graph Transformation for Automating Web
Service Discovery

Alexey Cherchago (Universität Paderborn)

The paper represents current achievements of an ongoing research that aims to
develop a formal approach supporting an automatic selection of a Web service
sought by a requestor. The approach is based on the matching the requesto's
requirements for a �useful� service against the service description o�ered by the
provider. We focus on the checking behavioral compatibility between operation
contracts specifying pre-conditions and e�ects of required and provided operati-
ons. Graph transformation rules with positive application conditions are propo-
sed as a visual formal notation for contracts. The desired dependence between
requestor and provider contracts is determined by the semantic compatibility
relation and syntactic matching procedure that is sound w.r.t. this relation.

Keywords: SOA, graph transformation, contracts

Joint work of: Heckel, Reiko; Cherchago, Alexey

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/12

http://drops.dagstuhl.de/opus/volltexte/2005/11
http://drops.dagstuhl.de/opus/volltexte/2005/12

Language Engineering for Model-Driven Software Development 3

Generative Software Development

Krzysztof Czarnecki (University of Waterloo)

System family engineering seeks to exploit the commonalities among systems
from a given problem domain while managing the variabilities among them in
a systematic way. In system family engineering, new system variants can be
rapidly created based on a set of reusable assets (such as a common architecture,
components, models, etc.).

Generative software development aims at modeling and implementing system
families in such a way that a given system can be automatically generated from
a speci�cation written in a textual or graphical domain-speci�c language.

In this talk, I will give an overview of the generative development process,
including domain analysis (i.e., capturing the commonalities and variabilities
within a system family using feature modeling), domain design (i.e., developing
a common architecture for a system family), and implementating program ge-
nerators using di�erent technologies, such as template-based code generation,
C++ template metaprogramming, and model transformations. Finally, I will
demonstrate tool support for feature modeling and discuss the relationship of
generative software development to Model Driven Architecture.

MDA is Language Design and Translation

Keith Duddy (DSTC - Brisbane)

Since the �rst pro�les for UML were de�ned, and the �rst plugins written to
generate code skeletons from UML models, the modelling trick of marking up
standard models, and the programming trick of traversing those models and
outputting code fragments have merged into the paradigm of domain language
design and translation. This fact is being realised by OMG standards: The UML
is now aligned with the MOF modelling language design standard of OMG,
and a new standard for model transformation (a.k.a language translation) is
being developed by the leading researchers and tool vendors. This talk constrasts
the promise of modelling tools becoming rich a language design and translation
toolkit against the danger of allowing the Model Driven Architecture (TM) to be
limited to attaching strings to class models which direct opaque code generators.

Keywords: Language design, MOF, OMG, model transformation, language
translation, domain languages

4 J. Bézivin, R. Heckel

Foundations of Model (Driven) (Reverse) Engineering :
Models
Episode I: Stories of The Fidus Papyrus and of The Solarus

Jean-Marie Favre (LSR - IMAG)

Model Driven Engineering (MDE) received a lot of attention in the last years,
both from academia and industry. However, there is still a debate on which basic
concepts form the foundation of MDE. The Model Driven Architecture (MDA)
from the OMG does not provided clear answers to this question. This standard
instead provides a complex set of interdependent technologies. This paper is the
�rst of a series aiming at de�ning the foundations of MDE independently from
a particular technology. A megamodel is introduced in this paper and incremen-
tally re�ned in further papers from the series. This paper is devoted to a single
concept, the concept of model, and to a single relation, the RepresentationOf re-
lation. The lack of strong foundations for the MDA 4-layers meta-pyramid leads
to a common mockery: �So, MDA is just about Egyptology?!�. This paper is the
pilot of the series called �From Ancient Egypt to Model Driven Engineering�. The
various episodes of this series show that Egyptology is actually a good model to
study MDE.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/13

Foundations of Meta-Pyramids: Languages vs. Metamodels
Episode II: Story of Thotus the Baboon

Jean-Marie Favre (LSR - IMAG)

Despite the recent interest for Model Driven Engineering approaches, the so-
called four-layers metamodelling architecture is subject to a lot of debate. The
relationship that exists between a model and a metamodel is often called in-
stanceOf, but this terminology, which comes directly from the object oriented
technology, is not appropriate for the modelling of similar meta-pyramids in
other domains. The goal of this paper is to study which are the foundations of
the meta-pyramids independently from a particular technology. This paper is
actually the second episode of the series �From Ancient Egypt to Model Driven
Engineering�. In the pilot episode, the notion of megamodel was introduced to
model essential Model Driven Engineering concepts. The notion of models was
thoroughly discussed and only one association, namely RepresentationOf was
introduced. In this paper the megamodel is extended with one fundamental re-
lation in order to model the notion of languages and of metamodels. It is shown
how Thotus the Baboon helped Nivizeb the priest in designing strong founda-
tions for meta-pyramids. The secrets of some ancient pyramids are revealed.

Keywords: Models, reverse engineering, transformations

http://drops.dagstuhl.de/opus/volltexte/2005/13

Language Engineering for Model-Driven Software Development 5

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/21

How far can you push UML pro�les?

Tracy Gardner (IBM Winchester)

UML pro�les are the built-in customization mechanism for UML. A pro�le is a
subset and extension of UML that is designed for a speci�c task or domain. This
approach can be used to design new modeling languages. This talk will discuss
how far we can push the notion of UML pro�les. We will cover both the limits
of UML pro�les as they stand today (and in the upcoming UML 2.0) and what
could be done to extend the concept still further.

