
Foundations of

Model (Driven) (Reverse) Engineering :

Models

Episode I: Stories of The Fidus Papyrus and of The Solarus1

Jean-Marie Favre

ADELE Team, Laboratoire LSR-IMAG
Université Joseph Fourier, Grenoble, France2

Abstract. Model Driven Engineering (MDE) received a lot of attention in the
last years, both from academia and industry. However, there is still a debate
on which basic concepts form the foundation of MDE. The Model Driven Ar-
chitecture (MDA) from the OMG does not provided clear answers to this
question. This standard instead provides a complex set of interdependent
technologies. This paper is the first of a series aiming at defining the founda-
tions of MDE independently from a particular technology. A megamodel is
introduced in this paper and incrementally refined in further papers from the
series. This paper is devoted to a single concept, the concept of model, and to
a single relation, the RepresentationOf relation. The lack of strong founda-
tions for the MDA’ 4-layers meta-pyramid leads to a common mockery: "So,
MDA is just about Egyptology?!". This paper is the pilot of the series called
"From Ancient Egypt to Model Driven Engineering". The various episodes
of this series show that Egyptology is actually a good model to study MDE.

1 Introduction

Model Driven Architecture (MDA) is a recent standard proposed by the OMG [5]. Ac-
cording to this software engineering standard, developing a software is just about de-
veloping a series of models expressed in different meta-models. A sketchy summary of
the method would be: start from some Platform Independent Models (PIMs), incremen-
tally transform them into Platform Specific Models (PSMs), and end by generating the
code. The jargon used here is defined by the MDA standard. Just like other industrial
standards, MDA is a complex set of related technologies [6] with a particularly rich set
of acronyms.

1. Pilot of the series "From Ancient Egypt to Model Driven Engineering" [2]
2. http://www-adele.imag.fr/~jmfavre

Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/13

2.

Acronyms include for instance those for standards (e.g. MDA, CWM, JMI, XMI,
UML, OCL, QVT, MOF, SPEM, HUTN) and those for concepts (e.g. PIM, PSM, CIM).
At the time of writing this paper, the specifications mentioned above represent more
than 2600 pages of documentation. Moreover, each specification is evolving and exists
in many different versions. Naturally, only some configurations of these documents are
consistent. It is not always easy to determine exactly which configurations are valid, be-
cause standards are evolving in parallel and at different rates. Simply put, the MDA set
of standards is a quite complex evolving system.

One can wonder how this big pile of documents is organized at the OMG, and what
are the exact relationships between these many standards and technologies. One can
also wonder what is the strategy behind the production of so many standards. In No-
vember 2000, the OMG announced a change from its Object Management Architecture
(OMA) to its brand-new Model Driven Architecture (MDA) [6]. These slogans convey
information about of the OMG change of strategy. The former lasted more than one dec-
ade. The later is expected to provide a track for the next decade. This change of strategy
corresponds to a shift of paradigms. The motto "everything is an object" becomes "eve-
rything is a model" [25].

But what about architecture? As pointed out by various authors the last term of the
MDA acronym is just a buzzword. In [7], Steve Cook concludes: "In summary, MDA is
a misnamed: It is not an architecture at all". This is true, at least in the sense that the
use of this term has no direct relationships with the notion of software architecture.
Though MDA is really a misnamed, the term architecture could however be informally
interpreted as a way to organize the elements of the various standards. The following
figure shows the famous (yet controversial) 4-layers "architecture" popularized by the
UML, MOF and MDA standards. This schema is a coloured version of Figure 2.2 from
the MOF specification [8]. It shows that the pile of documents from the MDA standard
collections could be arranged in an structure that look like a Egyptian pyramid.

Figure 1 The four-layers metamodeling pyramid
A master piece of the Model Driven Architecture (OMG Dynasty, 2000 A.D.)

J.-M. Favre

3.

There is a lot of debate about this pyramid. The foundations of the MDA standards
are not clear and this standard received a lot of criticisms. The complexity of this stand-
ard, its continuous reference to technical aspects, and its incremental definition, makes
MDA particularly difficult to grasp and evaluate. Model Driven Engineering (MDE)
seems to be a promising approach to solve industrial issues, but underlying concepts
such as models, metamodels or transformations should be studied from a research per-
spective, and from a broader point of view. In this paper a "mega-model" is introduced
as a mean to define the essential concepts and relations of MDE. This mega-model is
carefully defined. The mega-model is represented here as a UML model with OCL con-
straints, though other incarnations of the mega-model in Z, Prolog and Hieroglyphics,
are under construction.

The shape of the OMG meta-pyramid recalls the architecture from Ancient Egypt,
but this paper shows that the comparison with antic worlds could be pushed much fur-
ther. This analogy helps in ensuring that the mega-model is technology independent, be-
cause the concepts are validated through the use of a wide range of artefacts, from an-
tiquities to modern computer programs. The analogy also helps to get an intuitive idea
of what MDE is all about, and this independently from complex technologies such as
the MOF for instance. After all, models have been used for ages.

One can learn much by considering an historical perspective. Y.F. Chen, the inven-
tor of the Entity Relationship (ER) data model studied how the concepts he identified
in computer science in the 70’s, were already present, though in different forms, in An-
cient China and Ancient Egypt. For instance, in the paper entitled "From Ancient Egyp-
tian Language to Future Conceptual Modelling" [1], Chen studied the relation between
Hieroglyphs and ER modelling. There is indeed a close relationship between the notion
of model and the notions of language, syntax, semantics, etc. The language theory,
which is undoubtedly a corner stone of computer science, takes its origin in the study
of natural languages. Saussure and Pierce were the pioneers in linguistics at the end of
the 19th century [3]. Semiotics or semiology, that is the study of signs, is in fact very
close to the study of models, because models are ultimately made of signs and symbols.
The importance of making the distinction between the objects and the signs that refer to
them was already known in Ancient Greece, thanks to the work of Aristotle. As Sowa
pointed out, today’s technologies and in particular the World Wide Web is based on
concepts that come from the Antiquity [4]. Maps are also archetypes of the notion of
model. In his work about MDE, Bézivin often refers to maps to illustrate the notions of
model and metamodel (e.g. [12]), and interestingly the history of maps is very rich since
it runs over millenniums.

Simply put, our goal is to study Model Driven Engineering as practised in Software
Engineering, but taking a broader perspective that the one provided by the OMG, whose
goal is to promote a particular set of technologies. This paper starts from Ancient Egypt,
where pyramids were build successfully more than 4000 years before the MDA pyra-
mid. This paper is indeed the pilot of a series entitled "From Ancient Egypt to Model
Driven Engineering". We follow the track of Egyptologists such as Champollion and
Joseph Fourier, who were at their time professors at the University of Grenoble. The
goal of these papers is to study the foundations of MDE and to a lower extend of Egyp-
tology; with a greater emphasis on the former topic, and a lower accuracy on the latter.

Foundations of Model (Driven) (Reverse) Engineering: Models

4.

 In this pilot episode only one concept is presented, the concept of model. It is shown
how everything starts from Egypt and from this concept. The remainder of this paper is
structured as following. In section 3 explains what is the difference between MDE and
MDA, and why it is worth to study MDE. The notion of mega-model is presented in sec-
tion 3 and related work is shortly discussed. The concept of model is then introduced in
section 4, and section 5 explains what model engineering is all about. This first episode
ends with a conclusion in section 6, but further episodes continue the series. For in-
stance, meta-models are guess stars of episode II [29] and in episode III we will discover
what meta-model engineering is about [30]. Further episodes describe other essential
concepts such as syntax, semantics and transformations. They cover other subjects such
as the relationships between metamodels and ontologies, or the relationships between
particular technological space and the megamodel presented here. The mega-model is
incrementally refined in each episode of the series.

2 MDA vs. MDE

Making explicit the foundations of Model Driven Engineering is an ambitious task and
it will require a lot of energy. As pointed out by Bézivin in [25], it took a lot of time to
reach a common understanding of what are the basic elements of the object oriented ap-
proach. Though some points are still sources of debate, at least this field has matured
enough to provided "good-enough" industrial-strength solutions. This will certainly be
the same for MDE [12] and it will take a lot of time to understand what models are ac-
tually and how they can help in building large software systems. In this series of paper
the focus is on large scale software evolution [31][45], and toy examples are not con-
sidered. But, before to launch the pilot of this series, it is wise to consider why MDE
should be studied in the first place. Pros and cons have to be confronted.

