
Refinement and Consistency in Multiview

Models

Heike Wehrheim

Department for Computing Science
University of Oldenburg

26111 Oldenburg, Germany

wehrheim@informatik.uni-oldenburg.de

Abstract. Model transformations are an integral part of OMG’s stan-
dard for Model Driven Architecture (MDA). Model transformations should
at the best allow for a seamless transition from high-level models to ac-
tual implementations. They are therefore required to be behaviour pre-
serving: models (or the final implementation) at lower levels should ad-
here to the descriptions given in higher level models. Moreover, for com-
plex systems models usually consists of descriptions of different views on
the system. Consequently, different kinds of model transformations take
place on different views, and together they should guarantee behaviour-
preservation.
In this paper we discuss the applicability of formal methods to model
transformations. Formal methods come with build-in notions of trans-
formations between models, or more precisely, with refinement and sub-
typing concepts which provide means for comparing models on different
levels with respect to their behaviour. Such notions can be applied as
correctness criteria for evaluating model transformations. Moreover, re-
finement and subtyping concepts for different views can be shown to
neatly fit together. This is achieved by giving a common semantics to
all views which furthermore opens the possibility of checking consistency
between them.

1 Introduction

The OMG’s standard for model-driven architecture defines models to be the
core concepts in software development. Model transformations are intended to
provide the means for getting from high-level platform independent to lower level
platform specific models and eventually implementations. Model transformations
are expected to be behaviour preserving: lower-level models should reflect the
behaviour of higher-level models.

When modelling complex systems there are usually multiple different views
to be taken into account. A complex system has to fulfill several orthogonal
requirements: on the static behaviour (data and operations), on its dynamic
behaviour (adherence to protocols, scenarios), its timing behaviour, etc. . Thus
a model of a complex system will usually consist of descriptions of several views.

Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/19

Consequently, a modelling language has to supply the designer with facilities
for modelling multiple views and with (at the best formal) concepts supporting
a stepwise design with multiple views. This does in particular apply to model
transformations which should operate on all views, but concerns questions of
consistency between views as well.

The UML partly fulfills these requirements on modelling languages. It offers
possibilities for describing multiple views: the static behaviour can be modelled
using class diagrams, protocols are denotable as state machines, scenarios in
sequence diagrams. Concepts supporting a model-driven stepwise design with
multiple views, in particular formal concepts, are however less developed. In this
paper we will therefore discuss which concepts developed in the context of formal
methods can be applied to a model-driven development with multiple views. It
turns out that in particular refinement concepts, which play a central role in a
formal approach to software development, can be seen to tightly match (certain
forms of) model transformations. Refinement guarantees that the desired crite-
rion of behaviour preservation is met. Thus a model transformation involving a
change of a data type or a protocol, a splitting of an acitivity or an extension
with new operations can be evaluated. Furthermore, questions of consistency
between views (and its preservation under a transformation of the model) can
be precisely studied in a formal framework.

The main focus of the paper lies on illustrating the applicability of formal
methods to a model-driven design. We will therefore most often refrain from
giving a precise definition of the formal concepts and instead explain where the
concepts can be used. To this end we sketch some examples of model transforma-
tions on UML diagrams. For every transformation we provide a corresponding
concept from formal methods covering this case.

We only cite the work which is directly applied in the examples but are aware
of the fact that there are numerous other interesting approaches in this area.

2 Model transformations

In order to apply formal concepts to UML diagrams we need a formal semantics
for them. For this, we first of all have to choose a semantic domain and after-
wards define a translation of the diagram to this domain. The semantic domain
(or formal method) should most closely reflect the modelling domain of the par-
ticular sort of diagram, i.e. a diagram for describing static behaviour should be
given a semantics in terms of a state-based formal method whereas a diagram
for protocols or interactions should be translated to a formal method good at
modelling dynamic behaviour.