As a case study we use the UML Pro�le for Automated Business Processes
which has a mapping to the Business Process Execution Language for Web
Services. This work is currently being extended as part of a response to the
OMG's Business Process De�nition Metamodel RFP to support business level
users in additionl to the IT architects and developers supported by the earlier
pro�le. The BPD Metamodel being proposed is a pro�le of UML 2.0 with �rst-
class extensions only for small parts of the metamodel where there is no good
�t in UML 2.0.

(An Example for) Metamodeling Syntax and Semantics of
Two Languages, their Transformation, and a Correctness
Criterion

Martin Gogolla (Universität Bremen)

We study a metamodel for the Entity Relationship (ER) and the Relational
data model. We do this by describing the syntax of the ER data model by in-
troducing classes for ER schemata, entities, and relationships. We also describe
the semantics of the ER data model by introducing classes for ER states, in-
stances, and links. The connection between syntax and semantics is established
by associations explaining that syntactical objects are interpreted by correspon-
ding semantical objects. Analogously we do this for the Relational data model.
Finally, we give a metamodel for the transformation of ER schemata into Re-
lational database schemata. By characterizing the syntax and semantics of the
languages to be transformed and also the transformation itself within the sa-
me (meta-)modeling language we are able to include equivalence criteria on the
syntactical and on the semantical level for the transformation. In particular, we
show that the semantical equivalence criterion requires that the ER states and
the corresponding Relational states bear the same information.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/14

http://drops.dagstuhl.de/opus/volltexte/2005/21
http://drops.dagstuhl.de/opus/volltexte/2005/14

6 J. Bézivin, R. Heckel

A modelbased development process for automotive
electronic systems

Ursula Goltz (TU Braunschweig)

In the automotive area the majority of today's innovations results from an in-
creasing portion of software functionality, which cannot be mastered any more
by conventional development concepts. The growing complexity of such systems
therefore requires new methods for the development of embedded systems.

Goal of the project STEP-X is to propose a seamless development process
starting with the de�nition of requirements and leading to an automatic code-
generation according to the V-Modell. Due to the extended signi�cance of qua-
lity assurance and system reliability the topics test and diagnosis are strongly
integrated into the model based process. An important constraint is that only
commercially available tools are evaluated and introduced, in order to ensure
further use of the projec's results.

In the talk, the models used in the STEP-X method and the occurring pro-
blems will be discussed.

Behaviour Behaviour and Language Engineering

Luuk P.J. Groenewegen (Leiden University)

Language engineering, among other things, aims at providing support for chan-
ging programming and modelling languages, such that a program (or model) can
change into a next program (or model), possibly written in a di�erent language,
possibly while in execution, i.e. on-the-�y.

In the talk we take the following position: Paradigm's behaviour behaviour
notions provide a dynamic structuring relevant for building such changes on.

To that aim, we present behaviour behaviour (global behaviour) in terms of
the Paradigm notions of subprocess and trap. In addition we sketch how these
notions actually unify modelling of coordination, of evolution on-the-�y and of
mobility. Finally we argue why these notions could be relevant for the kind of
problems language engineering wants to address.

Taking the position thus defended, we propose to develop notions for (other)
modelling languages and programming languages, similar to the Paradigm no-
tions of subprocess and trap. This then should add a new kind of behavioural
structuring to these languages, thus facilitating both speci�cation and control
of behaviour behaviour within models or programs written in these languages.
This in turn could provide a new basis within such languages for supporting the
kind of changes language engineering addresses.

Keywords: Behaviour behaviour, Paradigm, evolution on-the-�y, JIT modelling,
JIT informing, language engineering

Language Engineering for Model-Driven Software Development 7

Language Engineering in Practice

Martin Groÿe-Rhode (FhG - ISST Berlin)

The Dependable Systems Department of the Fraunhofer ISST Berlin creates
methods for the development, integration, and maintenance of embedded auto-
motive systems. Based on a thourough analysis of the existing processes, domain-
and enterprise-speci�c roles, activities, and artefacts are designed for an immedi-
ate enhancement of the technical, processual, and organsiational infrastructure
that is found at the company. General principles that govern the design of the
methods are continuous model-based engineering and domain engineering. Con-
tinuous model-based engineering �rst means to focus the development process
on models whose structure is designed in such a way as to optimally support
the activities and roles found in the foregoing analysis. Second, these models
are interconnected via a common core, such that the transitions between the
activities are also fully re�ected at the model level. Thereby design decisions
can be traced throughout the whole development process, consistency can be
checked, and changes can be managed. Domain engineering aims at a systematic
reuse by the generation of models or model templates as analysis, design, and
implementation assets and techniques for their reuse within the development of
new products.

As a means to de�ne the abstract modelling language that determines the
structure of the models that are to be used a two-step meta-modelling ap- proach
turned out as most adequate. In the �rst step class diagrams are used to introdu-
ce the modelling elements and their fundamental relationships. Since just clas-
ses, binary associations with multiplicities, and attributes are used any object-
oriented modelling language or tool can be used for that. To make the meta-
model complete constraints have to be added that de�ne the relation- ships of
the modelling elements more precisely. In principle any logic or ob- ject constraint
language can be used for that purpose. We have chosen the object-oriented ex-
tension ObjectZ of the set-theoretic speci�cation language Z, although it implied
to reformulate the whole class diagram developed before within the constraint
set. This decision was based essentially on the clarity of the language, the time
constraints of the projects, and the previous knowledge of the team members.

