
Subjects, Models, Languages, Transformations

Arend Rensink

Department of Computer Science, University of Twente
P.O.Box 217, 7500 AE, The Netherlands

rensink@cs.utwente.nl

Abstract. Discussions about model-driven approaches tend to be ham-
pered by terminological confusion. This is at least partially caused by
a lack of formal precision in defining the basic concepts, including that
of “model” and “thing being modelled” — which we call subject in this
paper. We propose a minimal criterion that a model should fulfill: essen-
tially, it should come equipped with a clear and unambiguous membership
test ; in other words, a notion of which subjects it models. We then go
on to discuss a certain class of models of models that we call languages,
which apart from defining their own membership test also determine
membership of their members. Finally, we introduce transformations on
each of these layers: a subject transformation is essentially a pair of sub-
jects, a model transformation is both a pair of models and a model of
pairs (namely, subject transformations), and a language transformation
is both a pair of languages and a language of model transformations.
We argue that our framework has the benefits of formal precision (there
can be no doubt about whether something satifies our criteria for being
a model, a language or a transformation) and minimality (it is hard to
imagine a case of modelling or transformation not having the character-
stics that we propose).

1 Introduction

The literature on model-driven architecture (MDA, see [16]) is dominated by
the picture of a four-layer modeling hierarchy, in which each layer is populated
by instances of the model one level higher, and the sole inhabitant of the top
layer can be seen as an instance of itself. This certainly makes for a very elegant
structure; however, too little attention is paid to a precise, unambiguous defini-
tion of the building blocks in that structure. The most glaring omission is that of
instantiation: what exactly is meant by “something is an instance of something
else”? This omission has been pointed out by others before (e.g., [2,6]); a careful
investigation has led several researchers independently to the conclusion that
there are at least two different, incompatible kinds of instantiation involved.

We take a different tack: rather than fixing, or trying to fix, a particular
notion of model and instantiation, we take a closer look at the relative roles of
a model and the things it models. That is, we do not follow the idea that there
should be four absolute layers of modeling with a global notion of instantiation;
rather, we allow the introduction of model/instance relations that may occur

Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/24

everywhere; the only requirement is that a model carries with it a clear and
unambiguous notion of what is an instance and what is not. We then proceed
by extending this minimal core with the concepts of language, which we define
as a special kind of model of models, and transformation, which we interpret in
terms of binary relations over models.

The purpose of this work is twofold:

– Reduce terminological confusion. We have observed that many discussions on
model-driven engineering are frustrated by the fact that people hold different
interpretations of the concepts of modeling and meta-modeling; sometimes
without even realizing it, or sometimes (even worse) while insisting that their
interpretation is the (only) correct one. We try to remedy this by giving
formal criteria (using only elementary algebra) for a very small vocabulary;
we argue that this can be used, on the one hand, as an underpinning of
existing work, and on the other hand, to show up subtle distinctions between
existing interpretations.

– Focus on core ideas. We believe that the concept of model-driven engineering
is very worthwhile and enlightening, and we subscribe to the OMG’s vision
regarding its use; but we do not believe that it should be universally applied
or carried on ad infinitum. Rather, one should keep the purpose of a given
model in mind, and on a case-by-case basis investigate the usefulness of
formulating a higher-level model of which the first one is an instance. For
similar reasons, we see little benefit in an absolute numbering of levels of
meta-modeling. Instead, we present the smallest set of concepts that, in
our opinion, encompasses the required relation between models and their
members.

Let us start by laying down some of the terminology that we will be using.

Subjects. This is what we call every entity in the domain of discourse. That
is, in any given application one has to delimit that domain, in other words,
one has to make clear what subjects are involved in that application. By this
requirement we avoid theoretical pitfalls such as Russel’s paradox.

Models. These are subjects with one special feature, namely a membership
test. Essentially, the membership test is a function stating, for every subject,
whether it is or is not a member of the model in question.

Elementary though it is, the above already embodies some distinguishing char-
acteristics. In particular, we reject the idea that there is a universal notion of
instantiation, that is the same over all models. Rather, our membership test
comes with the model. Thus, in our view, it is quite acceptable that given sub-
ject is a member of more than one model.

