
A Taxonomy of Model Transformations

Tom Mens1, Krzysztof Czarnecki2, and Pieter Van Gorp3

1 Software Engineering Lab, Université de Mons-Hainaut
Av. du champ de Mars 6, 7000 Mons, Belgium

tom.mens@umh.ac.be
2 Dept. Electrical and Computer Engineering, University of Waterloo

200 University Ave., West Waterloo ON N2L 3G1, Canada
czarnecki@acm.org

3 Dept. Mathematics and Computer Science, Universiteit Antwerpen
Middelheimlaan 1, 2020 Antwerpen, Belgium

pieter.vangorp@ua.ac.be

Abstract. This report summarises the results of the discussions of a
working group on model transformation of the Dagstuhl Seminar on Lan-
guage Engineering for Model-Driven Software Development. The main
contribution is a taxonomy of model transformation. This taxonomy can
be used to help developers in deciding which model transformation ap-
proach is best suited to deal with a particular problem.

1 Introduction

This report summarises the results of the discussions of the second working group
of the Dagstuhl Seminar on Language Engineering for Model-Driven Software
Development. The working group was composed of the following members (in
alphabetical order): Jean Bézivin, Alexey Cherchago, Krzysztof Czarnecki, Tracy
Gardner, Tudor Girba, Martin Gogolla, Jean-Marc Jézequel, Frédéric Jouault,
Alexander Königs, Jochen Küster, Tom Mens, Laurie Tratt, Pieter Van Gorp,
Daniel Varro, Heike Wehrheim, and Michel Wermelinger.

The working group addressed a variety of important issues with model trans-

formation, undoubtedly the most profound aspect of model-driven software de-
velopment. The group started with a discussion on the essential characteristics
of model transformations, as well as their supporting languages and tools. The
group also discussed the commonalities and variabilities between existing model
transformation approaches.

Based on this discussion we propose a taxonomy of model transformation in
this paper. Such a taxonomy is particularly useful to help a software developer
choosing a particular model transformation approach that is best suited for his
needs.

2 Model transformation discussion and taxonomy

In order to decide which model transformation approach is most appropriate
for addressing a particular problem, a number of crucial questions need to be

Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/11



2 Tom Mens et al.

answered. Each of the following subsections investigate a particular question,
and suggest a number of objective criteria to be taken into consideration to
provide a concrete answer to the question. Based on the answers, the developer
can then select the model transformation approach that is most suited for his
needs.

2.1 What needs to be transformed into what?

The first important question we tried to tackle was “What needs to be trans-
formed into what?”. This question concerns the source and target artifacts of
the transformation.

Program and model transformation. A first distinction concerns the kinds
of artifacts being transformed. If these artifacts are programs (i.e., source code,
bytecode, or machine code), one uses the term program transformation. If the
software artifacts are models, we use the term model transformation. In our view,
the latter term encompasses the former one since a model can range from abstract
analysis models, over more concrete design models, to very concrete models of
source code. Hence, model transformations also include transformations from a
more abstract to a more concrete model (e.g., from design to code) and vice versa
(e.g., in a reverse engineering context). Model transformations are obviously
needed in common tools such as code generators and parsers.

Kleppe et al. [1] provide the following definition of model transformation. A

transformation is the automatic generation of a target model from a source

model, according to a transformation definition. A transformation definition

is a set of transformation rules that together describe how a model in the source

language can be transformed into a model in the target language. A transforma-

tion rule is a description of how one or more constructs in the source language

can be transformed into one or more constructs in the target language. The par-
ticipants of the working group suggest that this should be generalised, in that
a model transformation should also be possible with multiple source models
and/or multiple target models. An example of the former is model merging,
where we want to combine or merge multiple source models that have been de-
veloped in parallel into one resulting target model. An example of the latter is a
transformation that takes a platform-independent model, and transforms it into
a number of platform-specific models.

Endogenous versus exogenous transformations. In order to transform
models, these models need to be expressed in some modeling language (e.g.,
UML for design models, and programming languages for source code models).
The syntax and semantics of the modeling language itself is expressed by a
metamodel (e.g., the UML metamodel).