2.1 Why MDA may fail
Let’s start with a short review of the arguments used by MDA detractors and sceptics.
Scepticism is a guarantee of a good scientific approach.

The announcement of MDA in 2000 had in fact very little impact on the research
community. In the last years however, the situation changed and today MDA has some
supporters but also many detractors. MDA is indeed subject to a lot of criticism in the
research community. Though the MDA pyramid makes sense from an industrial point
of view, its exact structure has been a source of debate. For instance, the M0 layer is
subject of much controversy (note that in [8], the M0 layer was left blank in Figure 2.2,
but filled with an example in Figure 2.1 of the same document). The lack of strong foun-
dations for the MDA architecture leads to a common mockery:

Though the word "pyramid" is not used at all in the OMG specifications, as said before
references to Egypt makes sense, at least at the symbolic level. The figure below shows
the Saqqara pyramid, which is known as the first stone building on Earth. The layered
architecture of this pyramid is clearly apparent.

(1) "So, MDA is just about Egyptology ?!?"

J.-M. Favre

5.

As this photography suggests, the numbering of levels depends on the relative position
from which the pyramid is observed. It will be shown in [29] that this property applies
to the MDA architecture as well, and that pyramids provide indeed a good models to
understand the MDA approach.

MDA is sometimes announced as the next paradigm in Software Engineering.
Some marketing presentations even suggest that it could be the next silver bullet. Some
even claim that this approach will revolutionize Software Engineering. These kinds of
statements often leads to the following comment:

The MDA approach is based on the use of abstract representations of software that are
called "models", and from these models the idea is to produce the code. In other word,
raising the level of abstraction is one of the core idea of MDA. But, that’s also the aims
of almost all existing techniques in Software Engineering. Using the term "model", in-
stead of "abstraction" or "specification" will obviously not to be enough per se for a rev-
olution in Software Engineering.

The notion of "platform" also plays an important role in MDA. The idea is to build
models that are independent from the platform. But after all, what was the idea behind
programming languages and compilers? It was precisely to produce computing models
independently from hardware architectures and micro-processors. Obviously, there are
necessarily connections between MDA and compilation techniques. Introducing the no-
tion of platform is not enough to radically change Software Engineering.

Another important characteristic of MDA is the use of meta-models and metamod-
elling techniques as a mean both to describe languages and to structure software arte-
facts. Again, there are plenty of techniques in computer science to describe languages,
starting from the huge work on syntax and syntax-directed tools in the late 70’s and
80’s. One can argue that MDA is about managing graphs, not only trees. But there has
been also a significant amount of research on graphs and graph manipulation.

Figure 2 Saqqara "step" pyramid (2nd Dynasty, 2630 B.C.)
First stone building on Earth, a master piece of Ancient Egypt architecture

(2) "There is nothing new in the MDA! Similar approaches had existed for long."

Foundations of Model (Driven) (Reverse) Engineering: Models

6.

The idea of making explicit the relationships and structures of software artefacts is far
from new. Just remember large software engineering projects such as AD-lifecycle
from IBM, and the PCTE standard in Europe. Building a library of meta-models or
schemes to promote reuse and integration is not new either.

The novelty does not come either from the MDA pyramid. Similar structures were
present in standards such as IRDS, PCTE, CDIF, ODMG’93, etc. (e.g. [13]). What it
more, the Saqqara pyramid was built more than four thousands years before the MDA
pyramid. In that condition it would be difficult to argue that this architecture is new...

Another concern about MDA is about its complexity and quality of its foundations.

The MDA set of standards comes from industry. It does not attempt to reach the perfec-
tion. The challenge faced by industrial standards is instead to get to be adopt, used and
supported by a large community of software developers worldwide. These standards are
defined incrementally and their history often reflects the series of confrontations and
consensus that animate contributors. It should not be surprising in such conditions that
the quality of the standards does not compare favourably with well-thought software en-
gineering techniques such as formal specifications.

2.2 Why MDE may succeed
Formal specifications languages such a Z, VDM or B had received however little

attention from industry. Despite the advantages brought by these techniques, software
development community does not seem to be mature enough. Moreover, it is not clear
that the formalization required by these techniques is worthy in common software en-
gineering projects; at least when considered with respect to the additional cost implied.

This contrasts with the UML industrial standard which is becoming more and more
popular, although it has received a lot of criticisms. Despite UML lack of rigor, in many
situations some its subsets are considered as "good enough" to fulfil typical needs. More
importantly, UML has drawn the attention of developers to the fact the source code is
not the only way to think about software. For instance class diagrams are now consid-
ered as practical means for developing and understanding software. Simply put, UML
has popularized the notion of model in industry; or at least it has provided programmers
a first understanding of what a model could be.

In fact, the XML standard has played a similar role. It becomes each day more ob-
vious to programmers that software is not only made of code. Software also includes
XML files, databases, UML models, and so on. Improving a database schema or defin-
ing some XML DTDs are now considered as natural activities when programming. The
increasing importance of techniques such as introspection, when dealing with compo-
nent programming or distributed computing, also leads to the popularization of meta in-
formation and meta-levels. Meta-models are slowly finding their path to industry, while
this concept was considered as quite obscure a few years ago. Code generation also be-
comes a common practice with IDEs. Today no professional programmer is surprised
to see an XML file transformed into code. The availability of commercial code gener-
ators and associated tools also put emphasis on the need of customizing such transfor-
mations. That’s exactly, what the MDA is intended for.

(3) "Concepts in the MDA standards are unclear, ill-defined and too complex"

J.-M. Favre

7.

As suggested by Uhl, it seems that "Model Driven Architecture is Ready for Prime
Time" [14]; at least on software industry channels where MDA arouse a growing inter-
est. The complexity of technological platforms such as J2EE or DotNet is ever increas-
ing. This gives rise to new challenges in software engineering. Though concepts such
as those provided by PCTE where certainly good, they certainly came to early, in a mar-
ket which was neither mature enough to received them, nor demanding enough to study
and adopt them.

This is the same for syntax-directed technology which didn’t found the place it de-
served in software industry. By contrast, XML has become extremely popular thanks to
its simplicity. As said before defining new syntaxes, that is new DTDs and XML
schemes, is now commonplace.

 The same phenomenon can also be observed for transformation systems. Those
provided by research projects had a limited impact in the past. Today transformation
languages such as XSLT are used daily in web development. All these concepts and
techniques are now an integral part of the software development landscape. And this
will not change in a near future.

It makes no doubt that the MDA set of standards suffers from many deficiencies.
Though MDA, as defined by the OMG, is a set of a specific industrial technologies with
their own issues, model driven approaches seem however to be very promising. And
software industry is demanding for solutions.

After a period of relative silence from 2000 and 2002, the interest starts to grow in
the research community. For instance, since 2003 many conferences and workshop
started to included in their calls for papers references to model-driven approaches.
Though the MDA standard has been seminal, the current trend is to consider it just as
an step towards of a more general approach called Model Driven Engineering (MDE).
In particular Model Driven Software Engineering (MDSE) is the intersection between
MDE and software engineering, that is it is the subset of MDE which is concerned with
software production. Various research projects have been launched over the world to
study the potential of MDE and to define the underlying concepts.

2.3 Modelling and Egyptology, two French Traditions
There has been a long tradition in modelling in France. For instance, the model-

based specification languages such as Z took one of their roots in the early 70’s in Gre-
noble, when Abrial defined the first version of Z. B, its successor, is also well supported
in France. Now, various french companies are also quite active in the domain of model
driven engineering [15]. Similarly various research projects and initiatives has been
launched by national research institutions. For instance, the OFTA group recently pub-
lished a survey on MDE [16]. This survey covers both industrial issues and research
topics [15]. S. Gérard and P.A. Muller has launched an initiative called TopModL [19].
TopModL is an open consortium for the development of an open source MDE environ-
ment. National organisations for research such as INRIA also fund research projects to
study MDE. In particular research on model transformation is quite active in France
[17].