Within the development and integration process the following main views
are distinguished and supported by appropriate models: requirements, logical
architecture, and technical architecture including hardware and software archi-
tecture. As mentioned above, also the interconnections of the views are speci�ed
by models. That means that there are realisation models that connect di�er-
ent requirements models (like user requirements, legal requirements, or system
requirements) among each other and with the other models (logical and tech-
nical architecture), and that there are models for the partitioning of the logical
components onto the technical (software and hardware) components.

Flexibility in the design of the modelling languages (and thus the models) is
achieved by a layered meta-modelling approach. Thereby the modelling elements
are introduced within a hierarchy, with most general elements at the top and

8 J. Bézivin, R. Heckel

stepwise re�nements to introduce more domain-, enterprise-, and role-speci�c
concepts. Concerning requirements models for example at the top layer the gen-
eral structure of requriements is de�ned: a requrirement consists of a subject
or stake holder (the one who requires the feature), a feature that is required,
possibly a mode (the feature must or may be included), and an object or target,
i.e. the system or the group of systems under development that shall have this
feature. These constituents can than be re�ned, for example by saying which
groups of stake holders are relevant, which kinds of featuers are to be distin-
guished (functional, non-functional, safety, etc.), which modes are there, which
kinds of groups of systems are considered and how are they described. Analogu-
ously the modelling concepts for the other views and the modelling concepts
for the domain models that capture the reusable analysis, design, and imple-
mentation assets are introduced. The experience of our projects with industrial
partners shows that this kind of language engineering is an adequate means for
the introduction of continuous model-based software development processes in
the industrial practice.

Technical reports on method developments including the correspondingmeta-
models will be made available soon via the web page of the author.

Keywords: Model-based systems engineering, embedded automotive systems,
requirements; architecture, language engineering

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2005/15

Languages for Automated Model Based Software Testing

Alan Hartman (IBM - Haifa)

The AGEDIS project [1] was a three year endeavor by a consortium of industrial
and academic partners to create an infrastructure for model based testing. In
the course of this project �ve languages were de�ned. The purpose of these
languages are a) for modeling software [2], b) for describing test objectives [2,3],
c) for describing testing artifacts (test suites, and test trace logs) [4], d) for
describing the simulation interface to the model [3], and e) for describing the
testing architecture [5]. This paper discusses these �ve languages and the design
decisions that were taken during the course of the project. We attempt to draw
conclusions with hindsight, and make some proposals for the improvement and
standardization of some of these languages.

References:
1. AGEDIS Consortium, Final Report, http://www.agedis.de
2. AGEDIS Consortium, AGEDIS modeling language speci�cation,

http://www.agedis.de
3. AGEDIS Consortium, Intermediate Language 2.0 with Test Directives Spe-

ci�cation, http://www.agedis.de
4. AGEDIS Consortium, Test Suite Speci�cation, http://www.agedis.de
5. AGEDIS Consortium, TED Users Guide, http://www.agedis.de

http://drops.dagstuhl.de/opus/volltexte/2005/15
http://www.agedis.de
http://www.agedis.de
http://www.agedis.de
http://www.agedis.de
http://www.agedis.de

Language Engineering for Model-Driven Software Development 9

UML semantics - Dynamic Meta Modeling and beyond

Jan Hendrik Hausmann (Universität Paderborn)

While the notations and concepts of the UML are constantly re�ned, the seman-
tics of this important language is still o�cially provided in prose only. Over the
time a number of established techniques for de�ning language semantics have
been applied to UML. Each of these approaches improved the precision, but
none can be considered as broadly accepted.

In our work we try to supply a semantics description to UML which adheres to
the same goals as UML itself, namely being understandable by engineers (this in-
cludes being diagrammatic), bringing bene�ts to a broad user group (rather than
please some specialists), being extendable/modular and being tool-independent.
To be superior to the current style of de�nition, it also needs to be formal and
precise.

From the requirements we developed the technique of Dynamic Meta Mode-
ling [EHHS00], which was originally in�uenced by Plotkin's Structured Opera-
tional Semantics [Plo81,CHM00] but is currently being adapted to ideas present
in Mosses' Action Semantic [Mos96]. This essentially means that we de�ne a
semantics domain by means of meta modeling, provide a denotation mapping
[HK03] into this domain and specify graph transformation rules which provide
operational semantics for this domain.

In this talk we will report on the technique of Dynamic Meta Modeling and
our experiences in applying it. We found a number of examples which work
well (and which we are happy to show) and some pitfalls where special cases
threatened to destroy some properties of our semantics. Because DMM is a
very powerful and �exible technology, de�ning a semantics by DMM requires
a lot of decisions, each of which might include a compromise between di�erent
requirements.

References:
[CHM00] A. Corradini, R. Heckel, and U. Montanari. Graphical operatio-

nal semantics. In Proc. ICALP2000 Workshop on Graph Transfor-
mation and Visual Modelling Techniques. Carleton Scienti�c, 2000.
2000/CorradiniGTVMT00.pdf.

[EHHS00] G. Engels, J.H. Hausmann, R. Heckel, and St. Sauer. Dynamic me-
ta modeling: A graphical approach to the operational semantics of
behavioral diagrams in UML. In A. Evans, S. Kent, and B. Selic,
editors, Proc. UML 2000, York, UK, volume 1939, pages 323-337.
Springer-Verlag, 2000.