Based on the language in which the source and target models of a trans-
formation are expressed, a distinction can be made between endogenous and



A Taxonomy of Model Transformations 3

exogenous transformations. Endogenous transformations are transformations be-
tween models expressed in the same language. Exogenous transformations are
transformations between models expressed using different languages.4

This distinction is essentially the same as the one that is proposed in the
“Taxonomy of Program Transformation” [2], but ported to a model transforma-
tion setting. In this taxonomy, the term rephrasing is used for an endogenous
transformation, while the term translation is used for an exogenous transforma-
tion.
Typical examples of translation (i.e., exogenous transformation) are:

– Synthesis of a higher-level, more abstract, specification (e.g., an analysis
or design model) into a lower-level, more concrete, one (e.g, a model of a
Java program). A typical example of synthesis is code generation, where the
source code is translated into bytecode (that runs on a virtual machine) or
executable code, or where the design models are translated into source code.

– Reverse engineering is the inverse of synthesis and extracts a higher-level
specification from a lower-level one.

– Migration from a program written in one language to another, but keeping
the same level of abstraction.

Typical examples of rephrasing (i.e., endogenous transformation) are:

– Optimization, a transformation aimed to improve certain operational quali-
ties (e.g., performance), while preserving the semantics of the software.

– Refactoring, a change to the internal structure of software to improve cer-
tain software quality characteristics (such as understandability, modifiabil-
ity, reusability, modularity, adaptability) without changing its observable
behaviour [3].

– Simplification and normalization, used to decrease the syntactic complexity,
e.g., by translating syntactic sugar into more primitive language constructs.

Horizontal versus vertical transformations. A horizontal transformation

is a transformation where the source and target models reside at the same ab-
straction level. A typical example is refactoring.

A vertical transformation is a transformation where the source and target
models reside at different abstraction levels. A typical example is refinement,
where a specification is gradually refined into a full-fledged implementation, by
means of successive refinement steps that add more concrete details [4, 5].

Table 1 illustrates that the dimensions horizontal versus vertical and endoge-

nous versus exogenous are truly orthogonal, by giving a concrete example of all
possible combinations. As a clarification for the Formal refinement mentioned
in the table, a specification in first-order predicate logic or set theory can be
gradually refined such that the end result uses exactly the same language as the
original specification (e.g., by adding more axioms).

4 If we have to deal with transformations with multiple source models and/or multiple
target models, there can even be more than 2 different languages involved.



4 Tom Mens et al.

Table 1. Orthogonal dimensions of model transformations

horizontal vertical

endogenous Refactoring Formal refinement

exogenous Language migration Code generation

Technological space. A second distinction was made based on whether the
source and target models of the model transformation belong to one and the
same or to different technological spaces [6]. In the latter case, transformation
tools need to provide exporters and importers to bridge the technological spaces
while the actual transformation is executed in the technological space of either
the source or target model.

For example, when translating XML documents into UML diagrams one can
choose to execute the actual transformation in either the XML or the MDA
technological space.5 To perform the transformation in the XML technological
space, one would use an XSLT or XQuery program translating the general XML
document into an XML document conforming to the syntax of the XMI stan-
dard (XML metadata interchange) and conforming to the semantics MOF-XMI
document for the UML standard. An XMI parser can then be used to import
the resulting XMI document in a UML CASE tool, residing in the MDA tech-
nological space.

Performing the transformation in the MDA technological space would require
a MOF metamodel for XML. After parsing the XML document into instances
of this metamodel, the actual transformation could be performed as a MOF
transformation. The QVT RFP [7] aims to standardize a language for writing
programs performing this kind of model transformations.

2.2 What are the important characteristics of a model
transformation?

Level of automation. A distinction can and should be made between model
transformations that can be automated and transformations that need to be
performed manually (or at least need a certain amount of manual intervention).

An example of the latter is a transformation from a requirements document
to an analysis model. For such a transformation, manual intervention is needed
to address and resolve ambiguity, incompleteness and inconsistency in the re-
quirements that are (partially) expressed in natural language.

Complexity of the transformation. Some transformations, such as model
refactorings, can be considered as small, while others are considerably more
heavy-duty. Examples of the latter are parsers, compilers and code generators.
The difference in complexity between small transformations and heavy-duty

5 The MDA technological space encompasses MOF and UML.



A Taxonomy of Model Transformations 5

transformations is so big that they probably require an entirely different set
of techniques and tools.