Languages. These are special kinds of models of models with one additional
feature besides their membership test, namely a correctness criterion. The
correctness criterion induces the membership test of all members. That is,
not only does a language have a way to recognize its own members (through
its own membership test, which it has by virtue of the fact that it is a model),
but also to establish the members of its members.

2 A. Rensink

Transformations. These are essentially ordered pairs of subjects: every trans-
formation identifies left and a right element. Presumably one is obtained by
manipulating the other, but we do not enforce this in any way. Note that
transformations are themselves also subjects, and may therefore be members
of models; moreover, the pair of subjects in a given transformation may be
models.

In fact, the “modeling dimension” and the “transformation dimension” are or-
thogonal: we may unambiguously speak of transformation models/languages or
model/language transformations, and even of model transformation models and
model transformation languages, and so on.

The ideas outlined above are made more precise in two ways. Firstly, we provide
some (elementary) mathematical definitions for the core concepts of subjects,
models, languages and transformations; and we also give an equivalent pictorial
representation in the form of a number of UML-like class diagrams. Secondly,
we give a range of examples intended to clarify by illustration.

This work originated at the Dagstuhl seminar on “Language Engineering for
Model-Driven Software Development” (see [4]); this paper presents the current,
still preliminary, state of the framework. This owes much to the other workshop
participants, in particular Colin Atkinson, Ralf Laemmel, Daniel Moldt and
Reiko Heckel.

2 Models

All the definitions below require a universe of subjects Subject. This means
that the set of subjects, which is the domain of discourse for a given application
of the framework, must be given. It does not need to be finite and it does not
have to be a mathematical set. B denotes the set of boolean values {tt,ff}.
Definition 2.1 (models). Given a universe Subject, a model is a subject
M ∈ Subject with an associated boolean function isMemberM : Subject → B

stating, for every subject in Subject, whether it satisfies (is a member of) the
model.

As a shorthand, we write s |= M for isMemberM (s). From a mathematical point
of view, the above definition may seem overly complex: a boolean function such
as isMember is equivalent to a unary predicate over Subject, which in turn is
equivalent to a subset of Subject. We have chosen this formulation for several
reasons:

– It is closer to the intuition of most software engineers;
– It emphasizes that the membership function is intended as intensional and

not extensional, by which we mean that a model does not have to be able to
enumerate or generate all its members;

– It opens the way to generalizations where this function may be partial
(reflecting that membership may be undecidable) or range over the fuzzy
booleans (reflecting that there may be uncertainty about membership). We
do not, however, investigate such generalizations in the current paper.

Subjects, Models, Languages, Transformations 3

isMember(Subject)

Subject

Model

Fig. 1: UML diagram for the concepts in Definition 2.1

In UML notation, the framework so far is depicted in Figure 1. For the same
reasons as given above, we have deliberately chosen not to represent the mem-
bership function as an association between Model and Subject.

Examples. We give a series of examples to show the utility of this definition and
to strengthen the intuition.

1. Every type (in the programming language sense of the word) serves as a
model for the values of that type. The membership test can be specified for
instance by typing judgments of the form Γ ` f : T , where T is a type, f
a value (i.e., a term) of that type, and Γ a context specifying types for the
free variables possibly occurring in f . The membership test is implemented
by the type checking algorithm.

2. Similarly, every database scheme is a model for all databases set up according
to that scheme; the membership function is implicit in the semantics of the
database scheme.

3. XML documents can be modeled in two different ways: either through an
XML Data Type Definition or through an XML Schema. Both are model in
out sense; the membership function is implicit in the semantics of DTD’s,
resp. schemas. (This example shows that a given subject can very well have
more than one model.)

4. The grammar of a programming language such as Java is a model for all
Java programs. The membership function is the parsing function.

5. Every program is a model for its actual executions. The membership function
is trivial, since an execution is a volatile thing which can only be obtained
from the program in the first place, viz., by executing it.