Foundations of Model (Driven) (Reverse) Engineering: Models

8.

In July 2003, the CNRS national institute for research also initiated a research
project which aims at establishing a map of MDE research issues and opportunities. An
explicit goal of this consortium is to establish which are the foundations of MDE, irre-
spective of a particular technology or standard. This should bring an answer to criticism
#3 mentioned above, that is the lack of foundations for MDA. Another core activity of
the group is to study how this field is connected to other areas in computer science.
MDE is best seen as a synergy between existing work. This is a direct answer to criti-
cism #2, that is the lack of references to previous work.

But what about #1? MDA is about Egyptology, and Egyptology should not be turn
into derision. The Frenchs were the first to consider Egyptology as a very serious mat-
ter. Egyptology was studied for the first time from a scientific point of view, with a sys-
tematic approach during the campaign of Egypt which start in 1798. Napoleon had
brought with him between nearly 1000 civilians including 167 of whom were scientists,
technicians, mathematicians and artists who studied the art, architecture, and culture of
Egypt. From 1809-1828, they published a 19-volume work called Description of
Egypt [21]. Their observations, drawings and illustrations were circulated throughout
Europe and created a tremendous interest in antiquities of Egypt. This is in this context
that the french scientist Joseph Fourier (1768-1830) went to Egypt. Nowadays, his nu-
merous contributions in mathematics are well known, but Fourier also wrote various re-
ports about Egyptology [20]. Joseph Fourier also gave later his name to the University
of Sciences in Grenoble. At the same period Jean-François Champollion (1790-1832)
and Jean-Jacques Champollion (1778–1867) had also been professors at Grenoble.
There were both recognized scientists and egyptologists. In particular, Jean-François
Champollion is acknowledged as the father of modern Egyptology thanks to his work
on deciphering the Hieroglyphics. The story of the Rosetta Stone is related in [30] and
it is shown how Champollion lain the foundations for both of Egyptian archaeology and
of metamodel reverse engineering.

2.4 Summary
This section can be summarized by the following statements.

• Model Driven Engineering (MDE) is a global software engineering approach.
• MDE aims at integrating existing results and bodies of knowledge.
• There is nothing radically new in MDE, except may be this integrative approach.
• MDE must not be confused with MDA.
• Model Driven Architecture (MDA) is a specific standard from the OMG.
• MDA specification has deficiencies and that’s why research is required.
• MDE comes after the failure of various projects such as AD-cycle, PCTE, etc.
• MDE should learn from past experiences.
• Software industry seems to be mature enough to receive MDE solutions.
• Software industry is demanding for MDE solutions.
• It will take time before reaching a common agreement on what is MDE exactly.
• The concept of model had been used for ages.
• Egyptology is a French tradition.

J.-M. Favre

9.

The series "From Ancient Egypt to Model Driven Engineering" could indeed be seen
an answer to MDA detractors. Firstly, it is true that MDE is about Egyptology. Second-
ly, it is true that there is nothing really new in MDE. That’s precisely what make the
power of MDE. Finally, it is also true that the foundations of MDA are not clear. That’s
precisely why more research is required. Model Driven Engineering is an approach that
seek to define a strong method for software development by integrating into a common
framework well-established techniques.

3 Towards a Mega-model for Model Driven Engineering

One of the issues with the MDA standard is that there is no clear separation between
essential concepts and the technologies that implement these concepts. Remember that
the MDA is not a research proposal, but an evolving industrial standard. A lack of rigor
characterize the specifications, which are not anyway assumed to be perfect.

For instance, the elements of the various pyramid layers are usually assumed to be
linked by so-called “instanceOf" relationships. While this could be true in the object-
oriented context, this relation is not recognized as such in other contexts such as gram-
mars and languages, databases, XML technologies, etc. This is a problem in the context
of MDE, since this approach aims at integrating various technologies, not only one. In
fact, due to its root in OO technology, everything tends to be called Object, Class, In-
heritance or InstanceOf in the context of the OMG specifications. These terms are often
used quite informally. Sometimes they describe situations that actually correspond to
different concepts [24][25][26]. Similarly, a common mistake is to define a meta-model
as being "a model of a model". Though the notions of model, metamodel, platform, PIM
and PSM are central to the MDA standard [53], these concepts are poorly defined.

This series of paper relies on the work of Seidewitz [23] and Bézivin (e.g. [25]) as
references frameworks for understanding the foundations of MDE. While in [23], Sei-
dewitz describes informally, yet thoughtfully, concepts such as models and meta-mod-
els, in [25] Bézivin identifies two fundamental relations coined RepresentationOf and
ConformantTo. There are also other frameworks around bringing other perspectives on
MDE. This is the case for instance for the framework provided by Atkinson and
Kühne [24] which clarifies the relationship between meta-model and ontologies.

In [31] a framework modelling the software space as a 3D space is introduced to
clarify the notion of meta-model and model co-evolution. In [35], a broader vision is
presented: the framework not only describes the concepts of model and meta-models,
but also the concepts related with (meta) modelling methods and procedures.

 In the context of this paper these frameworks are called mega-models. Though
technically speaking a mega-model is a meta-model, this term is not used to avoid con-
fusion; in particular because metamodels, which are elements of the MDE domain, will
naturally fit as an element of the mega-model. Simply put, the idea behind a mega-mod-
el is to define the set of entities and relations that are necessary to model some aspect
about MDE. In the context of this paper, we call "mega-model" a model of MDE. The
problem then is how to define mega-models. While this can be done in plain english,
this would lead to many ambiguities and this is what we want to avoid. The mega-model
presented in this series will be expressed in UML with OCL constraints.

Foundations of Model (Driven) (Reverse) Engineering: Models

10.

 Note that the usage of UML for such a purpose is not new. For instance the follow-
ing figure comes from the MDA specification [5].

As it can be seen, this diagram introduces concepts such as PIM, PSM, Metamodel, In-
frastructure, Mapping, etc. This sketchy model is not different from the text it goes with.
A closer look at the diagram shows that they are many different associations and stere-
otypes; that are used in a very informal way; that cardinalities and navigation directions
are somewhat strange. In fact, this kind of mega-model is too informal to be really use-
ful. This mega-model is not even used in the rest of the document [5], and the few ex-
amples that follow this diagram do not attempt to be conformant to the mega-model.

In this series, the goal is much more ambitious. What is needed is a mega-model
that is good enough to reason about MDE with confidence. Each element of the mega-
model will be carefully introduced and many examples will help to test the mega-mod-
el. We strongly believe that a common agreement could not be reach on the meaning of
a concept, if not enough examples make it possible to validate or invalidate a given
statement. The goal of each example in these series is to enable the reader to check
whether he or she agree with the definitions provided.

According to Bézivin, the object-oriented approach is organized around two ele-
mentary associations, namely InstanceOf and Inherits [25]. In other words, the quality
of a mega-model should not be measured by the complexity it introduces, but on the
contrary by its conciseness and power. The lesser the better.

Based on existing frameworks, we are in the process of defining a mega-model in
the context of the French national project AS-MDE [18]. In this paper only one associ-
ation is introduced, because this first episode of this series is entirely devoted to a single
concept: models. Other episodes gradually introduce other concepts. For instance the
notion of meta-model is introduced in [29]. Finally, note that, as any other models,
mega-models are not expected to be perfect, but just "good-enough" for a given pur-
pose. Like any other model, a mega-model is the result of an iterative process, and as
such it is subject to continuous improvement. The reader is invited to consult the web-
site of this series [2] for up-to-date information on this subject.

Figure 3 Example of a very informal mega-model ([5], page 12)

J.-M. Favre

11.

4 Models

Though the so-called model-driven engineering is considered as a modern software en-
gineering technique, the notion of model is indeed very old. Museums are full of ancient
models. Museums actually play the role of models repositories [28].

For instance Figure 4.a shows a model that represents the pharaoh Tutankamon.
The photography is itself a "model" of the physical model kept in the Museum of Cairo.
The relationships between models will be studied in section 4.2.