[HK03] J.H. Hausmann and S. Kent. Visualizing model mappings in UML. In
Proc. of the ACM Symposium on Software Visualization 2003, 2003.
to appear.

10 J. Bézivin, R. Heckel

[Mos96] Peter D. Mosses. Theory and practice of action semantics. In MFCS
'96, Proc. 21st Int. Symp. on Mathematical Foundations of Compu-
ter Science (Cracow, Poland, Sept. 1996), volume 1113, pages 37-61.
Springer-Verlag, 1996.

[Plo81] G. Plotkin. A structural approach to operational semantics. Tech-
nical Report DAIMI FN-19, Aarhus University, Computer Science
Department, 1981.

Keywords: UML, meta modeling, denotational semantics, operational seman-
tics, graph transformation

See also: J. H. Hausmann, R. Heckel, S. Sauer; Dynamic Meta Modeling with
Time: Specifying the Semantics of Multimedia Sequence Diagrams; Journal on
Software and Systems Modeling, Volume 3, Number 3. Springer August 2004,
pages 181-193.

Model-based Development of Web Services: A crash course

Reiko Heckel (Universität Paderborn)

The talk is intended as an introduction to the case study proposed by the orga-
nizers. I will cover the main concepts of Web services languages and protocols,
as well as their modeling in UML.

The talk will also identify language design concerns arising from the example,
that may be addressed by the techniques and tools of the participants.

See also:
http://www.upb.de/cs/ag-engels/Conferences/Dagstuhl04101/html/example.html

Graph Transformation in a Nutshell

Reiko Heckel (Universität Paderborn)

Even sophisticated techniques start out from simple ideas. Later, in reply to
application needs or theoretical problems new concepts are introduced and new
formalizations proposed, often to a point where the original simple core is hardly
recognizable. In this paper we provide a non-technical introduction to the basic
concepts of typed graph transformation systems, completed with a survey of
more advanced concepts, and explain some of its history and motivations.

Keywords: Graph transformation

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/16

http://www.upb.de/cs/ag-engels/Conferences/Dagstuhl04101/html/example.html
http://drops.dagstuhl.de/opus/volltexte/2005/16

Language Engineering for Model-Driven Software Development 11

A MDA Approach to Model & Implement Transformations

Jean-Marc Jézéquel (IRISA - Rennes)

Only in software and in linguistics a model has the same nature as the thing it
models. In software at least, this opens the possibility to automatically derive
software from its model. This property is well known from any compiler writer
(and others), but it was recently be made quite popular with an OMG initiative
called the Model Driven Architecture (MDA). The model transformations allo-
wing the engineers to more or less automatically go from platform-independent
models (PIM) to platform-speci�c models (PSM) are increasingly seen as vital
assets that must be managed with sound software engineering principles. We
believe that transformations should be �rst-class models in the MDA world; we
propose to adopt the object-oriented approach and to leverage the expressive
power of UML as a metamodel de�ning the transformation language.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/20

Model Transformation

Frédéric Jouault (Université de Nantes)

The ATLAS group (INRIA & LINA) is currently involved in porting a model
transformation language named ATL to Eclipse under the GMT project. This
paper describes the main characteristics of model transformation environments,
of the current version of ATL and of the planned next version intended to be in-
tegrated into Eclipse. The demonstration will be built on a very simple example,
but references to other non-trivial real life examples will be made in the paper.

Multi-Domain Integration with MOF and extended Triple
Graph Grammars

Alexander Königs (TU Darmstadt)

One aim of tool integration is designing an integrated development environ-
ment that accesses the data/models of di�erent tools and keeps them consistent
throughout a project being considered. Present approaches that aim for data
integration by specifying (graphically denoted) consistency checking constraints
or consistency preserving transformations are restricted to pairs of documents.
We present an example that motivates the need for a more general data/model
integration approach which is able to integrate an arbitrary number of MOF-
compliant models. From a formal point of view this approach is a generalization
of the triple graph grammar document integration approach. From a practical
point of view it is a proposal how to specify multidirectional declarative mo-
del transformations in the context of OMG's model-driven architecture (MDA)
development e�orts and its request for proposals for a MOF-compliant �query,
view, and transformation� (QVT) approach.

http://drops.dagstuhl.de/opus/volltexte/2005/20

12 J. Bézivin, R. Heckel

Joint work of: Alexander Königs, Andy Schürr

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/22

Deep Characterization

Thomas Kühne (TU Darmstadt)

More and more multi-level description hierarchies are employed in various areas.
For instance, in the de�nition of modeling languages, process modeling, and
domain models with a dynamic type level. In each of these applications at
least three description levels are used which are related to each other by the
�instance-of� relationship. However, traditional instantiation semantics is desi-
gned to relate two levels only and thus fails to support the sometimes desired
ability to classify across more then one level boundary. The concept of �deep
instantiation��a conservative extension of two-level instantiation�is proposed to
support the characterization of model elements across multiple model bounda-
ries. Some of the implications for model driven development are discussed and
a few questions are raised as to what exactly deep instantiation should support
and what not.

Keywords: Metamodeling, instantiation, powertype

What is a Model?