The examples of different views and model transformations elaborated on in
the sequel are described by class diagrams, protocol state machines and sequence
diagrams. The semantic domains for them are Object-Z (for class diagrams) and
CSP (for state machines and sequence diagrams). Object-Z [12] is an object-
oriented extension of Z [14], a a state-based specification language for describing
states and operations on them. CSP [11, 7] is a process algebra developed for

2 H. Wehrheim

modelling parallel communicating systems by means of process descriptions. The
actual translation from the diagrams to the semantic domains is not of interest
for the study undertaken in this paper. Of interest are the formal concepts coming
with these languages, and whether and how they are applicable in a model-driven
development.

The following model transformations will be studied. On the static model,
i.e. class diagrams, we look at

– changes of data types (and corresponding operations),
– splitting of operations, and
– extension with new operations.

On the dynamic model, i.e. protocol state machines, we look at corresponding
transformations which are

– changes of protocols,
– splitting of transitions, and
– extension with new transitions.

Change of a data type. Figure 1 shows a class A being part of a class diagram
of one model and a corresponding class C of a different model. The change
made in the model transformation concerns the type of the attribute buffer and
consequently the definition of the method choose operating on this attribute. In
class A attribute buffer is of type set (of some elements) and choose chooses just
any element of this set, whereas in C buffer is of type (injective) sequence and
choose always chooses the first element in the sequence.

init: ∅ init: 〈 〉

A C

buffer : set(elements)

choose : el ! ∈ buffer choose : el ! = first(buffer)

buffer : iseq(elements)

Fig. 1. Model transformation changing a data type

The question of interest for the correctness of the model transformation is the
following

Is every behaviour of C a behaviour of A?

The formal concept which can be used for answering this question is that of
data refinement coming from Object-Z [13, 1]. Data refinement is concerned with
describing the allowed changes for attributes and operations when the externally
observable behaviour is required to be preserved, or more precisely, when every
behaviour of C has to have a corresponding behaviour in A.

Refinement and Consistency in Multiview Models 3

Technically, this is achieved by imposing the following conditions on the
two classes (which are the downward simulation conditions of Object-Z data
refinement):

1. A representation relation R has to be given, which relates the attributes in
A with corresponding ones in C . For the example, R is

bufferA =
⋃

1≤i≤#bufferC
bufferC [i]

(the set buffer in A consists of the elements in the sequence buffer in C).
2. Initialisation: Every initial state in C must have a corresponding (via R)

initial state in A (which holds since an empty sequence is related to an
empty set).

3. Corresponding operations must have corresponding behaviour:
– Applicability: choose in A is applicable whenever choose in C is appli-

cable (which is true since both are applicable when the set/sequence,
respectively, is non-empty),

– Correctness: Whenever choose is applied in C , the result (concerning
outputs and next state) corresponds with an application of choose in A

(which holds since the first element of the sequence in C is an element
of the corresponding set in A as well and thus can be chosen as output).

Change of protocol. Figure 2 shows two protocol state machines belonging to
classes A and C , respectively, which are part of different models. The state
machines describes the ordering of operations which are possible for a file. The
state machine of A belongs to a higher-level model, it is nondeterministic and
also models the case where the file to be opened is non-existent (and thus no
read/write might be possible after open). In C the nondeterminism has been
resolved, possibly by ensuring applicability of open on existing files only.

open

close
read
write

A:
open

close
read
write

C:

open

Fig. 2. Model transformation changing a protocol

The correctness criterion for such kind of changes is again:

Is every behaviour of C a behaviour of A?

and the formal concept applicable here is that of process refinement [11] coming
from the process algebra CSP. Process refinement allows to reduce nondetermin-
ism in a process. Depending on how discriminating the notion should be one can
either use trace or failures refinement:

4 H. Wehrheim

1. Trace refinement: The traces (possible sequences of operation execution) of
C have to be a subset of those of A: traces(C) ⊆ traces(A). This holds for
the example since the state machine of C is contained in that of A.