Similarly it is clear that Figure 4.b is also a model. It is believed that it could either
represent Nivizeb, the father of Ancient Model Engineering, or another priest called
Wendjebauendjed. There is still some controversy about this subject, but it is estab-
lished that Figure 4.b represents a great priest.

Note that (a) and (b) are both models of humans for the usage of gods. On the con-
trary, Figure 4.c is a model of a god for the usage of humans. This is a statue of Thot,
the god of Moon represented either as a Baboon or an Ibis. Thot is assumed to be the
inventor of speech and script. As it will be related in episode III [30], Thot is who has
given meta-modelling to mankind.

Figure 4.d is a photography of a small fragment of the Fidus Papyrus as it was be-
fore its restoration at the Museum of Grenoble. As it will be related in section 4.2, the
Fidus Papyrus is a model of the Solarus (Figure 4.e), which is itself a very ancient model
of the solar system (section 5.7). In fact as it will be explained later, Figure 4.e is only
a small piece of a model, and it is still not clear if it is itself a model or not. Similarly,
Figure 4.f is not a model, but a model repository. This small chest is made of ivory and
gold, but more importantly it contains a set of very ancient meta-pyramid drawings by
Nivizeb the priest as related in the Story of Thotus the Baboon [29].

The Dagktis Stone is represented in Figure 4.h. This model is kept in the basement
of the Museum of Grenoble. It models what happened in the so-called "Dagktis semi-
nar" [28]. Finally, Figure 4.h is the famous Rosetta Stone kept in the British Museum.
The story of the Rosetta Stone will be related in [30]. Champollion received a model of
the Rosetta Stone and deciphered this model in 1822.

Though the notion of model is very old, a rigorous definition is required. The next
section introduces a very simple mega-model referred as the µ-MegaModel because it
is made of only one association called RepresentationOf, µ for short. Note that though
models were used for long in ancient times, the notion of meta-models was usually not
present, at least explicitly. This paper put the emphasis on the fact that the notion of
model could be totally separated from the concept of meta-models. The notion of sys-
tem is in fact all is needed.

Foundations of Model (Driven) (Reverse) Engineering: Models

12.

Figure 4 Examples of ancient egyptian models from various model repositories

(a) Model of Tutankamon
 (Museum of Cairo) [54]

(b) Model of Nivizeb [54]
(Museum of Cairo)

(g) Dagktis Stone
 (Museum of Grenoble)

(h) Rosetta Stone
 (British Museum)

(d) Fragment of the
 Fidus Papyrus

(Museum of Grenoble)

(c) Model of Thot [54]
(Musée du Louvre)

(e) Fidus Bone
 (M. of Grenoble)

(f) Nivizeb’ pyramid models
(Museum of Grenoble) [54]

J.-M. Favre

13.

4.1 Systems
Let’s start with a very abstract definition:

This definition which seems too abstract to be useful, will make more sense when com-
bined with other concepts described in the remainder of this paper. Before introducing
these concepts, let us however introduce a rough classification of systems. Three cate-
gories are of interest here: physical systems, digital systems and abstract systems.

This separation in three categories is somewhat arbitrary, but it corresponds to three
different "technological spaces" that will be used later in this paper (section 5.2). Any-
way, what it is important right now is that this classification is good enough to represent
typical situations. For instance let’s consider Fido and Lassie, the dogs traditionally
used as guinea pigs in various domains (e.g. [34]) and in particular in the meta-model-
ling literature (e.g. [24][27]). Fido and Lassie are physical systems. The photos on the
previous page depict physical systems. The solar system is another example of physical
system. A set of spheres is an abstract (mathematical) system. Databases and programs
are digital systems. The following figure depicts a UML object diagram that model
these particular examples. This diagram is conformant to the mega-model and to the
UML notation. This approach is used throughout of this series to provide examples.

One important feature of systems is that they are enough complex to be studied and
that they can usually be decomposed in sub-systems. For instance the solar system is
made of planets; a sphere can be decomposed in its surface and its volume, a program
can be decomposed in procedures, types and so on. Physical systems have the property
to be virtually infinite, while digital systems are definitively finite systems. In fact, the
decomposition of systems into sub-systems is a fundamental relation that will be dis-
cussed in another episode. This paper concentrates deliberately on a very simple mega-
model. The following section describes the concept of model.

A system is the primary element of discourse when talking about MDE.

Figure 5 MegaModel: System

System

DigitalSystemPhysicalSystem AbstractSystem

{incomplete}

Shortcuts:
PS: PhysicalSystem
DS: DigitalSystem
AS: AbstractSystem

Physical systems (PS) are observable elements or phenomenons pertaining
to the physical world.
Digital systems (DS) are those systems that reside in computer memories
and are processed by computers.
Abstract systems (AS) are ideas and concepts that eventually reside in human mind
to be processed by human brains.

fido:PhysicalSystem setOfSpheres:AbstractSystem

solarSystem:PhysicalSystem myProgram:DigitalSystem

Figure 6 Examples of systems

Foundations of Model (Driven) (Reverse) Engineering: Models

14.

4.2 Models, Systems Under Study and RepresentationOf (µ,)
Instead of providing our own definition of what a model is, let’s cite some existing def-
initions. In the context of the UML standard, the term model is defined as following:

As discussed after, we don’t agree with the restriction to physical systems, but anyway
let’s consider the definition provided by Bézivin and Gerbé.

Seidewitz provides another definition:

From these definitions we can at least identify three notions: the notion of model, the
notion of system under study (SUS) and a relationship between these notions. In [25]
this relation is called RepresentationOf. It is called Represents in [24], and the inverse
relation is called Describes in [53]. In Ancient Egypt, this relation was symbolized by
a crocodile [30]. In this paper it will be noted for µ short. Whatever its name
or the corresponding symbol, it is very important to understand that this relation is ac-
tually defined between systems: being a model or SUS is a relative notion, not an intrin-
sic property of an artefact. In fact these notions are roles that a system can play with
respect to another system as depicted in the following mega-model class diagram. The
role played by a system actually depends on the use of this system as illustrated by the
following story.

Antonio was an egyptology enthusiast. He went to Egypt to visit the pyramids with
his faithful dog, Fido. During a walk with Antonio, Fido found an old papyrus near to
the ruins of a very ancient pyramid. From his point of view the papyrus was just a phys-
ical system. When Antonio saw Fido playing with it, he immediately removed it from his
mouth. With a closer look he saw what seemed to be an ancient map, or at least some-
thing similar. In the same day Fido found a really huge Bone. Antonio didn’t want either
Fido to play with it because the bone wore at one end inscriptions in gold lettering.
Back to home, Antonio brought the papyrus and the bone to the Museum of Grenoble
(Figure 4.d. and Figure 4.e) Nobody understood the purpose of the bone, but some after
a while an historian from the University of Grenoble discovered that the papyrus was
actually a ancient model of the solar system1. The papyrus and the bone were donated
to the museum and named "Fidus Papyrus" and "Fidus Bone" after the dog. The Fidus

1. This was just an hypothesis, because nothing linked the model and the SUS.

"A model is an abstraction of a physical system, with a certain purpose.

"A model is a simplification of a system built with an intended goal in mind. The
model should be able to answer questions in place of the actual system." [26]

"A model is a set of statements about some system under study (SUS)." [5]

Figure 7 MegaModel: RepresentationOf (µ,)

Shortcuts:

µ: RepresentationOf
sus : systemUnderStudy
m: model

System

systemUnderStudy

model
*

RepresentationOf
*

J.-M. Favre

15.

Bone is now displayed in the Museum of Grenoble (Figure 4.e). By contrast, the Fidus
Papyrus was so deteriorated (because of the effects of the ages and of the jaws of Fido),
that it was impossible to display it to the public. The museum decided that the papyrus
deserved a restoration and required further studies.