Thomas Kühne (TU Darmstadt)

With the recent trend to model driven development a commonly agreed notion
of �model� becomes a pivotal issue. However, currently there is little consensus
about what exactly a model is and what it is not. Furthermore, basic terms such
as �metamodel� are far from being understood in the same way by all members of
the modeling community. This article attempts to start establishing a consensus
about generally acceptable terminology. Its main contribution is the distinction
between two fundamentally di�erent kinds of models, i.e. �type model� versus
�token model�. The recognition of the fundamental di�erence in these two kinds
of models is crucial to avoid misunderstandings and unnecessary disputes among
members of the modeling community.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/23

http://drops.dagstuhl.de/opus/volltexte/2005/22
http://drops.dagstuhl.de/opus/volltexte/2005/23

Language Engineering for Model-Driven Software Development 13

Model Transformations in the Consistency Workbench

Jochen Küster (Universität Paderborn)

For the purpose of behavioral consistency checking, translations of UML models
into arbitrary formal languages are required, depending on the kind of consi-
stency problem being treated. The Consistency Workbench aims at supporting
the software engineer in developing such model transformations and consisten-
cy checks on the basis of the de�ned model transformations. The concept of
our model transformation approach is based on graph transformation where a
so-called compound rule describes the transformation of both source and target
model. In this talk, we �rst explain this concept of compound rules and illustrate
their implementation in the Consistency Workbench. Then, we elaborate on the
validation of model transformations and brie�y describe su�cient criteria for
ensuring the con�uence of model transformations.

Keywords: Consistency, model transformation

Towards an engineering discipline for GRAMMARWARE

Ralf Lämmel (Vrije Universiteit Amsterdam)

Grammarware comprises grammars and all grammar-dependent software, i.e.,
software that directly involve grammar knowledge. The term grammar is meant
here in the widest sense to include XML schemas, syntax de�nitions, interface
descriptions, APIs, and interaction protocols. Typical examples of grammar-
dependent software are document processors, parsers, import/export functiona-
lity, and generative programming tools. Despite this pervasive role of grammar-
ware in software systems, it is somewhat neglected � from an engineering point
of view. We lay out an agenda that is meant to promote research on improving
the quality of grammarware and on increasing the productivity of grammarware
development. To this end, we identify the problems with current foundations
and practices, the promises of an engineering discipline for grammarware, its
ingredients, and research challenges along the way.

Keywords: Grammarware

Joint work of: Lämmel, Ralf; Klint, Paul; Verhoef, Chris

Full Paper: http://www.cs.vu.nl/grammarware/

See also: P. Klint, R. Lämmel, and C. Verhoef. Towards an engineering disci-
pline for grammarware. Under revision for the ACM Transactions on Software
Engineering and Methodology

http://www.cs.vu.nl/grammarware/

14 J. Bézivin, R. Heckel

UML Model Evolution and Inconsistency Management

Tom Mens (Université de Mons)

A software design is often modelled as a collection of UML diagrams. There is an
inherent need to preserve their consistency, since these diagrams are subject to
continuous changes due to successive re�nements or evolutions. Contemporary
UML tools provide unsatisfactory support for maintaining the consistency bet-
ween di�erent versions of UML diagrams. To solve this problem, an extension of
the UML metamodel is developed, and a classi�cation of inconsistencies is pro-
posed. Detection and resolution of inconsistencies is expressed by means of rules
in description logic. By carrying out a number of concrete experiments, we show
the feasibility of the description logic formalism for the purpose of managing
inconsistencies between evolving UML models. We also show how we can use
the formalism and tool to propose model refactorings that improve the design.

Keywords: Consistency maintenance, inconsistency management, UML, des-
cription logic, model evolution, design improvement, model refactoring, XML

Joint work of: Mens, Tom; Van Der Straeten, Ragnhild

Action semantics

Peter D. Mosses (BRICS - Aarhus)

Action Semantics (developed together with David Watt in the late 1980's [2, 3, 5,
6]) is a hybrid of denotational and operational semantics. It allows the semantics
of individual (programming language) constructs to be speci�ed incrementally,
i.e., separately and independently [1].

In action semantics, the denotations of constructs (modelling their contribu-
tions to overall behaviour) are speci�ed in action notation, which is itself de�ned
operationally [2, 4]. Action notation provides primitive actions and combinators
for expressing fundamental programming concepts, including the �ow of control
and data, binding, storage, and asynchronous communication between separate
processes.

Although action notation has some features in common with the way that
actions and activities are speci�ed in UML 2.0,1 there are also signi�cant di�e-
rences. The action notation used in action semantics aims at simplicity, economy,
and algebraic elegance, and it is not tailored to the description of object-oriented
(or other particular kinds of) systems.

References:
1. K.-G. Doh and P. D. Mosses. Composing programming languages by com-

bining action-semantics modules. Sci. Comput. Programming, 47(1):3-36,
2003.

2. P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1992.

Language Engineering for Model-Driven Software Development 15

3. P. D. Mosses. Theory and practice of action semantics. In MFCS '96, Proc.
21st Int. Symp. on Mathematical Foundations of Computer Science (Cra-
cow, Poland, Sept. 1996), volume 1113 of LNCS, pages 37-61. Springer-
Verlag, 1996.

4. P. D. Mosses. A modular SOS for Action Notation (extended abstract).
In AS'99, number NS-99-3 in BRICS Notes Series, pages 131-142, BRICS,
Dept. of Computer Science, Univ. of Aarhus, 1999. Full version available at
http://www.brics.dk/RS/99/56/.