2. Failures refinement: The failures of C (traces plus sets of operations which
cannot be executed after a trace, i.e. are rejected) have to be a subset of
those of A: failures(C) ⊆ failures(A). This holds for the example but would
for instance not hold for the reverse direction: the failures of A are not a
subset of the failures of C since A might refuse read after open whereas
C does not. Failures give additional information about the availability of
operations and thus provide a more discriminating view on processes.

Splitting of operation in static model. Figure 3 shows two classes with operations
for sending messages over a network. While class A contains a single operation
send , class C uses two operations for one send, the first one being responsible for
preparing the message for sending (e.g. adding certain headers) and the second
one for actual transmission.

send prepare
transmit

A C

Fig. 3. Model transformation splitting an operation into two

The question to be ask on this type of model transformation is slightly different
since the classes have different operations:

Has every behaviour of C a corresponding behaviour in A?

Here, corresponding means that the execution of prepare and transmit should
have the same effect as that of send . The formal concept to be used in this case
is that of non-atomic data refinement [2] from Object-Z. The conditions to be
checked can be seen as an extension of those of ordinary data refinement:

1. Again a representation relation R has to be given.
2. With this R the usual data refinement conditions have to hold, which are 1)

initialisation and 2) applicability and correctness of prepare; transmit with
respect to send : send is applicable if and only if the successive execution of
prepare and transmit is applicable, and the execution of prepare; transmit

corresponds to one of send .
3. Furthermore, there are additional conditions for ruling out new behaviour in

C which did not occur in A: 1) Continuation: once prepare has been executed
transmit is applicable, and 2) Proper starting: transmit cannot be executed
without prior execution of prepare.

Refinement and Consistency in Multiview Models 5

Splitting of operation in dynamic model. Figure 4 shows a similar example of
the splitting of an operation in a state machine. This time sending of messages
is part of a simple protocol involving the receipt of messages as well.

send

receive

A:
prepare

receive

C:
transmit

Fig. 4. Model transformation splitting a transition of a protocol

Again sending is split into preparation and transmission. The question is there-
fore

Has every behaviour of C a corresponding behaviour in A?

The formal concept applicable in this case is that of non-atomic process refine-

ment [3] from CSP. Correspondence of behaviours in this setting is declared via
an operation ↑ on traces and failures of processes which (roughly) maps the se-
quence prepare; transmit in traces to send (for an example:
(prepare; transmit ; receive; prepare; transmit) ↑= send ; receive; send). Tech-
nically, the conditions to be checked are an extension of ordinary process refine-
ment:

1. Depending on whether traces or failures are to be used we either check
traces(C) ↑ ⊆ traces(A) or failures(C) ↑ ⊆ failures(A).

2. In addition, two conditions corresponding to those of non-atomic data re-
finement have to be checked: 1) Continuation: after a trace of C in which
prepare has occured but transmit not, transmit may not be refused; 2) Proper

starting: There are no traces in C in which transmit occurs without a prior
prepare.

Extension of static model. The model transformation in Figure 5 replacing class
A by class C is concerned with an extension of the class with new methods. The
classes model buffers with methods put and get , and class C in addition with a
method full querying the contents of the buffer.
It is obvious that class C now cannot have exactly the same behaviour as A any-
more (since full cannot be called on A). The question to be asked for correctness
of the transformation is thus slightly rephrased. Instead of requiring behaviour
preservation, we require substitutivity:

Can a user of A use C as if it were A?

If a client uses C as if it were A then no difference to A should be detectable.
The formal concept achieving substitutivity is subtyping [9], in case of classes it

6 H. Wehrheim

A C

get
put

get
put
full

Fig. 5. Model transformation extending a class with new operations

is state-based subtyping from Object-Z [15]. Subtyping can be seen as a combi-
nation of refinement and inheritance: as far as existing methods and attributes
are concerned they may be changed according to the data refinement rules. For
the new methods it is required that they

– either do not modify attributes at all (which is the case in our example since
full is a query method),
or

– they only modify new attributes. This allows them to access values of at-
tributes already defined in A, but not to change them.