6. Every class diagram can be seen as a model for all object diagrams that
contain instances of the classes of the diagram, with associations and at-
tributes also as specified by the class diagram. The membership function is
a many-to-one relation between the nodes in the object diagram (i.e., the
objects) and the nodes in the class diagram (i.e., the classes) that preserves
the associations and attributes; this can for instance be formalized through
a morphism between the diagrams.

7. Another interpretation of a class diagram is as a model of program states,
namely those states that (on the heap) have instances of the classes shown in
the diagram. The membership function can be defined through serialization
and reflection.

4 A. Rensink

8. The UML meta-model can serve as a model for all types of UML diagrams:
class diagrams, sequence diagrams, state diagrams and so on. Each type
of diagram corresponds to a different membership function. In our terms,
therefore, the UML meta-model is not yet a model but becomes one when a
specific membership function is also provided. For instance, the membership
function for class diagrams states that diagrams may are classes, operations,
associations and so on, with corresponding constraints, but the concept of
state (which is in the meta-model) plays no role in this context. Note that
these membership functions have not been formalized in the UML standard;
we consider this to be a real omission.

9. The Meta Object Facility caps off the OMG’s meta-level hierarchy; it is seen
as a model for all types of meta-model, such as the UML and XML meta-
models, and also as a model for itself. A membership function that supports
this view might be defined along the following lines: in order to be a member
of the MOF, a given subject has to explicitly provide its own interpretation
of the concepts present in the MOF; that is, it has to state what its model
elements, types, classifiers etc. are, and also show that those elements satisfy
the required constraints. Thus, the responsibility for showing membership is
put largely on the side of the would-be member, rather than on the side of
the model.

10. Every scientific model of a real-world system is a model in the sense of Defini-
tion 2.1. The membership function is determined through experimentation,
viz. by testing that the system behaves as predicted by the model. (Actu-
ally, this is an example where the membership function is not really to the
booleans, but to a fuzzy or probabilistic space there it can typically not be
established with absolute certainty that the model describes the real-world
system in all circumstances.)

3 Languages

Having a model does not make a method model-driven. Rather, it is the ability to
systematically change, adapt or evolve the model, with well-defined consequences
in terms of the subjects being modeled, that lies at the heart of the model-
driven philosophy. Such systematic changes require that the model itself be the
subject of another model. Thus, we require a model of models. This is usually
called a meta-model in the literature. In our vision, however, it is not enough
to have a meta-model; in addition to that, we require the aforementioned “well-
defined consequences in terms of the subjects being modeled.” Concretely, we
want meta-models with the additional capability to reason about the members
of their members. We will use the term language for such a special meta-models.
The required additional capability of languages is defined as follows.

Definition 3.1 (languages). Given a universe Subject and a set Model ⊆
Subject, a language is a model L ∈ Model with an associated boolean function
isCorrectL: (Model× Subject)→ B stating, for every model M and subject s,

Subjects, Models, Languages, Transformations 5

isCorrect(Model, Subject)

Model

Subject

Language

isMember(Subject)

Fig. 2: UML diagram for the concepts in Definition 3.1

whether s is a member of M according to L. The following equivalence should
hold for all M ∈ Model and s ∈ Subject:

isCorrectL(M, s) ⇐⇒ isMemberL(M) ∧ isMemberM (s) . (1)

We write s |=L M for isCorrectL(M, s). Again, we have chosen to represent
isCorrectL as a boolean function rather than a binary relation over Model and
Subject, for the same reasons as above. In UML notation, the framework is
depicted in Figure 2.

Examples. We iterate the examples of Section 2, extending them to the language
level.

1. Programming language types are members of a language for typing. The
type checking algorithm is actually defined on the level of this language: in
terms of Definition 3.1, it is the correctness function.

2. Similarly, database schemes are members of a database scheme language,
which determines the semantics of the scheme; this is the correctness func-
tion.

3. Both XML DTD’s and XML schemas are members of a language; again,
their semantics is defined on the level of the language rather than on the
level of each individual DTD or schema.

4. Programming language grammars are usually written in (some variant of)
BNF. A parser for the language can then be obtained as the result of a parser
generator, which embodies the semantics of BNF.