First an artist considered the Fidus Papyrus as a system and built a model of it, in
the form of a painting on a new papyrus. This copy was later exposed in the museum.
Though imperfect, this model was considered by the Guide of the museum as "good
enough" to explain to the visitors how the Fidus Papyrus looked like. After being re-
ceived by the museum, an XML file modelling the papyrus was produced for the usage
of the archive system. Though the XML descriptor only included information about the
origin of the model, its dimensions, and a short description, this file was considered as
good enough for archive purposes. It was enough to answer every question the archivist
could have. The Fidus papyrus was later studied in a laboratory where a technician de-
cided to make an X-rays photography. Using the X-rays technology was indeed a good
idea, because the X-rays model revealed some traces of ink that were no longer visible
on the Fidus Papyrus (though there were obviously there). The Fidus papyrus became
so popular that a digital model was produced and sold in Museum store under the ref-
erence Digital Fidus. Using software technology brought many benefits since it enabled
visitors and clients to manipulate the model very easily. It made it possible to see the
Fidus Papyrus both as it was found and as it was supposed to be before the ink disap-
pearance and Fido’s game. At this point of this story, nobody knew that the mysterious
author of the Fidus Papyrus, was Nivizeb the priest. And nobody knew either the secret
of the Fidus Bone.

Let’s summarize the beginning of the story by means of a model expressed with the
mega-model introduced so far. This model is discussed below.

The story shows that the role played by a given system depends on the context in
which it is considered. The papyrus was just a (physical) system in the jaws of Fido. It
became a model in the hands of the historian. Finally it was considered as a system un-
der study (SUS) in the hands of the artist, the archivist and the technician. This differ-
ence of status depends on the usage of the system. Fido just wanted to play with the pa-
pyrus. The historian wanted to interpret it1. The artist, the archivist and the technician

1. The relationship between the interpretation relationship and models is further described
in [23]. It will be described later in the series because it implies adding the decomposition
relation (δ) to the megamodel. Similarly, the actor who interprets the model is also an im-
portant aspect of a model. The study of this concept, on which semiotics provide some
insights [3], is also postponed to a later episode.

solarSystem:PS fidusPapyrus:PS

painting:PS

xrayModel:PS

xmlDescriptor:DS

digitalFidus:DS

µµ

µµ

µµsus
sus

sus

model
sus

sus

sus
sus

model

model

model

model

model

µµ µµ

µµµµ

Figure 8 Model of the Fidus Papyrus story (µ-graph)

Foundations of Model (Driven) (Reverse) Engineering: Models

16.

wanted to studied it or describe it. Since they had various concerns and considered a dif-
ferent set of questions, they produced various models. Each model was considered as
"good enough" for a given purpose. The role played by of the Fidus Bone could not be
determined.

As the story also suggests, it is quite common to compose µ links, in other words
to form models of models, models of models of models, etc. For instance, the painting
is a model of the Fidus Papyrus which is itself a model of the solar system. A visitor
taking a photography of the painting will naturally produce a model of model of model,
and so on. At this point emphasis should be put on the fact that a model of a model is
not a metamodel (this notion is defined in Episode II [29]).

A model of a model of a SUS is in some cases a model of this SUS, but in other
cases it is not. In other words the RepresentationOf relation is not transitive, although
this transitive behaviour often applies between particular models. As an illustration, the
painting can be considered as a "transitive" model of the system solar. By contrast, this
is not the case for the X-ray model or the XML descriptor. For instance, while the di-
mensions of the papyrus stored in the XML descriptor is of interest for archiving pur-
poses, this information is by no means related to the solar system.

4.3 Summary
Summing up, this section has shown the following properties.

• A system can play the role of model with respect to another system referred as the
system under study (SUS).

• A model is an abstraction of a system. It is good enough for a given purpose.
• The relation between a model and a SUS is called RepresentationOf, µ for short.
• The notion of model is relative. This is not an intrinsic property of a system.
• Models can be systems of arbitrary kind.
• Systems of arbitrary kind can be modelled.
• A model of a model is not a metamodel.
• µ is not transitive, but often a model of model of a SUS is a model of that SUS.
• To define what is a model, it is not necessary to define the notion of metamodel.

The mega-model introduced so far is very simple. It is only made of 4 classes: System,
PhysicalSystem, AbstractSystem and DigitalSystem, and one association Representa-
tionOf (µ or).

5 Model (Driven) (Reverse) Engineering

While the mega-model introduced so far is good enough to describe fundamental
links between systems, it does not provide any hint about the actual usage of the models.
In particular the intent behind the µ links is not captured by the RepresentationOf asso-
ciation and no particular method has been assumed for the production of models. Un-
derstanding these aspects is necessary to understand model engineering.

J.-M. Favre

17.

5.1 Models and Separation of concerns
The first question to be answered is who use models and for which purposes. Obviously,
the answer depends on the engineering discipline. However in each case separation of
concerns is an underlying principle. When considering a single system, different people
want a different set of questions to be answered. Separation of concerns is an intrinsic
property of model engineering leading naturally to aspect-oriented modelling. From an
organizational point of view, separation of concerns can also lead to the separation of
jobs, that is to the definition of a set of actors with well identified roles and skills. For
instance, the painting is used by the Guide of the Museum to relate the story of the Fidus
Papyrus. The XML descriptor is used by the archivist, the X-rays model by the techni-
cian, etc. All of these actors have different skills and concerns.

5.2 Models and Technological spaces
While the separation of concerns implies considering different sets of questions, Tech-
nological Spaces (TS) enable to answer the same question but using different technol-
ogies. Not all technological spaces are equivalent. Some questions can be easy to an-
swer in some TS, but difficult in others. The notion of technological space has been in-
troduced in [33]:

In [33], the authors divided the digital space in various technological spaces. This in-
cludes for instance Documentware, that is technology for structured document (e.g.
XML), Grammarware, that is technology based on grammars [40], Dataware and data-
base management systems, Ontologyware and ontology engineering, Modelware and
model-based technology (e.g. UML), etc. Whatever, their boundary and their structures,
the existence of various technological spaces means that given a system, one has to
choose the TS that will be most appropriate for the expression of a model or a given
usage. Abstraction should not remove the fact that reality is driven by many competing
technologies. Another description of the software space which link abstract and con-
crete views is given in [31]. Here, a broader perspective is taken. The discussion is not
restricted to software models. For the sake of simplicity, the distinction has been made
between physical models, abstract models and digital models (see section 4.1).

When Nivizeb wanted to make some computations, sometimes he just applied men-
tal arithmetic, but if the computation was more complicated he used a kind of abacus of
his own invention. By physically moving stones and bones in the sand, he reproduced
arithmetic operations. Obviously, if he had a computer, he would transport his problem
into the digital space and use software models.

structural analysis
technician

explore the system
visitor

fidusPapyrus:PS

xrayModel:PS

xmlDescriptor:DS

digitalFidus:DS

µµ
µµ
µµ

store and retreive the system
archivist

Figure 9 Separation of concerns

"A technological space (TS) is a working context with a set of associated concepts,
body of knowledge, tools, required skills, and possibilities."

Foundations of Model (Driven) (Reverse) Engineering: Models

18.

Moving from a technological space to another is a common operation [33]. The fol-
lowing figure shows the chain of steps that leads from the solar system to the mental
model of the solar system in the brain of a visitor using the Digital Fidus.

As illustrated by the figure, the µ links often cross technological spaces. Another
important property of technological spaces is that they are no such thing such as the
"best technological space". The choice depends on the problem at hand. Fortunately "no
TS is an island and they are bridges between spaces" [33]. Changing from one space to
another is therefore important. That means that the import and export operations to enter
and leave the space should be facilitated. Note, that the interface between the physical
space and other spaces is typically achieved by means of input and output devices as
illustrated by the following figure.

This figure shows a typical pattern in which a problem that can be solved in one
space but projected into another space to improve some feature such as precision, effi-
ciency, etc. For instance, let’s assume that Antonio want to observe the solar system.
Antonio, who would be on the right of the figure, could directly look at the solar system
on the left. Instead of that Antonio could use a computer connected to a digital tele-
scope. This complex system will provide Antonio with an improved model. A digital
camera is used to import some physical phenomenons into the digital space, then a dig-
ital chain of models are produced and eventually exported back to the physical (and ob-
servable) space through the screen. Eventually Antonio eyes and brain process the in-
formation.