Preservation. Although there is a wide range of different types of transfor-
mations that are useful during model-driven development, each transformation
preserves certain aspects of the source model in the transformed target model.
The properties that are preserved can differ significantly depending on the type
of transformation. For example, with refactorings or restructurings, the (exter-
nal) behaviour needs to be preserved, while the structure is modified. With
refinements, the program correctness needs to be preserved [8].

2.3 What are the success criteria for a transformation language or
tool?

In the previous discussion, we restricted ourselves to characteristics of the model
transformation or of the models being transformed. Equally important, or per-
haps even more important, are the characteristics of a transformation language

or transformation tool. Below we enumerate a number of important functional

requirements that contribute to the success of such a language or tool.

Ability to create/read/update/delete transformations (CRUD). While
this is a trivial requirement for a transformation language, it is not that obvious
for a transformation tool. For example, if we consider a typical program refactor-
ing tool, it comes with a predefined set of refactoring transformations that can
be applied, but there is often no way to define new refactoring transformations,
or to fine-tune existing transformations to specific needs of the user. As such,
having the possibility to create new transformations or update existing ones is
an important criterion to assess the “openness” or “extensibility” of a dedicated
transformation tool.

Ability to suggest when to apply transformations. For certain applica-
tion scenarios, dedicated tools can be build that suggest to the user which model
transformations might be appropriate in a given context. For example, a refac-
toring tool might not only apply refactoring transformations, but also suggest
in which context a particular refactoring should be applied [9, 10].

Ability to customise or reuse transformations. For example, if we adopt an
object-oriented transformation language, we may be able to use the inheritance
mechanism for this purpose.

Ability to guarantee correctness of the transformations. The simplest
notion of correctness is syntactic correctness : given a well-formed source model,
can we guarantee that the target model produced by the transformation is well-
formed? A significantly more complex notion is semantic correctness : does the
produced target model have the expected semantic properties?



6 Tom Mens et al.

Ability to deal with incomplete or inconsistent models. It is important
to be able to transform models early in the software development life-cycle,
when requirements may not yet be fully understood or described in natural
language. This often gives rise to ambiguous, incomplete or inconsistent models,
which implies that we need to have mechanisms for inconsistency management.
These mechanisms may be used to detect inconsistencies in the transformations
themselves, or in the models being transformed.

Ability to group, compose and decompose transformations. The ability
to combine existing transformations into new composite ones is useful to increase
the readability, modularity and maintainability of a transformation language. As
an example, if we use the mechanism of graph transformation to express model
transformations, we may use the notion of transformation units for this purpose
[11].

Note that decomposition of a complex transformation into smaller steps may
also require a control mechanism to specify how these smaller transformations
need to be combined. This control mechanism may be implicit or explicit.

Ability to test, validate and verify transformations. Since transforma-
tions can be considered as a special kind of programs (e.g., the XSLT trans-
formation language is a Turing-equivalent programming language), we need to
apply verification and validation techniques to transformations as well to ensure
that they have the desired behaviour. This is for example a crucial requirement
for refactoring transformations, were we want to be able to ensure that these
transformations preserve the behaviour.

Ability to specify generic and higher-order transformations. Ideally,
transformations should be first class entities in a transformation language. If we
can represent transformations as models too, we can apply transformations to
these models, thus achieving a notion of higher-order transformations. A con-
crete example of this would be to refactor a given set of transformations (e.g.,
a family of code generators), to reduce the amount of code duplication in these
transformations. In order to achieve this, we need to transform the transforma-
tions themselves.

Ability to specify bidirectional transformations. Languages or tools that
have this property require fewer transformation rules, since each transformation
can be used in two different directions: to transform the source model(s) into
target model(s), and the inverse transformation to transform the target model(s)
into source model(s).

Support for traceability and change propagation. To support traceability,
the transformation language or tool needs to provide mechanisms to maintain



A Taxonomy of Model Transformations 7

an explicit link between the source and target models of a model transformation.
To support change propagation, the transformation language or tool may have
an incremental update mechanism and a consistency checking mechanism.
Note that some transformation approaches require to translate the source model
first into some standardised format (e.g., XML), then apply the transformation,
and then do another translation to obtain the target model. A clear disadvantage
of such an approach is that it is difficult to synchronise source and target models
when changes are made to them.