Extension of behaviour model. The last model transformation to be considered
is the case of extension for the dynamic model. Figure 6 gives the behaviour-
oriented version of the extension described in the previous example. A state
machine is extended with a parallel component independently executing the
method full .

A:

put

get

put

get

full

C:

Fig. 6. Model transformation extending a protocol with new transitions

The question is again that of substitutivity:

Can a user of A use C as if it were A?

The formal concept applicable here is the behaviour-oriented version of subtyp-
ing: when the state machines are given a CSP semantics they can be compared
via behaviour-oriented subtyping [16]. Technically, this notion is defined on the
failure sets of the processes for C and A:

Refinement and Consistency in Multiview Models 7

failures(C) ⊆ failures(A || CHAOS (full))

The notation || stands for parallel composition. A weaker notion can be defined
by using the traces of processes instead of the failures (see [10]). The definition
says that the behaviour of C has to be a process refinement of the behaviour of
A interleaved with executions of full at any time. Hence execution of full in C

may not interfere with the ”old” behaviour modelled in A.

Integrating the views and transformations. These rather small examples have
sketched how concepts from formal methods can be applied for evaluating model
transformations once the diagrams have been supplied with a formal semantics.
The question still to be answered is, however, what is the relationship between
these different concepts being applied to different views? What is the impact of
transformations on separate views on the overall system? In order to formally
define this, one semantic domain has to be chosen to which all views of one model
can be translated. An appropriate combination of the semantics of separate
views then gives the semantics of the system model. For class diagrams and
state machines a possible common semantic domain is CSP. The semantics can
be obtained by translating Object-Z to CSP and afterwards combining the CSP
semantics of the state machine with that of the class diagram:

CSP(ClassDiagram) || CSP(StateMachine)

This idea follows an approach taken in CSP-OZ, a combination of CSP and
Object-Z [4]. As a consequence, all Object-Z concepts which have been used for
model transformations need to be mapped to CSP. Fortunately, this works quite
well. For all three kinds of model transformations (change, splitting, extension)
correspondence results between the state-based and the behaviour-oriented def-
initions have been proven. More precisely, the following result has been shown
for data and process refinement [6, 8]

A

C

A

C

trans

trans

data
ref

process
ref

Object−Z CSP

Whenever a class C is a data refinement of a class A then the corresponding
CSP processes of C and A (obtained iva a translation from Object-Z to CSP)
are in a process refinement relationship. This result carries over to the cases of
non-atomic refinement [3]:

8 H. Wehrheim

 Object−Z CSP

A

C

A

C

trans

trans

non−atomicnon−atomic
data ref process ref

as well as subtyping [15]:

Object−Z CSP

A

C

A

C

trans

trans

behaviour−oriented
subtype

subtype
state−based

Moreover, all three notions of refinement/subtyping can be shown to be preserved
under parallel composition, which is the operator used to combine the semantics
of views. As a consequence, it is possible to separately apply the state-based
concepts on the class diagrams and the behaviour-oriented concepts on the state
machines while still achieving a correct transformation on the complete model.

3 Consistency

Correctness of model transformations is sometimes also referred as vertical con-

sistency. In this section we are concerned with horizontal consistency between
views. Views partially define the behaviour of a system. The parts they define
might not necessarily be disjoint, thus the question arises whether the views
within one model specify contradictory requirements. A formal semantics for
views is useful for answering this type of question as well.

Again, we only sketch this on very small examples. The first example concerns
classes and associated state machines.

A

A:

A model with a class diagram and state machines has two partially overlapping
views: the state machine restricts the order of method executions and precondi-
tions of methods might restrict it as well. For checking whether these require-
ments can be fulfilled at the same time, the semantics for the whole system can
be checked:

Refinement and Consistency in Multiview Models 9

– Set the system semantics to S = CSP(ClassDiagram) || CSP(StateMachine),
– check whether there is a deadlock in S but none in CSP(ClassDiagram) and

CSP(StateMachine). If the answer is yes, then the class diagram and the
state machines impose conflicting requirements on method executions.

