
Language Engineering for Model-driven
Software Development

Dagstuhl Seminar 04101
February 29th to April 5th 2004

Jean Bézivin1 and Reiko Heckel2

1 University of Nantes, France
Jean.Bezivin@sciences.univ-nantes.fr

2 Universität Dortmund, Germany (on leave from Paderborn)
reiko@upb.de

Abstract. This paper summarizes the objectives and structure of a sem-
inar with the same title, held from February 29th to April 5th 2004 at
Schloss Dagstuhl, Germany.

1 Introduction

Model-driven approaches to software development require precise definitions and
tool support for modeling languages, their syntax and semantics, their notions
of consistency and refinement, as well as their mappings to the implementation
level. In order to support model-driven development in a variety of contexts, we
must find efficient ways of designing languages, accepting that definitions are
evolving and that tools need to be delivered in a timely fashion.

In this respect, language definitions are not unlike software. Thus, a discipline
of language engineering is required to support the design, implementation, and
validation of modeling languages with the goal to deliver languages at low cost
and with high quality.

An important contribution of any engineering science, besides the actual
technology provided, is the meta knowledge about what are the relevant con-
cerns to be addressed, what are the possible solutions, and what concern is best
addressed in a given context by which kind of technology.

It is understood that different concerns of language engineering, like the defi-
nition of abstract syntax and well-formedness rules, operational and denotational
semantics, consistency and refinement relations, and model transformations, will,
in general, require technologies from different domains.

A framework for classifying, choosing, and relating different solutions do-
mains is provided by the concept of technological spaces [KBA03]. A techno-
logical space is a working context with a set of associated concepts, body of
knowledge, tools, acquired skills and possibilities, often associated to a given
community. Well-known examples include XML, UML meta modeling, graph
transformation, algebra and logic, programming languages, etc.

Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/10

It has been the goal of the seminar to investigate relevant concerns and
promising solution domains for language engineering, learn from specific solu-
tions presented by the participants, and attempt a provisional classification and
mapping. To illustrate problems and available solutions, a sample language en-
gineering problem was proposed and elaborated.

After a more detailed discussion of the architectural aspect of language en-
gineering, this summary presents this case study, discusses concerns and open
issues raised by the corresponding language definition problem, and gives a more
general motivation of technological spaces as solution domains for model-driven
development.

2 MDA as Architecture of Processes and Languages

With its Model-Driven Architecture (MDA) initiative, the OMG has placed mod-
els into the center of their vision of software development. The claim is that,
using UML models, “platform-independent application descriptions . . . can be
realized using any major open or proprietary platform, including CORBA, Java,
.NET, XMI/XML, and Web-based platforms” [Gro04]. Technically, the approach
is based on model transformations for the automated refinement of platform-
independent by platform-specific models, and code generation from the latter to
the actual implementations.

As means of application integration, a model in MDA has a primarily ar-
chitectural purpose (hence the name), even when it does not describe the ar-
chitecture of a system. Consider, as a simple but typical example, a UML class
diagram providing a platform-independent data model for an application struc-
tured according to a three-tier architecture into presentation layer, application
logic, and data base access. To ensure the consistency of the data models used
in the different layers, they shall all be derived from a single integrated model,
i.e., the platform-independent class diagram.

In the course of development, the relevant parts of this diagram could be
transformed into platform-specific models for, e.g., an XML schema, and a Java
class structure, and a relational data base schema, in order to provide adequate
representations for the data in different layers. From these platform-specific class
diagrams the actual schemas or classes could be generated automatically.

In this case, the architectural aspect is not present in the models themselves,
but reflected by the transformations of models and the consistency relations
between them. In this sense, we think of the “A” in “MDA” as referring to the
architecture of the development process.

As a consequence of the MDA goal of generating implementations from mod-
els automatically, the quality of these models (their level of precision and for-
mality, their completeness and consistency) must be comparable with actual
programs or formal specifications. However, a model can only be as good as
the definition of the language to which it conforms. Thus, the first challenge
consists in delivering high quality language definitions. Due to the necessary
specialization of languages to different implementation platforms and applica-

2

J. Bézivin, R. Heckel

tion domains, this challenge manifests itself for a variety languages and dialects
which, moreover, are continuously evolving. Hence, reuse is inevitable to reduce
costs in defining and implementing languages. That means, languages (or their
respective definitions) should be seen as “components” with “connectors” de-
fined by consistency relations and transformations defined at the language level.
This leads us to a view of MDA as an architecture of languages.