2.4 What are the quality requirements for a transformation
language or tool?

Besides all the functional requirements enumerated above, a transformation lan-
guage or tool should also satisfy a number of non-functional or quality require-

ments :

Usability and usefulness. The language or tool should be useful, which means
that it has to serve a practical purpose. On the other hand, it has to be usable

too, which means that it should be intuitive and efficient to use. Obviously, this
issue is directly related to developer training and experience. Instead of using a
full-fledged transformation language, developers may prefer a more direct model
manipulation approach, where the internal model is directly accessed by means
of an API. The advantage is that developers can keep on using their preferred
language and require virtually no extra training. The disadvantage is that the
API may restrict the kinds of transformations that can be performed [12].

Verbosity versus conciseness. Conciseness means that the transformation
language should have as few syntactic constructs as possible. From a practical
point of view, however, this often requires more work to specify complex trans-
formations. Hence, the language should be more verbose by introducing extra
syntactic sugar for frequently used syntactic constructs. It is always a difficult
task to find the right balance between these two conflicting goals. Referring to
the previous example of direct model manipulation via an API, the developers
will typically use a general purpose programming language to specify the trans-
formations. This leads to considerably more verbose code than with dedicated
model transformation languages [12].

Scalability. The language or tool should be able to cope with large and complex
transformations or transformations of large and complex software models.

Mathematical properties. If the transformation language or tool has a math-
ematical underpinning, it may be possible, under certain circumstances, to prove
theoretical properties of the transformation such as termination, soundness, com-
pleteness, (syntactic and semantic) correctness, etc. [8, 13, 14]



8 Tom Mens et al.

Acceptability by user community. The best transformation language from a
theoretical point of view may not necessarily be the best from a pragmatic point
of view. For example, it the target community is an object-oriented audience, a
transformation language based on the logic or functional paradigm may not be
the best choice.

Standardization. The transformation tool should be compliant to all relevant
standards. For example, it may need to support XMI for importing or exporting
the source or target models of a transformation.

2.5 Which mechanisms can be used for model transformation?

Mechanisms should be interpreted here in a broad sense. They include tech-
niques, languages, methods, and so on. To specify and apply a transformation,
ideas from any of the major programming paradigms can be used. One can de-
cide to use a procedural, an object-oriented, a functional or a logic approach, or
a hybrid approach combining any of the former ones.

The major distinction between transformation mechanisms is whether they
rely on a declarative or an operational (or imperative) approach. Declarative
approaches focus on the what aspect, i.e., they focus on what needs to be trans-
formed into what. Operational approaches focus on the how aspect, i.e., they
focus on how the transformation itself needs to be performed.

From a theoretical point of view, the declarative approach to transformation
seems the most promising. It is formally founded, it offers bidirectionality, and
more importantly, it offers a simpler semantic model to understand and specify
model transformations. For example, the order of rule application is implicit,
and the traversal of source models and creation of target models is implicit.
This allows one to hide the procedural details of the transformation, making
the transformations more compact and maintainable. On the other hand, an
operational approach may be better suited when considering transformations
that are required to incrementally update a model. Thanks to its built-in notions
of sequence, selection and iteration, an operational approach also seems better
to control the application order of a set of transformations.

Declarative approaches include, but are not limited to, all of the following
approaches:

Functional programming. A functional approach towards model transforma-
tion seems to be very appealing, since any transformation can be regarded as a
function that transforms some input (the source model) into some output (the
target model). In most functional languages, functions are first class, implying
that transformations can be manipulated as models too. An important disad-
vantage of the functional approach is that it becomes awkward to maintain state
during transformation.



A Taxonomy of Model Transformations 9

Logic programming. A logic language (e.g., Prolog or Mercury) has many
features that are of direct interest for model transformation: backtracking, con-
straint propagation (in the case of constraint logic programming languages),
bidirectionality of rules, and unification. Unification may either be partial (which
is easier to use and understand) or full (which is more powerful). Additionally,
logic languages always offer a query mechanism, which means that no separate
query language needs to be provided.