5. P. D. Mosses and D. A. Watt. The use of action semantics. In Formal Des-
cription of Programming Concepts III, Proc. IFIP TC2Working Conference,
Gl. Avernæs, 1986, pages 135-166. North-Holland, 1987.

6. D. A. Watt. Programming Language Syntax and Semantics. Prentice-Hall,
1991.

1 http://www.uml.org

Model-Driven Development for the Web

Pierre-Alain Muller (ESSAIM - Mulhouse)

Model engineering is the opportunity to re-inject software engineering in the develop-
ment of web applications.

We have developed metamodels and action languages to represent web applications
via three aspects (business, hypertext and presentation).

Our goal is to allow the complete modeling of web application in the MDA TS. We
are currently able to build web PIMs and then translate them into web PSMs (Java,
PHP, Oracle, MySQL, HTML, DHTML...).

Keywords: Model-driven engineering, MDA, web, matamodel, PIM

A Modeling Language with operational, but not necessarily
executable semantics

Wolfgang Reisig (HU Berlin)

After many years of research and exercise towards adequate modeling languages, the
question arises as to whether there exists a theoretical foundation of �speci�cation�, in
analogy to the computable functions, which provide the foundation of programming.

Conventional semantics is based on states s: var ? val, where var and val are sets
of variables and values, respectively. A run is a �nite or in�nite sequence of states,
and a speci�cation is a �nite description of a set of runs. Conventional semantics is
based on the assumption that each value is a �nite or in�nite sequence of symbols. The
speci�cation is implementable in this case.

We are interested in the case where values are any items. Examples are the basic
objects of midleware programs. Toy examples are geometrical algorithms with points,
circles, lines etc as basic elements, and operations such as the construction of a line
from two nodes, or the intersection points of intersecting circles.

16 J. Bézivin, R. Heckel

An adequate description of a speci�cation of this kind is based on a signature ?; viz.
a collection of operation symbols, each with its arity. A speci�cation is then essentially
a ?-term, and a state is a ?-structure. This is in fact the basics of Gurevich's Abstract
state machine approach. This proposal may eventually be an adequate starting point
for a theory of speci�cation.

Subjects, Models, Languages, Transformations

Arend Rensink (University of Twente)

Discussions about model-driven approaches tend to be hampered by terminological
confusion. This is at least partially caused by a lack of formal precision in de�ning
the basic concepts, including that of �model� and �thing being modelled� which we
call subject in this paper. We propose a minimal criterion that a model should ful�ll:
essentially, it should come equipped with a clear and unambiguous membership test; in
other words, a notion of which subjects it models. We then go on to discuss a certain
class of models of models that we call languages, which apart from de�ning their own
membership test also determine membership of their members. Finally, we introduce
transformations on each of these layers: a subject transformation is essentially a pair
of subjects, a model transformation is both a pair of models and a model of pairs
(namely, subject transformations), and a language transformation is both a pair of
languages and a language of model transformations. We argue that our framework has
the bene�ts of formal precision (there can be no doubt about whether something sati�es
our criteria for being a model, a language or a transformation) and minimality (it is
hard to imagine a case of modelling or transformation not having the characterstics
that we propose).

Keywords: Model, language, transformation

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/24

MDA-E: Model Drive Architecture Evolution

Bernhard Rumpe (TU Braunschweig)

Building software and software-based systems becomes an increasingly complex task.
Business systems, e.g., started out as stand-alone applications, then where integra-
ted within whole companies and currently become connected through the internet in
e-commerce platforms that taken into its extreme �nally builds a single world-wide
business software system.

Driven by complexity and diversi�cation, a portfolio of development techniques
that are applicable in a variety of development contexts has emerged. Such a portfolio
allows developers to select and adapt processes, methods, and techniques based on the
application domain and the criticality and complexity of the system to be built. New
application domains, such as e-commerce, require �exible approaches to meeting the
to develop high quality software cheaply and rapidly. This talk describes an overview
of work on integrating two of those development approaches. UMLbased approaches
on the one hand emphasize the modeling of software from a variety of views. Agile

http://drops.dagstuhl.de/opus/volltexte/2005/24

Language Engineering for Model-Driven Software Development 17

development methods on the other hand de-emphasize software modeling, while em-
phasizing disciplined coding and testing. The integrated approach is based on the use
of an adapted version of the UML as a modelling, coding and test notation. The talk
examines how the UML needs to be adapted to support rapid development and how
the software development process stands to bene�t from the adaptation. In particular
the evolution of the architecture described by UML models according to changing re-
quirements or technology through systematic adaptation (�refactoring�) steps will be
discussed, its underlying theory explored, and demonstrated using examples. The talk
will also address the relationship between refactoring of architectural models and code
generation, automated tests and common ownership of models.

See also: B. Rumpe: Agile Modellierung mit der UML, Springer 2004

Graph Transformation Based Models of Dynamic Software
Architectures and Architectural Styles

Sebastian Thöne (University of Paderborn)

Software architectures play an important role in software development. As abstract mo-
dels of the run-time structure they help to bridge the gap between user requirements
and implementation. In the context of e-business, self-healing, or mobile systems, dy-
namic architectures gain more and more importance. They represent systems that do
not simply consist of a �xed, static structure, but can react to certain requirements or
events by run-time recon�guration of its components and connections. The availability
of those recon�guration operations depends on the chosen run-time platform which has
to support the desired modi�cations.