As the figure suggests, models can be roughly organized along a dimension that go
from SUS-oriented models on the left to human-oriented models on the right. For in-
stance, in the digital space XML models are used for computer manipulation while
HTML models are used for presentation purposes. Though the chains of models could
be rather complex, the human at the end of the chain often constitutes a bottleneck. The
relationships between the SUS, a model of this SUS and the mental models produced
these systems when observed by a human have been studied in the field of semiotics [3].

Figure 10 Example of chain of models across technological spaces (µ-graph)

solarSystem:PS fidusPapyrus:PS digitalFidus:DS screenImage:PS mentalModel:ASµµ µµ µµ µµ

Figure 11 Chain of SUS-oriented models to human-oriented models (µ-graph)

digitalImage:DS

µµsolarSystem:PS rays:PS

µµ
model:DS

µµ
graphics:DS

µµ

screenImage:PS

µµ

µµ

mentalModel:AS

digitalTelescope screen

eyes

abstract
space

physical
space

digital
space

µµ

sus-oriented models human-oriented models

J.-M. Favre

19.

In the context of this first episode, it is enough to consider how amazing is the abil-
ity of the brain to perform short-cuts when it encode/decode information. For instance,
when the visitor look at an image produced by the Digital Fidus he can think directly in
terms of the solar system. That means that most of the time, some intermediate levels
of models are often omitted in chains of models. Models are often mixed up if they are
close. For instance, in the figure above screenImage could have been omitted. Various
models on the left have been indeed omitted. The digital telescope is certainly a quite
sophisticated systems that produces many intermediate models. It gathers information
through a set of lens; other mechanisms process the resulting image, and so on. The nat-
ural omission of some "intermediate" models explains in part why reasoning about
models is often difficult: very often in discussion about models one argue that some
model is missing or that another one is not needed, etc. For instance when speaking in
terms of a map of the solar system, one can think in terms of a printed map, or a digital
map in a computer or on the screen, or a mental image. When the µ links have a tran-
sitive nature, confusing these systems is usually safe. Semiotics on the contrary to dis-
tinguish each levels, including mental model produced by symbols [3][4]. But this is an-
other story.

 Figure 11 also suggests that modern system engineering implies actors from vari-
ous engineering discipline. For instance building a telescope system imply many differ-
ent skills ranging from physics, mechanics, mathematics for the telescope part, compu-
ter engineering for the digital part, cognitive science and ergonomics for the interface
with the user, etc. Technological spaces often have an influence on organizations, be-
cause each TS required special skills. Software engineering focuses on the digital space.
This space is further refined into sub-spaces in [33]. As pointed out by the authors an
important research issue is to draw a map modelling existing technological spaces and
sub-spaces, as well as bridges between these spaces.

5.3 Specification Models vs. Descriptive Models
Model engineering means producing model, but what for? Models can be used either to
specify a system to be built, or to describe an existing system. This leads Seidewitz to
introduce the distinction between specification models and descriptive models [23].
This distinction has also been introduced in the revised version of OMG’ MDA Guide,
and this in very definition of the notion of model:

 Simply put new systems are produced from specification models, while descriptive
models are produced from existing systems. Making the distinction between specifica-
tion models and descriptive models is useful to express "who, of the model or the sys-
tem, have the truth"1. In the case of specification models, the model holds the truth: a

1. In fact the separation between specification models and descriptive models is not al-
ways clear cut. A more complete treatment of this topic would required to introduce the
notion of model/system co-evolution. The simplification provides here is "good enough"
for the purpose of this paper.

"A model of a system is a description or specification of that system and its envi-
ronment for some certain purpose" [22].

Foundations of Model (Driven) (Reverse) Engineering: Models

20.

SUS is said to be correct according to a specification model, if every properties defined
by the model is satisfied by the system produced [23]. In the second case, the system
represents the truth. A descriptive model is said to be valid if everything said by the
model about the system is actually true.

In fact, Nivizeb knew very much about the usage of models. During his life he had
produced a huge amount of specification and descriptive models. For instance, when
he designed some pyramids (see the story of Thotus the baboon [29]), he produced
specification models. Nivizeb was very demanding. He warned everybody: the pyramid
had to be conformant to what the models said, else Nivizeb would considered the pyra-
mid "invalid". And he would feed his crocodiles with the slaves. On the other way
around, Nivizeb also produced a lot of descriptive models, such as the Fidus Papyrus.
This model revealed later to be "incorrect". Nivizeb had however a peaceful life.

Note that the separation between specification model and descriptive model could
be added in the mega-model by introducing two associations named PrescriptiveRepre-
sentationOf and DescriptiveRepresentationOf. It should be clear however, they would
not be totally new associations but just specialization of RepresentationOf.

5.4 Platform Independent Models vs. Platform Specific Models
One could think that model engineering is just about (1) producing a specification mod-
el, and (2) generating a valid system from that model. This is more complex. Various
steps are required, with one or more models being produced at each step. The MDA
Standard put emphasis on the distinction of Platform Independent Models (PIM) and
Platform Specific Models (PSM) [5][6]. Sometimes the concept of Computational In-
dependent Model (CIM) is also introduced. Roughly speaking a CIM just describes con-
cepts related to a particular domain, but with no reference to the particular problem to
be solved in that domain. PIM describes a particular system that solve a particular prob-
lem but in a technology independent manner, while a PSM describes how this system
can be implemented using a given technology. Though quite intuitive at the first sight,
the notion of platform, PIM and PSM are however poorly defined in the MDA standard.
They are indeed subjects to controversy (e.g. [7]). There is clearly a continuum between
PIMs and PSMs and the distinction between these models is not clear-cut. These no-
tions are relative. At the time of writing this paper we do not believe that these concepts
should be included in the Megamodel.

5.5 Conceptual Models, Specification Models, Implementation Models
While the distinction PIM/PSM is not fundamental, it is clear however that any devel-
opment process will define different levels of models and end with the production of a
system. Recognizing the existence of such levels is important. To this end, Fowler sug-
gests in [9] another distinction based on 3 levels of models, namely Conceptual Models,
Specification Models and Implementation Models. Simply put Conceptual Models, the
more abstract ones, describes concepts rather than solutions. They are closed to CIM.
Specification Models are used to specify the system to be built but without giving details
about its actual implementation. Finally Implementation Models describe how systems
have to be implemented. Though specification models are close to MDA PIMs and im-
plementation models are close to implementation models, these equivalencies do not

J.-M. Favre

21.

hold because the two classifications are based on a slightly different perspective. Fowl-
er put the emphasis on the fact, that each kind of models can be described using the same
modelling language [9].

5.6 Sketchy Models, Blueprint Models, Executable Models
Another classification of models is provided by Mellor and his colleague in [10] taking
yet another perspective on models. The distinction is made between three kinds of mod-
els, depending on their usage. A model can be considered as a Sketch, as a Blueprint,
or as an Executable. A Sketchy Model is not precise or complete, nor is it intended to
be. The purpose of such models is typically to try out an idea when the model is a spec-
ification or to simplify communication and understanding when the model is descrip-
tive. Usually sketchy models are volatile, they are neither maintained nor delivered. By
contrast Blueprint Models are more precise and can be used as specification to build a
system. What they say about the system is expected to be true, though they describe
only some aspect of this system. Executable Models are the last kind of models. By con-
trast to blueprints, they contain enough information to be directly interpreted by a proc-
essor or to derive an executable system. Currently this last kind of model is not widely
spread. It corresponds to ongoing work such as Executable UML [11] and other MDA
approaches. Though not fundamental, this classification recognize the fact, that there is
a great variety of models and that a model should be considered as "good enough" for
a given purposes. For instance, a sketchy model may sometimes lies about a system, but
this is not necessarily considered as a problem.

5.7 Illustration: Story of the Solarus
Let’s come back to the story of Fido to illustrate some of the concepts described above,
the emphasis being put this time on the engineering process of models as practised by
Nivizeb the Priest.

The day Fido found the papyrus, he disappeared during about one hour. Antonio
was looking for him. In fact Fido managed to entered in the very insides of the pyramid
through a small hole. When he arrived in a small room, fido found a bone [35]1. Fido
didn’t notice that this big bone (Figure 4.e) was a just a sub-system of a strange ar-
rangement made of pieces of wood, carved bones, crocodile teeth and coloured stones.
Fidus went out with the big bone. After a while he found Antonio who look at him furi-
ously. Fido gave him the bone. Nobody discovered the secret of the Solarus.