Continuing the architectural metaphor, a model used in a concrete develop-
ment project, conforming to its language definition, can be seen in analogy to a
concrete component (instance) in the configuration of a system, instantiating a
generic component (type).

In the following section, we present an example of the first perspective, the
architecture of the development process, by means of a sample approach to the
model-based development of Web service processes. Section 4 is devoted to the
second view of MDA as an architecture of languages.

3 A Sample Language Engineering Problem

We sketch a model-based approach to the development of Web service processes
and discuss the concerns and issues raised by its definition and tool support.

3.1 Approach

A Web service is a software component that can be dynamically discovered,
linked, and invoked by its clients via XML-based protocols. This software-oriented
definition of the term can be contrasted with a business-oriented view, consid-
ering a Web service as a business process, implemented by the composition (and
coordination) of simpler services provided by other businesses.

The composition of services provided by different independent parties, at
both development time or runtime, requires a high degree of standardization and
flexibility. Therefore, rather than hard-coding business processes in platform-
specific programming languages which depend on certain compilers and run-
time environments, platform-independent XML-based languages like the Busi-
ness Process Execution Language for Web Services (BPEL4WS) [ACD+03] are
advocated. Such processes in XML representation can, at least in theory, be
adapted at runtime, exchanged between different services, and executed on dif-
ferent standardized interpreters.

To support the development of BPEL processes in a model-based approach,
we require

1. an intuitive and adequate modelling notation to allow precise specifications
of processes at the conceptual level;

2. an automatic transformation of process models to their XML-based encod-
ing to avoid the costly and error-prone task of deriving the implementation
manually;

3. techniques to analyze processes at the model level for syntactic and semantic
properties to avoid “debugging” the XML code.

3

Language Engineering for Model-driven Software Development

These problems and requirements are prototypical for a wide variety of lan-
guages and platforms in the Web services domain and elsewhere. Therefore,
instead of defining and implementing languages, transformations, and analysis
tools for every single problem, reusable solutions are required.

In [HV04] we have presented an approach based on the combination of three
such solutions: the Unified Modeling Language (UML) [Obj03] as standard no-
tation for modelling software, graph transformation [Roz97] as meta language
for defining model transformations, and a semantic interpretation of process
models in terms of Communicating Sequential Processes (CSP) [Hoa78] which
offers a language to express semantic consistency properties and tool support for
analysis.

UML for BPEL

BPEL4WS
processes

CSP processes traces

forward / reverse
engineering

semantic
mapping

analysis

feedback

Fig. 1. Outline of the approach: languages and transformations

An outline of the approach is given by the diagram in Fig. 1, whose vertices
are the languages by which processes may be represented, and whose edges
represent uni- or bi-directional transformations between these representations.

3.2 Concerns and Open Issues

The example raises several concerns that are prototypical to model-driven ap-
proaches.

Syntactic and semantic extensions. The UML, as a general-purpose mod-
elling language, provides a rich set of concepts to model all kinds a software
system. However, to address the more specific concerns of a particular applica-
tion domain or implementation platform the language needs to be specialized
and extended. For this purpose, the standard [Obj03] foresees the extension
mechanism of profiles, a compromise between desirable flexibility of the lan-
guage and necessary compatibility with existing tools. We have to use profiles
to tailor, in particular, the syntax of UML activity diagrams to the specification
of BPEL4WS processes. However, this tailoring should not stop at the level of
syntax, but continue to provide semantics to the new and specialized language
constructs. To define semantics in an incremental, extensible way represents an
problem that is not even completely solved for classical programming languages,
but yet more relevant for the UML extension mechanism.

4

J. Bézivin, R. Heckel

Model Transformations. In our example, model transformations occur in sev-
eral places: the transformation of activity diagrams into BPEL4WS, the imple-
mentation language and into CSP, the language for behavioral analysis, as well
as the transformation of traces, the result of CSP model checking, back into mod-
els. In many situations, two-way transformations are required, e.g., to support
a round-trip engineering approach, where not only models are transformed into
implementations (forward engineering), but also vice versa (reverse engineering),
thus allowing incremental changes at both levels.