5. The possible executions of a program are never defined for individual pro-
grams, but are derived from the behavioral semantics of the programming
language. Note that the semantics is hardly ever formalized; moreover, in
contrast to the syntax, which as recalled above is determined by a lan-
guage one level higher still, the semantics is usually determined for each
programming language individually. However, in process algebra there is a
well-investigated field of Structural Operational Semantics (see, e.g., [9,1])
which actually studies a language for semantics which is on the level of BNF;
and this has also been applied to functional programming languages [13].

6 A. Rensink

6. It is not on the level of class diagrams that it is determined what object
diagrams are valid members. Rather, this is defined for all class diagrams
collectively; that definition belongs on the level of the UML meta-model,
alongside the membership function for class diagrams.

7. Similarly, whether or not a given program state obeys a particular class
diagram is determined on the level of the UML meta-model. Thus, the UML
meta-model can serve as a language for object diagrams or for program
states; the correctness functions are different in each case, even though the
membership function is the same.

8. It is the credo in MDA that the MOF is the meta-model for the UML meta-
model. However, the different membership functions for the class, sequence
and state diagrams etc., discussed in the example section of Section 2, have
not been formally defined on the level of the MOF. In fact, the the technical
machinery to formulate such definitions is absent. Thus, we argue that the
MOF is not a language for UML diagrams in the sense of Definition 3.1.

9. On the other hand, the MOF can be seen as a language for meta-models,
albeit in a rather trivial and uninteresting sense. Above we have recalled that
the MOF is a member of itself. If we now distinguish MOF as a language
from MOF as a model, and define the language MOF to have the model
MOF as its only member, then the membership of that member is fixed and
may as well have been defined on the language level. However, if we take
into consideration that model changes were the reason for introducing the
concept of languages in the first place, it is clear that a language with only
a single model is not a worthwhile concept.

10. Scientific models of a real-world systems are usually formulated as sets of
rules or equations in mathematics. It is the standard mathematical interpre-
tation that determines the predictions the model makes; this, then, is the
required correctness function for the language of mathematics.

4 Further meta-levels

The principle we have used to lift models to languages can of course be applied
again to languages. That is, we might introduce, say, theories that are models
of languages with not only a correctness function determining the membership
function of the languages, but also a semantics function determining the cor-
rectness function of the languages. However, we currently do not see the added
value of such a further layer. We therefore leave off at three.

A natural question is how the three layers of subjects–models–languages re-
late to the four layers of meta-modeling recognized in the MDA approach. To
answer this we reiterate that in our interpretation, subjects models and lan-
guages are roles, or, in other words, relative layers: something that is a subject
in one case may play the role of a model or even of a language in other situations.
Indeed, in the examples above the UML meta-model has appeared in all three
roles.

To illustrate this point, we take Example 4 of Section 3 above. It is well
known that a grammar for EBNF can itself can be specified in EBNF format;

Subjects, Models, Languages, Transformations 7

Model

Subject

Language

Transformation

isMember(Subject)

isCorrect(Model, Subject)

left

right

Fig. 3: UML diagram for the concepts in Definition 5.1

in the usual way, this gives rise to a parser for EBNF. Thus, EBNF occurs here
both at the model and at the language level; in MDA terminology, it appears
to be a reflective meta-model. However, this appearance is deceptive, for in this
scenario EBNF plays two distinct roles. The EBNF parser that comes out of the
parser generator implements the membership test for EBNF-as-a-model, but
not the correctness test for EBNF-as-a-language; in other words, is not a parser
generator. (In fact, EBNF does not have any facilities to describe semantics, so
it is not possible to generate parsers which do not only parse but also interpret
terms.)

5 Transformations

We now introduce, in the same framework, the concept of transformations. This
concept is orthogonal to the subjects-models-languages hierarchy: one may trans-
form subjects of any kinds. This orthogonality has the consequence that one may
also consider, without risk of confusion, models and languages for transforma-
tions.

Definition 5.1 (transformations). Given a universe Subject, a transfor-
mation is a subject t ∈ Subject with two associated subjects leftt, rightt ∈
Subject.