This check can be performed automatically using the CSP modelchecker FDR
[5].

The second example concerns consistency between a system model consisting
of a state machine and a class diagram and a sequence diagram describing a
possible scenario.

They are consistent if the scenario is possible in the model. This can be checked
as follows:

– Again set S = CSP(ClassDiagram) || CSP(StateMachine),
– take P = CSP(SequenceDiagram),
– and check whether traces(P) ⊆ traces(S), i.e. whether the behaviour de-

scribed in the sequence diagram is part of the behaviour of the system.
Again this can be checked with FDR.

Furthermore, a formal semantics can be used to study what types of consis-
tency are preserved under what model transformations. For the two examples
given above the theory from the process algebra CSP immediately gives us the
following two results:

1. Consistency between classes and state machines is preserved under refine-
ment: If A and C are both models comprising a class and a state machine,
the model A is consistent and there is a refinement relationship between the
corresponding views of C and A, then C is consistent as well.

2. Consistency between a system model and a scenario might not be preserved
under refinement: Refinement allows for a reduction of behaviour, thus a
scenario possible in A might not be possible in C anymore, even if C is a
refinement of A.

4 Conclusion

The purpose of this paper was to illustrate on several small examples from the
UML what concepts coming from the area of formal methods can be applied to
what questions arising in a model-based design of complex systems. In particular,
several kinds of model transformations on different views as well as consistency

10 H. Wehrheim

between views has been considered. As future work we plan a more systematic
study of these issues, in particular on preservation of consistency under model
transformations.

Acknowledgement. I am grateful to John Derrick and Holger Rasch for joint
work which became part of this paper.

References

1. J. Derrick and E. Boiten. Refinement in Z and Object-Z, Foundations and Advanced
Application. Springer, 2001.

2. J. Derrick and H. Wehrheim. Using coupled simulations in non-atomic refinement.
In ZB 2003: Formal Specification and Development in Z and B, number 2651 in
LNCS, pages 127–147. Springer, 2003.

3. J. Derrick and H. Wehrheim. Non-atomic refinement in Z and CSP, 2004. draft.
4. C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowman and

J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS ’97), volume 2, pages 423–438. Chapman & Hall, 1997.

5. Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 User Man-
ual, Oct 1997.

6. J. He. Process simulation and refinement. Formal Aspects of Computing, 1(3):229–
241, 1989.

7. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
8. M.B. Josephs. A state-based approach to communicating processes. Distributed

Computing, 3:9–18, 1988.
9. B. Liskov and J. Wing. A behavioural notion of subtyping. ACM Transactions on

Programming Languages and Systems, 16(6):1811 – 1841, 1994.
10. E.-R. Olderog and H. Wehrheim. Specification and inheritance in CSP-OZ. In

F.S. de Boer, M. Bonsague, and W.P. de Roever, editors, Formal Methods for
Components and Objects, volume 2852 of LNCS, pages 361–379. Springer, 2003.

11. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
12. G. Smith. The Object-Z Specification Language. Kluwer Academic Publisher, 2000.
13. G. Smith and J. Derrick. Refinement and verification of concurrent systems speci-

fied in Object-Z and CSP. In M. Hinchey and Shaoying Liu, editors, Int. Conf. of
Formal Engineering Methods (ICFEM), pages 293–302. IEEE, 1997.

14. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International
Series in Computer Science, 2nd edition, 1992.

15. H. Wehrheim. Relating State-based and Behaviour-oriented Subtyping. Nordic
Journal of Computing, 9(4):405–435, 2002.

16. H. Wehrheim. Behavioral subtyping relations for active objects. Formal Methods
in System Design, 23:143–170, 2003.

Refinement and Consistency in Multiview Models 11