Moreover, for a transformation specification to be manageable and reusable,
a modular approach is important which is structured in terms of the fundamental
concepts of the domain. In this case, whenever a concept is added or modified,
the corresponding transformation rules can be exchanged, hopefully without af-
fecting the rest of the mapping specification. For example, in the domain of exe-
cutable business processes, or workflow models, a corresponding concept analysis
has produced an established list of workflow patterns [vdAtHKB03], a subset of
which is supported by UML activity diagrams. In [HV04], we have given a map-
ping specification based on graph grammars which uses workflow patterns to
organize the set of rules. However, this mapping is restricted to well-structured
(essentially hierarchic) activity diagrams. It is open if a similar modularization
can be supported in general.

Model-based Analysis. The final building block of our approach is the analy-
sis of processes. Depending on the representation on which the analysis is per-
formed, we distinguish between syntactic and semantic analysis. The former is
often restricted to the evaluation of well-formedness constraints on (the abstract
syntax of) the model which reveals inconsistencies in structural dependencies
and typing.

Analysis of behavioral properties, instead, can hardly be done at the syntac-
tic level, but requires a mapping of models into a semantic domain providing
(1) a representation of the behavior to be analyzed, (2) means to express the
desired properties, and (3) techniques and tools to check if these properties
hold [EKGH01]. We have chosen the semantic domain of CSP [Hoa78] for this
purpose, whose refinement relations are the basis for expressing properties over
processes while tool support is provided by the FDR2 model checker [Ros97].

However, both syntactic and semantic analysis, should they be automated,
are limited to those parts of the model that are completely formalized. Inscrip-
tions in natural language, for example, can only be checked manually by a review
process. Still, semi-formal models have their advantages over formal ones if they
are used primarily by humans. The application of formal analysis techniques to
incomplete and semi-formal models is an open problem.

Summarizing, the model-driven development problem for Web service pro-
cesses as discussed in items 1 – 3 above could be realized through the techno-
logical spaces supporting UML models, XML documents, and CSP processes
and analysis. The mapping of MDA problems to existing solution domains is
discussed more generally in the next section.

5

Language Engineering for Model-driven Software Development

4 Mapping Problems to Solutions

In order to understand such mappings for the emerging field of model-driven
software development, the main characteristics of both the problem and the
solution domain need to be understood.

On the problem side, one of the main goals is the separation of business-
oriented and platform-related parts. This shall allow to deal more easily with
rapidly changing platforms, using generative techniques to map business-neutral
descriptions onto specific execution platforms. But mappings may also apply in
the reverse direction, extracting business models from legacy systems.

This description covers only part of the problem, focussing on a single as-
pects of the development process. The separation and subsequent integration
of business and platform is part of the more general task of aspect separa-
tion and aspect weaving. For example, the separate expression and merging of
functional and non-functional aspects are essential parts of the general problem
space, too. For each aspect we need a domain specific language to express it in
a user-oriented and non-ambiguous way, as well as a corresponding integration
strategy.

On the solution side, there are different alternatives, too. For example, aspect
separation and weaving may be done on a code-centric basis which leads to an
AOP-like paradigm. Instead, it is also possible to use model-based techniques to
handle the various aspects. Since a model captures only a specific view of the
overall system, it is very natural to build a dedicated model representing a given
aspect.

An understanding of this relation of representation between a system and its
model is the basis of model-driven development. But the model itself is written
in a given language which, in the MDA space, is defined by a metamodel. The re-
lation between a model and its metamodel is a conformance relation, the precise
specification of which is the task of the language designer. Similar organizations
can be found in various technological spaces.

Systems are becoming more complex because of the increase in complexity
(of code, data and aspects), in evolutivity and heterogeneity. In order to build
these systems, many technologies are offered. Usually one will need to use several
of these to solve a given problem. Unfortunately there is not and there will not
be any uniformly superior technology because each one has its weak and strong
points. In order to propose an agile method to problem solving in the domain
of software system development and maintenance, the main characteristics of
various technological spaces need to be identified and compared.

Some technological spaces offer better support for separation of concerns,
for executability, for transformations, for modularity, etc. Among the classical
spaces, we may mention model-driven engineering, XML document management,
ontology engineering, programming languages and abstract syntaxes, graph the-
ory and graph transformation, relational data base management systems, etc.