The development of such dynamic architectures is a complex task which is usually
driven by a stepwise modeling and re�nement approach. The software architect deri-
ves a �rst abstract model of the architecture from the user requirements. This model
mainly covers the functional aspects and business-related components. Later in the
design process, more and more non-functional requirements like security concepts and
implementation-speci�c aspects are integrated into the core functionality. This leads to
a sequence of re�ned architectures down to the real system design for implementation.

A recent example of this general modeling principle is the Model-Driven Archi-
tecture (MDA) put forward by the OMG. Here, platform-speci�c details are initially
ignored at the model-level to allow for maximum portability. Then, these platform-
independent models are re�ned by adding details required to map to a given target
platform. Thus, at each re�nement level, one imposes more assumptions on the re-
sources, constraints, and services of the chosen platform. In software architecture re-
search, architectural styles are used to describe families of architectures by common
resource types, con�guration patterns and constraints. We propose in [1] to consider
the restrictions imposed by a certain choice of platform as an architectural style. Mo-
reover, to account for component interactions and platforms that support dynamic
recon�gurations, we extend the classical notion of architectural style, which is restric-
ted to structural constraints, by also describing platform-speci�c communication and
recon�guration mechanisms.

We formalize the architectural styles as graph transformation systems including ar-
chitectural types, constraints, and graph transformation rules. Based on that, a notion
of re�nement is de�ned in [2], which preserves both semantic correctness and platform

18 J. Bézivin, R. Heckel

consistency. This means that a concrete architecture must satisfy the same require-
ments as the abstract architecture, and that it must be consistent with constraints and
mechanisms imposed by the chosen target platform.

For this purpose, we de�ne re�nement relations between abstract and concrete
styles which enable us to check for correct re�nement of two given architectures. We
do not only consider structural re�nements of �xed con�gurations but also behavioral
re�nement, which means re�ning abstract scenarios of component interactions and
recon�gurations into platform-speci�c scenarios. Since re�nements are often tedious
and error-prone, a further goal of our work is to automate the derivation of re�ned
models. Indeed, the maximum gain of reusing platform-independent models is achieved
if the mapping to various target platforms can be automated. For this purpose, we
propose a formulation of the behavioral re�nement problem as a reachability problem
which can be solved by classical graph transformation and model checking tools.

Joint work of: Sebastian Thöne, Luciano Baresi, Reiko Heckel, and Dániel Varró

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2005/17

References:
[1] L. Baresi, R. Heckel, S. Thöne, and D. Varró. Modeling and va-

lidation of serviceoriented architectures: Application vs. style. In
Proc. ESEC/FSE 03 European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, pages 68 77. ACM Press, 2003. http://wwwcs.upb.de/cs/ag-
engels/Papers/2003/BaresiHeckelThoeneVarro_ESEC03.pdf.

[2] L. Baresi, R. Heckel, S. Thöne, and D. Varró. Style-based re�nement of dyna-
mic software architectures. In Proc. WICSA4 4th Working IEEE/IFIP Con-
ference on Software Architecture, 2004. to appear. http://wwwcs.upb.de/cs/ag-
engels/Papers/2004/WICSA4_Baresi-Heckel-Thoene-Varro.pdf.

Does one size of model transformation language �t all?

Laurence Tratt (King's College - London)

Much of the recent focus on model transformations has been on �nding �the� model
transformation language - a single language that performs all sorts of model transfor-
mations well. Debates have raged over di�erent approaches, and yet we do not appear
to be signi�cantly closer to �nding a single model transformation language which is li-
kely to cope with di�erent organizations criteria. In this talk I will present an overview
of some of the major approaches to model transformations, explain where di�erent
approaches can learn from one another, and �nally present some thoughts on the app-
licability of di�erent approaches to di�erent situations. Are we looking at a �two speed�
future for model transformations or is there a size which �ts all?

http://drops.dagstuhl.de/opus/volltexte/2005/17
http://wwwcs.upb.de/cs/ag-engels/Papers/2003/BaresiHeckelThoeneVarro_ESEC03.pdf
http://wwwcs.upb.de/cs/ag-engels/Papers/2003/BaresiHeckelThoeneVarro_ESEC03.pdf
http://wwwcs.upb.de/cs/ag-engels/Papers/2004/WICSA4_Baresi-Heckel-Thoene-Varro.pdf
http://wwwcs.upb.de/cs/ag-engels/Papers/2004/WICSA4_Baresi-Heckel-Thoene-Varro.pdf

Language Engineering for Model-Driven Software Development 19

Write Once, Deploy N: a Performance Oriented MDA
Case Study

Pieter Van Gorp (University of Antwerpen)

To focus the comparison of languages for model checking and transformation on cri-
teria that matter in practical development, there is an urgent need for more, realistic
case studies. In this paper, we �rst present the problem of developing distributed da-
tabase applications that are optimized for concurrent data access, without locking in
on vendor extensions of a particular J2EE application server, with proper separation
of concerns, and with tool support for domain evolution. Then, we propose and discuss
a conceptual language for model re�nement and code generation as a possible solution
to the presented problem. After applying this particular language on our case study,
we derive general conclusions on composition, sequencing, inheritance, and design by
contract for such languages.