The intuition is that the transformation t embodies a change which has turned
leftt into rightt. However, we make no further assumptions about the na-
ture of this change; nor do we specify that rightt can be derived mechanically
from leftt. Typically, moreover, t may contain more information than just the
pair (leftt, rightt); for instance, it may contain a transformation rule that has
triggered the change plus the particular way that rule has been applied in t.

Transformation models and languages. Since transformations are themselves
subjects, the concepts that we have developed before apply: in particular, we

8 A. Rensink

can distinguish transformation models and transformation languages. Indeed,
transformations are hardly ever considered on an individual basis; instead, once
a process is recognized and identified as a transformation, the question is auto-
matically what the guiding principles for that transformation are, and how those
guiding principles can be written down; these are no more and no less than the
questions for transformation models and a transformation language.

As an example, we take a transformation from one data value into another,
namely from 1 into 2. (Thus, this transformation t has leftt = 1 and rightt =
2.) This is an instance of many different transformation models, two of which
are: doubling the value, and incrementing the value by one. Both these models
do not just take 1 to 2 but take any natural number to a natural number; in
other words, they are functions over the natural numbers. Again, there are many
transformation languages in which such functions can be written; for instance,
the language of mathematics (in which the functions appear as “x 7→ 2x” and
“x 7→ x+1”) or a functional language (in which the functions appear as “λx.2×x”
and “λx.x+ 1”).

Note that neither a transformation model nor a transformation language are
themselves necessarily transformations — we do not need to specify a left and
right for them.

Model transformations. An interesting issue arises when we transform models;
that is, when we have a transformation t with leftt, rightt ∈ Model. t itself
does not specify a relation between the members of leftt and rightt. One could
imagine, in addition to t, transformations of all members of the left hand side of
t to members of the right hand side of t. Formally, this would come down to a
family of transformations (ts)s for all s ∈ Subject with isMemberleftt(s), such
that leftts = s and isMemberrightt(rightts). We again investigate some of the
examples discussed before in Sections 2 and 3.

If we have such a family of transformations (ts)s then the original model
transformation t can easily be seen as a model for that family. The membership
function of t is defined by: isMembert(t′) if and only if t′ = ts for some s. This
means that t is both a model transformation and a transformation model.

1. An example type transformation is from (IN×IN)→IN (the type of functions
from pairs of natural numbers to single natural numbers; for example, the
addition function) to T → U → V (the type of functions from IN, the set of
natural numbers, to functions from IN to IN; for instance the function that,
given a natural number, returns a function that increments its parameter
by that number), or vice versa. For the forward direction, a possible family
of instance level transformations is from any function f , taken as a term in
lambda calculus with type judgment Γ ` f : (IN × IN)→ IN, to the term
λx.λy.f(x, y). For the backward direction, a possible family of transforma-
tions is from any f with Γ ` f : IN→ IN→ IN to λx.f(π1x)(π2x).

2. There are usually many ways to store a given set of data, giving rise to
different database schemes. Example transformations of database schemes
arise for instance out of the normalization steps in relational databases (see,

Subjects, Models, Languages, Transformations 9

e.g., [10]). There is always an unambiguous underlying transformation for
the databases that are members of the scheme.

Other kinds of model transformations, however, are being proposed and dis-
cussed without explicit regard for the corresponding subject transformations. In
other words, not all model transformations are transformation models.

4. The theory of refactoring (see [11,15]) is concerned with the transformation
of programs into other programs. The intention is usually that the result
of a refactoring has the same functionality as the original program. (Note
that here we use “a refactoring” to mean “a transformation from a concrete
program to a concrete program” and not for a set of such transformations.)
Regarding a program as a model for its executions, as we did above, this
means that there exists the idea that executions of the original program are
transformed into executions of the refactored program. This subject-level
transformation, however, is quite difficult to make precise, and it is hardly
ever described on more than a verbal level.

Model transformation models In the description above, we have been careful in
stressing that we were discussing transformations of particular, concrete models.
However, each of these examples actually describes general principles that can
be applied to many different models.