Graph transformation. Graph transformation is a set of techniques and as-
sociated formalisms that are directly applicable to model transformation [15, 16,
13]. It has many advantages. It is a visual notation: the source, target and the
transformation itself can be expressed in a visual way. It is formally founded: one
can resort to many theorems to prove certain properties of the transformation.
It offers mechanism to compose smaller transformations into more complex ones
[11]. The disadvantage is that the various techniques for graph transformations
are not necessarily compatible with one another, and that the current tool sup-
port is not yet sufficiently mature for industrial use. Another unknown is the
scalability of graph transformation approaches.

3 Conclusion

In this paper, we provided a taxonomy of model transformation. To goal is to help
the developer choosing a particular transformation language, tool, method or
technology for his specific needs. This is important, since the application domains
of model transformation technology can be very diverse. Therefore, there is no
unique answer to the question which approach to model transformation is the
best. Nevertheless, we have shown that it is possible to come up with a set of
concrete criteria that need to be taken into consideration when dealing with the
following crucial questions:

– What needs to be transformed into what?
– What are the important characteristics of a model transformation?
– What are the success criteria for a transformation language or tool?
– Which mechanisms can be used for model transformations?

Based on the answers to these questions, a particular model transformation
approach may be selected and adopted to address a particular problem.

References

1. Kleppe, Warmer, J., Bast., W.: MDA Explained, The Model-Driven Architecture:
Practice and Promise. Addison Wesley (2003)

2. Visser, E., et al.: Program-transformation.org – a taxonomy
of program transformation (2004) URL: http://www.program-
transformation.org/Transform/ProgramTransformation.



10 Tom Mens et al.

3. Fowler, M.: Refactoring: Improving the Design of Existing Programs. Addison-
Wesley (1999)

4. Wirth, N.: Program development by stepwise refinement. Comm. ACM 14 (1971)
221–227

5. Back, R.J., von Wright, J.: Refinement Calculus. Springer Verlag (1998)
6. Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments

with the ATL model transformation language: Transforming XSLT into XQuery.
In: 2nd OOPSLA Workshop on Generative Techniques in the context of Model
Driven Architecture. (2003)

7. Object Management Group: MOF 2.0 Query / Views / Transformations
RFP ad/2002-04-10 (2002) URL: http://www.omg.org/cgi-bin/apps/doc?ad/02-
04-10.pdf.

8. Back, R.J.: Correctness preserving program refinements. Technical Report Math-
ematical Centre Tracts #131, Mathematisch Centrum Amsterdam (1980)

9. van Emden, E., Moonen, L.: Java quality assurance by detecting code smells.
In: Proc. 9th Working Conf. Reverse Engineering, IEEE Computer Society Press
(2002) 97–107

10. Tom Tourwé, Mens, T.: Identifying refactoring opportunities using logic meta pro-
gramming. In: Proc. 7th European Conf. Software Maintenance and Re-engineering
(CSMR 2003), IEEE Computer Society Press (2003) 91–100

11. Kuske, S.: Transformation Units - A Structuring Principle for Graph Transforma-
tion Systems. PhD thesis, University of Bremen (2000)

12. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. IEEE Software (2003) 42–45

13. Mens, T., Demeyer, S., Janssens, D.: Formalising behaviour preserving program
transformations. In: Graph Transformation. Volume 2505 of Lecture Notes in
Computer Science., Springer-Verlag (2002) 286–301 Proc. 1st Int’l Conf. Graph
Transformation 2002, Barcelona, Spain.

14. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: Viatra
- visual automated transformations for formal verification and validation of uml
models. In: 17th IEEE International Conference on Automated Software Engineer-
ing. (2002) 267–270

15. Courcelle, B.: Graph rewriting: an algebraic and logic approach. Volume B of
Handbook of Theoretical Computer Science., Elsevier (1990) 193–242

16. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The
missing link of MDA. In: Graph Transformation. Volume 2505 of Lecture Notes
in Computer Science., Springer-Verlag (2002) 90–105 Proc. 1st Int’l Conf. Graph
Transformation 2002, Barcelona, Spain.