Each technological space is based on a central representation system (text
files, trees, graphs, hypergraphs, etc.). This representation system may be ex-
plicitly defined, e.g., by a representation ontology or by a meta-metamodel (like

6

J. Bézivin, R. Heckel

the OMG MOF). This often gives rise to a three-level organization. In MDA
the levels are called M3 for the MOF meta-metamodel, M2 for the metamodels,
and M1 for the models. In programming languages, a similar organization holds
with, e.g., EBNF at level M3, the syntax definitions of specific languages at level
M2, and programs at level M1. In ontology engineering we have a correspond-
ing structure with meta-level, intention, and extension ontologies. And in the
XML technological space, this same layering could be exhibited again. We thus
see that many technological spaces are similarly organized. This facilitates the
construction of bridges between them. For example a brigde between MDA and
XML is called XMI; a bridge between MDA and Java is called JMI; etc.

A Java program may also be considered as an XML document based on
a given DTD (JavaML for example) or as an MDA model based on a Java
metamodel, etc. These three representations in different technological spaces
have each their advantages and drawbacks. When solving a given problem, the
engineer should have a flexible and agile attitude towards which technology or
mix of technologies to apply in order to solve this problem. The sample language
engineering problem described in the previous section, for example, could be
solved in specific instances and combinations of the programming language space,
the XML document space, and the MDA space.

The study of language engineering problems from the perspective of various
technological spaces is of conceptual and practical interest. At the heart of this
study lies the investigation of how each space implements the basic structure
required (the two relations of representation and conformance) as well as the
investigation of mappings between spaces preserving that structure.

5 The Seminar

The program of the seminar was composed of contributions of about 40 partic-
ipating researchers and practitioners. They were representative of the different
technologies which contribute to a discipline of language engineering, i.e. UML
and Metamodelling, Graph Transformation and Graph Grammars, CASE Tools,
Aspect-oriented Software Development, and Programming Language Semantics.

In order to address the classical language engineering issues, discussion groups
on Syntax and Semantics, Model Transformation and Consistency, Tools, and
Pragmatics have been formed.

Reports on the results of discussions, abstracts of presentations, as well as
work-in-progress papers describing new ideas developed at the seminar are pub-
lished in these proceedings. A preliminary version of this summary has been
published in the 7th edition newsletter of the European Association on Software
Science and Technology (EASST).

References

ACD+03. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.

7

Language Engineering for Model-driven Software Development

Business Process Execution Language for Web Services, Version 1.1,
May 2003. http://www-106.ibm.com/developerworks/webservices/

library/ws-bpel/.
EKGH01. G. Engels, J.M. Küster, L. Groenewegen, and R. Heckel. A methodol-

ogy for specifying and analyzing consistency of object-oriented behav-
ioral models. In V. Gruhn, editor, Proc. European Software Engineering
Conference (ESEC/FSE 01), Vienna, Austria, volume 1301 of LNCS,
pages 327–343. Springer Verlag, 2001.

Gro04. Object Management Group. The architecture of choice for a changing
world, MDA executive overview. http://www.omg.org/mda/executive
overview.htm, 2004.

Hoa78. C. Hoare. Communicating sequential processes. Communicat. Associat.
Comput. Mach., 21(8):666–677, 1978.

HV04. R. Heckel and H. Voigt. Model-based development of executable business
processes for web services. In W. Reisig and G. Rozenberg, editors, Proc.
Advanced Course on Petri Nets, Eichstätt, Germany, LNCS. Springer-
Verlag, 2004. to appear.

KBA03. I. Kurtev, J. Bézivin, and M Aksit. Technological spaces: an
initial appraisal. http://www.sciences.univ-nantes.fr/lina/atl/

publications/PositionPaperKurtev.pdf, 2003.
Obj03. Object Management Group. Unified modelling language(UML) 2.0,

2003. http://www.omg.org/uml.
Ros97. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,

1997.
Roz97. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by

Graph Transformation, Volume 1: Foundations. World Scientific, 1997.
vdAtHKB03. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.

Barros. Distributed and Parallel Databases. 2003.

8

J. Bézivin, R. Heckel

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.omg.org/mda/executive_overview.htm
http://www.omg.org/mda/executive_overview.htm
http://www.sciences.univ-nantes.fr/lina/atl/publications/PositionPaperKurtev.pdf
http://www.sciences.univ-nantes.fr/lina/atl/publications/PositionPaperKurtev.pdf
http://www.omg.org/uml

	Language Engineering for Model-driven Software Development
	Jean Bézivin and Reiko Heckel