By regularly observing the sky Nivizeb had build a classification of planets [30].
He wrote some papyrus explaining what where the core entities along with their respec-
tive properties. These papyrus were mostly conceptual models and computation inde-
pendent model.

Nivizeb was puzzled by the movements of the planets and concentrated on predict-
ing their relative positions. He was in particular interested in computing the date of
eclipse and other alignment of planets, because he thought that discovering this mystery
would gave him a lot of power. After some years Nivizeb had built a simple yet "good

1. The sentence "Fido found a bone" is studied in great details in [35].

Foundations of Model (Driven) (Reverse) Engineering: Models

22.

enough" mental model of the solar system. He thought about the planets as being just
like a set of discs that move around, some constraints governing their relative positions.
Since dealing with this mental model was too complicated, Nivizeb decided to built an
instrument called the Solarus. The aims of the Solarus was to reproduce the constraints
between the position of the planets in the sky.

 Building the Solarus was a challenge for Nivizeb. At that time he never had to build
a so sophisticated model. He decided therefore to first produce a series of papyrus to
specify the Solarus. Before thinking in terms of the Solarus as physical system, he first
produced the papyrus which is now known as the Fidus Papyrus (see the top of Figure
12.a). This model just described what Nivizeb knew about the movement of planets in
the solar system. It took the form of a drawing and some writing. Each disc representing
a planet in Nivizeb’ mental model became a circle on the papyrus. This model was in-
dependent from any implementation technology. This would be a PIM according to the
MDA classification.

Then Nivizeb produced a specification model, called the Water Solarus Papyrus
(Figure 12.a). This specification model specified the Water Solarus to be build, a phys-
ical system that Nivizeb wanted to use to simulate the movement of the planets. Though
it didn’t give all the implementation details, this model was a PSM. The Water Solarus
was designed as a set of physical pieces representing planets, each pieces floating in a
pool in the centre of the patio of the temple, each pieces being connected to the others
by strings of reeds constraining the movements of pieces on the surface of the pool. The
Water Solarus Papyrus was in fact an Platform Dependent Model which took the form
of an annotated version of the Fidus Papyrus. Nivizeb had annotated each model ele-
ment with an indication of how this element had to be represented. In this annotated
model, each planet (which was represented as a disc in Nivizeb mental model, and as a
circle on the Fidus papyrus) was decorated by indications of the size, shape and mate-
rial for the piece to be build. Nivizeb was not very clever with his hands, so he gave this
annotated specification model to the workshop of the temple. The workers were
warned: the resulting system had to be valid.

The physical system was built successfully from this model. Nivizeb checked the va-
lidity of the Water Solarus with respect to the specification model he gave. Nobody was
thrown to the crocodiles. Note that, as shown in figure Figure 12.a, the Water Solarus
can be considered itself as a model of the solar system, though it is the end product of
the engineering process. Nivizeb used the Water Solarus to improve his knowledge
about the solar system. He used the Water Solarus as a descriptive model. During the
first month, he sometimes found convenient to use the Fidus Papyrus directly. This was
possible because all the models produced represented the solar system.

Figure 12 Examples of model engineering

(a) Chain of engineered models (µ-graph) (b) Platform specific chains (µ-graph)

µµ
µµ

µµ

µµ

µµ
solarSystem

fidusPapyrus

waterSolarus

PIMPIM

PSMPSMwaterSolarusPapyrus

µµ

µµ

fidusPapyrus

waterSolarus

µµ

µµ
stones&BonesSolarus

PIMPIM

PSM1PSM1 PSM2PSM2waterSolarusPapyrus stones&BonesPapyrus

J.-M. Favre

23.

Nivizeb used the Water Solarus during 7 years. During that time he had made a lot of
improvements to it. One day some foreigners, coming from some oriental countries ar-
rived at the temple. They brought with them a new technology. There were excellent
craftsmen and had great skills working with stones, bones and leather. Nivizeb decided
to migrate his system to this new platform. He drawn frantically a new specification pa-
pyrus (Figure 12.b). From the Fidus Papyrus PIM, he derived another PSM: for each
planet, he gave an annotation indicating which colour of stones had to be use, how
bones had to carved and placed, etc. The new system was successfully implemented by
the foreigners, who marked a point against the crocodiles.

The story above provides an example of successful platform migration. However,
some historians are in doubt about the accuracy of this story. Another version of the
same event is related later in this paper.

5.8 Model (Driven) Forward Engineering
The mega-model introduced in this paper does not attempt to model the engineering
process that leads to the production of models. In [35], Karagiannis and Kühn elaborate
a richer mega-model defining concepts such as steps, modelling procedures, modelling
techniques, modelling methods, etc. Without going into further details, what is clear is
that the modelling steps clearly depends on the method and on the engineering disci-
pline. Model engineering is about producing iteratively more and more refined models,
and ultimately end up in the production of a final system. The notion of refinement can-
not however be defined in general because unfortunately there is not such thing as a "de-
finitive scale of abstractness for classifying models". Once again this really depends on
the method and on the engineering discipline. Nevertheless, forward engineering can
be defined as following:

A rigorous forward engineering method will ensure that each step actually transforms a
specification model into a valid system. Nivizeb method was not rigorous. He decided
at each step if the crocodiles had to be fed up or not, but with no clear criteria. Fortu-
nately, in Software Engineering, model-based specification languages such a Z, VDM
or B define mathematically-sound methods that enable stepwise refinement from math-
ematical models to concrete pieces of code. And at each step the validity of the trans-
formation can be proved. With a lower emphasis on rigor, the MDA approach also
sketches a forward engineering process. In that case PIMs are transformed into PSMs,
the first models being more "abstract" that the second ones. One of the key idea of the
MDE approach is that most of these transformations can be described and (partially) au-
tomated thanks to transformation languages. The concept of transformation is a corner-
stone of the MDE; it will be described in a further episode of this series.

5.9 Model (Driven) Reverse Engineering
In theory, engineering practices should follow the best forward engineering methods
available and apply scientific knowledge. As pointed out by Shaw, while this might be

"Forward engineering is the traditional process of moving from high-level abstrac-
tions and logical, implementation-independent designs to the physical implementa-
tion of a system." [36]

Foundations of Model (Driven) (Reverse) Engineering: Models

24.

true in some engineering disciplines, this is far from true in the case of software engi-
neering [37]. And that’s where everything goes wrong.

While most of the papers in the MDA literature imagine an ideal software world
populated by neat models everywhere, the situation is radically different in industry.
After 50 years of software development, almost all software companies are still code-
centric. Despite the advances of specification and modelling languages, the core activ-
ity in "software engineering" is still to write code and make it evolve by hand. In spite
of their advantages, formal methods have failed to find their path to industry, except in
the domain of critical systems. In the last decade, UML received more attention. Now-
adays, UML is sometimes used during the analysis or design phase. However, in many
cases the specification models produced during these phases remain contemplative rath-
er than productive [38]. In software industry the code is still the "holder of the truth",
the models are not.

By contrast, documenting code afterwards is common practice. Though this usage
of UML was not necessarily anticipated, this is not surprising. The huge majority of
software systems on the planet have not been designed using UML. Even when it was
the case, the original UML diagrams typically became obsolete because they were not
maintained. In other words, UML is often use to build descriptive models rather of spec-
ification models. Though this should not be the case in theory, in practice reverse engi-
neering is as important as forward engineering.

As pointed out by Chikofsky and Cross [36], the term "reverse engineering" takes
its root in the analysis of hardware systems such as microprocessors, where producing
descriptive models from finished systems is a common practice. These authors define
reverse engineering as following:

Model Reverse Engineering is just producing descriptive model from existing sys-
tems that was previously produced somehow. The last part of this sentence is important,
at least to make the distinction between Modelling and Reverse Engineering. In fact
Modelling and Reverse Engineering both refer to the activity of creating descriptive
models. Replacing "reverse engineering" by "modelling" in Chikofsky and Cross defi-
nition would still produce a good definition. However when Nivizeb produced the Fidus
Papyrus to model the solar system, he did some modelling. When he studied an oriental
abacus to build later his own abacus, he did some reverse engineering. This is because
the abacus under study had previously been engineered somewhere else. Note that
Nivizeb had not only reverse engineered foreign systems (this is the dark side of reverse
engineering); the next section shows that very often he applied reverse engineering to
his own systems.