1. The type transformation mentioned above is an instance of the transforma-
tion from (T ×U)→V to T→U→V (where T , U and V stand for arbitrary
types), instantiated to the case where T = U = V = IN.

2. The relational database normalization steps are formulated in such a way
that they are applicable to many different database schemes — in fact, that
is precisely their point.

4. Refactorings, too, are always based on general principles. For instance, a
refactoring like “encapsulate field” can be applied to any field of any class;
each application is a concrete refactoring in the sense discussed above.

In those cases where they are made explicit, the “correctness criteria” (i.e.,
the underlying subject-level transformations) of model transformations actually
always apply to the transformation models, and not the concrete transformations.
For instance, the correctness of the transformation from (IN× IN)→ IN to IN→
IN→ IN was provided in the form of the subject-level transformations from f to
λx.λy.f(x, y); but this actually works on the level of the transformation model
(T × U)→ V to T → U → V .

Model transformation languages Carrying the concepts one step further, we can
see that the transformation models discussed above are themselves described
in a particular format. In many cases, the core of the transformation model is
specified by a rule consisting of a pair of terms with common meta-variables;
after filling in the meta-variables, these terms are instance of a language for
the models being transformed — in the terminology of this paper, the terms

10 A. Rensink

are models. Applying a rule of this kind involves a form of pattern matching:
whenever a model that we are interested in transforming can be obtained by a
particular instantiation of (the meta-variables in) the left hand side of a rule,
then the rule applies and the corresponding instantiation of the right hand side
is the right hand side of the resulting transformation.

For instance, given a language for types that includes the constructor → for
function abstraction, the pair ((T ×U)→V, T→U→V), where T , U and V are
meta-variables, is a term of the model transformation language defined in this
way.

This, then, comprises a more or less general method whereby we can generate
a model transformation language from the corresponding (model) languages. (It
is more or less general because it hinges upon the assumption that we can use
meta-variables in the way described.) Doubtless, other, also more or less general,
methods can be devised, for instance using imperative principles; for instance,
this same type transformation might be obtained by specifying

if isFuncType(T)
let U=T.resultType;
if isFuncType(U)

return newFuncType (newTupType(T.parType,U.parType), T.resultType);

Language transformations Above we have argued that a model transformation
t should itself be a transformation model for the members of leftt and rightt.
An analogous argument can be made in the case of language transformations:
in this case there should be underlying model-level transformations.

We give one example, based on the general method to define model transfor-
mation languages, outlined above. This method takes model languages L1, L2

to arrive at a model transformation language L whose members are essen-
tially pairs (M1,M2), where Mi is a pseudo-member of Li with meta-variables
thrown in, the instantiation of which gives rise to real members of Li. Each
such pair M = (M1,M2) can in fact be seen as a language transformation, with
leftM = L1 and rightM = L2. The underlying model-level transformations are
the instantiations of M .

6 Conclusions

As announced in the introduction, this paper presents a preliminary state of
ideas. Since the intention was mainly to provide a common grounds for discus-
sion, the success of this work will have to be judged by how well the terminology
presented here does at clarifying the core concepts.

Meta-models. We have gone to lengths to avoid the term ‘meta-model,’ even
though what we have called a ‘language’ is very close or even coincides with
others’ use of ‘meta-model’. Our choice for an alternative is motivated by two
observations:

Subjects, Models, Languages, Transformations 11

– The term ‘meta-model’, however, evokes strong associations with the MDA
terminology, in particular, the hierarchy of four, absolutely numbers, meta-
layers. As we have argued, we are in favor of regarding models and languages
as relative rather than absolute.

– The term ‘meta-model’ has multiple interpretations, which we believe to
be irreconcilable. One interpretation more or less corresponds to our use of
the term ‘language’ (but for the distinction between absolute positions and
relative roles). Another interpretation, however, is to take the multi-level
hierarchy itself as the subject under study.

Related work. There has actually been a lot of work in clearing up the MDA
terminology. For instance, [5,6,3,18] address and categorize various concepts of
instantiation, and [7,8,12,17,14] present general frameworks for transformation.
The main difference between this paper and the cited works is that we are inter-
ested not so much in an all-encompassing set of definitions or a classification of
approaches, but rather in minimal criteria that capture the core concepts of in-
stantiation and transformation. The result is a framework in which one can point
out and discuss subtle distinctions between, for instance, model transformations,
transformation models and the like.