Keywords: Model transformation, consistency management, qvt, mda, ocl

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/18

Towards Automated Formal Veri�cation of Modelling
Languages by Model Checking Techniques

Daniel Varro (Budapest University of Technology and Economics)

I present a method with tool support for model checking dynamic consistency properties
in arbitrary well-formed instance models of any modeling language de�ned visually
by metamodeling and graph transformation techniques. Our tool (CheckVML) �rst
translates such high-level speci�cations into a tool independent abstract representation
of transition systems de�ned by a corresponding metamodel. From this intermediate
representation the input language of the back-end model checker tool (i.e., SPIN in our
case) is generated automatically.

Keywords: Graph transformation, model checking, metamodeling,

Re�nement and Consistency in Multiview Models

Heike Wehrheim (Universität Oldenburg)

Model transformations are an integral part of OMG's stan- dard for Model Driven
Architecture (MDA). Model transformations should at the best allow for a seamless
transition from high-level models to ac- tual implementations. They are therefore re-
quired to be behaviour pre- serving: models (or the �nal implementation) at lower
levels should ad- here to the descriptions given in higher level models. Moreover, for
com- plex systems models usually consists of descriptions of di�erent views on the sy-
stem. Consequently, di�erent kinds of model transformations take place on di�erent
views, and together they should guarantee behaviour- preservation. In this paper we
discuss the applicability of formal methods to model transformations. Formal methods

http://drops.dagstuhl.de/opus/volltexte/2005/18

20 J. Bézivin, R. Heckel

come with build-in notions of trans- formations between models, or more precisely,
with re�nement and sub- typing concepts which provide means for comparing mo-
dels on di�erent levels with respect to their behaviour. Such notions can be applied
as correctness criteria for evaluating model transformations. Moreover, re- �nement
and subtyping concepts for di�erent views can be shown to neatly �t together. This
is achieved by giving a common semantics to all views which furthermore opens the
possibility of checking consistency between them.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/19

A Program Design Language for Mobile Architectures

Michel Wermelinger (Universidade Nova de Lisboa)

Mobility, as enabled by the internet and wireless communication, is introducing an
additional factor of complexity in software development. Methods and techniques have
to account for the changes that can occur, at run time, at the level of the topology
over which components perform computations and interact with one another.

Architectural modelling techniques have helped to tame the complexity of building
distributed applications over static networks. This is because they enforce a strict se-
paration of concerns between what in systems can account for the �computations� that
are responsible for the behaviour that individual components ensure locally, and the
mechanisms that control their behaviour and coordinate the interconnections through
which global properties of systems can emerge. As a consequence, one can build com-
plex systems from simpler components by superposing the architectural connectors
that coordinate their interactions.

A major e�ort is being pursued within the IST-2001-32747 project AGILE � Archi-
tectures for Mobility � to take this separation of concerns one step further and address
distribution/mobility aspects as a �rst-class architectural dimension. More precisely,
we are extending a prototype program design language � CommUnity � that we have
used for experimenting with architectural design methods and techniques [2,6], with
primitives that support the construction and evolution of location-aware architectural
models by superposing explicit connectors that handle mobility aspects.

Information on this extension is already available in several publications. In [5] we
can �nd an early introduction and motivation for the new primitives, which is re�ned
and extended in [4] with a more explicit separation of concerns based on distribu-
tion connectors and support for compositional and incremental re�nement. An early
experiment is reported in [1] based on the airport luggage delivery system. A more
sophisticated account of this case study can be found in [4]. Updated information can
be found at http://www.�adeiro.org/jose/CommUnity.

References:
1. L.F.Andrade, J.L.Fiadeiro, A.Lopes and M.Wermelinger, �Architectural Techni-

ques for Evolving Control Systems�, in Formal Methods for Railway Operation
and Control Systems, G.Tarnai and E.Schnieder (eds), L'Harmattan Press 2003

2. J.L.Fiadeiro, A.Lopes and M.Wermelinger, �A Mathematical Semantics for Ar-
chitectural Connectors�, in Generic Programming, R.Backhouse and J.Gibbons
(eds), LNCS 2793, 190-234, Springer-Verlag 2003. 2003

http://drops.dagstuhl.de/opus/volltexte/2005/19

Language Engineering for Model-Driven Software Development 21

3. J.L.Fiadeiro and A.Lopes, �CommUnity on the Move: Architectures for Distribu-
tion and Mobility�, in Formal Methods for Components and Objects, F.deBoer
and M.Bonsague (eds), Springer-Verlag 2004.

4. A.Lopes and J.L.Fiadeiro, �Adding Mobility to Software Architectures�, A.Brogi
and J.- M.Jacquet (eds), FOCLASA 2003 � Foundations of Coordination Langua-
ges and Software Architecture, Electronic Notes in Theoretical Computer Science.
Elsevier Science, in print.

5. A.Lopes, J.L.Fiadeiro and M.Wermelinger, �Architectural Primitives for Distribu-
tion and Mobility�, in Proc. SIGSOFT 2002/FSE-10, 41-50, ACM Press, 2002.

6. M.Wermelinger and J.Fiadeiro, �Connectors for Mobile Programs�, IEEE Tran-
sactions on Software Engineering 24(5), 331-341, 1998.

Joint work of: Wermelinger, Michel; Lopes, Antónia; Fiadeiro, José

See also: http://www.�adeiro.org/jose/CommUnity

http://www.fiadeiro.org/jose/CommUnity

	04101 Abstracts Collection Language Engineering for Model-Driven Software Development --- Dagstuhl Seminar ---
	 J. Bézivin and R. Heckel