References

1. L. Aceto, B. Bloom, and F. W. Vaandrager. Turning SOS rules into equations.
Information and Computation, 111(1):1–52, May 1994. LICS ’92 Special Issue.

2. J. Álvarez, A. Evans, and P. Sammut. Mapping between levels in the metamodel
architecture. In M. Gogolla and C. Kobryn, editors, UML 2001, volume 2185 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

3. C. Atkinson and T. Kühne. The essence of multilevel metamodeling. In M. Gogolla
and C. Kobryn, editors, UML 2001, volume 2185 of Lecture Notes in Computer
Science, pages 19–33. Springer-Verlag, 2001.

4. J. Bézivin and R. Heckel (organisers). Language engineering for model-
driven software development, Mar. 2004. Dagsuthl Seminar No. 04101; see
http://www.dagstuhl.de/04101 .

5. J. Bézivin and R. Lemesle. Ontology-based layered semantics for precise OA&D
modelling. In J. Bosch and S. Mitchell, editors, Object-Oriented Technology;
ECOOP ’97 Workshop Reader, volume 1357 of Lecture Notes in Computer Sci-
ence, pages 151–154. Springer-Verlag, 1998.

6. J. Bézivin and R. Lemesle. Towards a true reflective modeling scheme. In W. Caz-
zola et al., editor, Reflection and Software Engineering, volume 1862 of Lecture
Notes in Computer Science, pages 21–38. Springer-Verlag, 2000.

7. S. Bowers and L. Delcambre. On modeling conformance for flexible transformation
over data models. In B. Omelayenko and M. C. A. Klein, editors, Knowledge Trans-
formation for the Semantic Web, volume 95 of Frontiers in Artificial Intelligence
and Applications, pages 34–48. IOS Press, 2003.

8. K. Czarnecki and S. Helsen. Classification of model transformation approaches.
In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, 2002.

12 A. Rensink

http://www.dagstuhl.de/04101

9. R. De Simone. Higher-level synchronising devices in Meije-SCCS. Theoretical
Comput. Sci., 37:245–267, 1985.

10. C. C. Fleming and B. von Halle. Handbook of Relational Database Design. Addison-
Wesley, 1989.

11. M. Fowle, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving
the Design of Existing Code. Object Technology Series. Addison-Wesley, 1999.

12. A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood. Transformation: The
missing link of MDA. In Proc. 1st International Conference on Graph Transforma-
tion, volume 2505 of Lecture Notes in Computer Science, pages 90–105. Springer-
Verlag, 2002.

13. A. D. Gordon. Bisimilarity as a theory of functional programming. Theoretical
Comput. Sci., 228(1–2):5–47, 1999. Conference version in MFPS 1995, ENTCS 1.

14. I. Kurtev and K. van den Berg. Unifying approach for model transformations in the
mof metamodeling architecture. In M. van Sinderen et al., editor, Model-Driven
Architecture with Emphasis on Industrial Applications, volume TR-CTIT-04-12 of
CTIT Technical Report. University of Twente, 2004.

15. T. Mens and T. Tourwé. A survey of software refactoring. IEEE Transactions on
Software Engineering, 30(2), Feb. 2004.

16. OMG. MDA guide version 1.0.1, June 2003. See http://www.omg.org/mda .
17. S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of

model-driven software development. IEEE Software, 20(5):42–45, 2003.
18. D. Varró and A. Pataricza. Metamodeling mathematics: A precise and visual

framework for describing semantic domains of UML models. In H.-J. Jézéquel,
H. Hussmann, and S. Cook, editors, Proc. Fifth International Conference on the
Unified Modeling Language – The Language and its Applications, volume 2460 of
LNCS, pages 18–33. Springer-Verlag, 2002.

Subjects, Models, Languages, Transformations 13

http://www.omg.org/mda

	Subjects, Models, Languages, Transformations
	Arend Rensink