5.10 Engineering = Forward Engineering + Reverse Engineering
In the 90’s reverse engineering was seen as a way to deal with legacy systems. Now,
each day it becomes more and more apparent that reverse engineering should be instead
closely integrated with forward engineering to support a smooth evolution of software.

"Reverse engineering is the process of analysing a subject system, to (1) identify the
system’s components and their interrelationships, and (2) create representations of
the system in another form or at a higher level of abstraction." [36]

J.-M. Favre

25.

For instance in [41], Demeyer, Ducasse and Niestraz show that large and modern sys-
tems soon become legacy if not constantly reengineered. This leads to the following
equation.

This equation has no formal meaning. It just aims at stressing the importance of reverse
engineering in engineering disciplines. Small systems built in a scholar way are not of
interest in the context of this paper. We are more concerned by the evolution of large
scale industrial software products; those software products that evolve over years or
decades [31][45]. During that time, those systems must accommodate the evolution of
technological spaces and platforms. For instance, in [55] we describe how reverse en-
gineering can support the evolution of a very large component-based software systems
built by Dassault Systèmes, one of the largest software company in Europe.

Nivizeb already knew the importance of reverse engineering. Most historians con-
sider the story related above as an idealized version of what really occurred. It is very
unlikely that Nivizeb migrated from the Water Solarus to the Stones&Bones Solarus by
just making a new drawing a new papyrus. In fact, one of his young assistants suggested
to apply the nice forward engineering principles depicted in Figure 12.b, that is pro-
ducing another PSM, starting from the same PIM. This naive proposal just made
Nivizeb angry, and the crocodiles happy. As pointed out before, Nivizeb had spent 7
years in the dark observing planets. Days after days, he had tuned the Water Solarus by
adjusting the size and position of discs and strings. Very often, he had removed and add-
ed new mechanisms to improve the correctness of his model. He applied a lot of trans-
formation to it. When in the centre of the pool, he didn’t care to maintain the Fidus Pa-
pyrus. This PIM rapidly became out of sync. In fact this papyrus was even lost in the
sand (where Fido found it later). After years of continuous evolution, the Water Solarus
had become a legacy, yet very sophisticated system. The PIM and PSM were totally out
of date and of no use. Figure 12.b totally fails to recognize the importance of evolution.

To fully recover a descriptive model of the Solarus, Nivizeb spent 77 days in the
pool; sizing each disc and string, noting down their positions, reconstructing the behav-
iour of each mechanisms. Within this period he built a new Platform Specific Model ex-
pressed in terms of wood discs, reed strings, etc. Then from this PSM he produced a
PIM similar to the Fidus Papyrus, but this recovered model was much more accurate.
Nivizeb knew that until this point, providing a new specification for the Stones&Bones
Solarus was illusory because too risky and too complex. The optimization, improvement
and tuning of the water was a valuable asset. It made no sense to built the
Bones&Stones Solarus from scratch.

 Engineering = Forward engineering + Reverse Engineering

Figure 13 Actual evolution of the Solarus system

ττµµ

µµ

fidusPapyrus

waterSolarusSpec

waterSolarusV1.0

µµ
wS.V7

µµ
waterSSpec.V7 stones&BonesSpec

solarusRecovered

µµ

......
Time

stones&BonesSV1

µµ
s&BV2wSV1.0

ττ

ττ

ττ

ττ ττ ττ
ττ ττ

Foundations of Model (Driven) (Reverse) Engineering: Models

26.

The figure above depicts a realistic evolution process. The τ links represent successive
transformations. This relation will be studied later in this serie.

Decades after decades, Nivizeb observed that evolution process for large real-
world systems could be modelled by a sequence of pyramids in the desert. Figure 14
shows a graphic with time on the horizontal axis and µ abstraction () on the
vertical axis. In fact, Nivizeb discovered that pyramids could be used to model many
real-world phenomenons. For instance, the story of Nivizeb’ meta-pyramids [29] re-
lates how pyramids can be viewed as models for another abstraction dimension re-
ferred as the ³ abstraction (), the meta-dimension.

5.11 Towards the integration of
reverse engineering and model engineering

Nivizeb was really a pioneer. At his time, he understood the complementarity of for-
ward and reverse engineering, especially in the context of model engineering. Unfortu-
nately this knowledge disappeared with him. Nowadays, the software engineering field
is populated by various communities that exchange too little [33]. In particular, the
MDE research community and the reverse engineering community have certainly a lot
to share because models are cornerstones of both disciplines. Though more than ten
years ago, Chikofsky and Cross established the foundations of reverse engineering by
speaking in terms of "views" and "abstractions", their seminal paper [36] could be re-
written by replacing these terms by "descriptive models". The intersection between
these two disciplines has received little attention, but this situation is changing thanks
to cross-boundaries research papers (e.g. [42][43][44][45]), PhDs (e.g. [47]), research
workshops (e.g. [48][50][49]), and industrial workshops (e.g. [52]). In particular, re-
cently the OMG launched the ADM project to merge Reverse Engineering and MDA
[51].

5.12 Model Engineering and Model-Driven Engineering
To conclude with the engineering of models, let’s define two terms. In the literature
model engineering and model-driven engineering are usually used interchangeably, but
the adjective driven is meaningful.

For instance when Nivizeb applied Model Engineering to build the Solarus, his goal
was ultimately to produce a model. This was not the case however when Nivizeb led the
construction of pyramids. He certainly produced a lot of models to drive this huge sys-
tem engineering project, but this was to control the production of systems. This included
models for the architecture of the pyramid, but also models of the resources to be used,
of roads and boats to be built, planning models, etc.

Figure 14 Real-world system evolution

Model engineering is the disciplined and rationalized production of models.
Model-driven engineering is a subset of system engineering in which the process
heavily relies on the use of models and model engineering.

J.-M. Favre

27.

Interestingly, the use of the term model-driven is justified in the MDA
specification [22]: "MDA is an approach to system development, which increases the
power of models in that work. It is ’model-driven’ because it provides a means for using
models to direct the course of understanding, design, construction, deployment, opera-
tion, maintenance and modification.". This argument is compatible to the definitions
given above.

5.12.1 Summary
This section can be summarized by the following statements.

• Model engineering leads to complex nets of µ links.
• Models naturally support separations of concerns.
• Various actors with different skills and concerns usually use different models.
• Various technological spaces can be used to manage models.
• There is no such things such as the "best" technological space.
• Bridges between technological spaces is of fundamental importance.
• Some models are more human-oriented than others.
• If a chain of µ links is transitive, intermediate models are often omitted.
• Engineering complex systems implies mastering many technological spaces.
• Drawing a map of technological spaces and bridges is an important issue.
• Specification (or prescriptive) models usually specify system to be built.
• A system can be valid or invalid with respect to a specification model.
• Descriptive models usually describe existing systems.
• A descriptive model can be correct or incorrect w.r.t. an existing system.
• Forward engineering is refining "abstract" models into more "concrete" models.
• There is no "definitive scale of abstractness" for classifying models.
• The notion of "platform" used in the MDA is not very clear.
• Hence the notion of Platform Independent Model and Platform Specific Model.
• Almost all software companies are still code-centric.
• The core activity in "software engineering" is still to write code and maintain it.
• Large industrial software evolve of years or decades.
• Documenting code afterwards is common practice.
• In an evolving world reverse engineering is as important as forward engineering.
• Forward engineering produces specification models.
• Reverse engineering produces description models from engineered systems.
• Modelling produces description models from existing systems.
• Reverse engineering and MDE community share the concept of models.

Foundations of Model (Driven) (Reverse) Engineering: Models

28.

6 Conclusion

The following mega-model has been introduced in this paper to define the notion of
model. Many examples have been given to explain how to interpret the single associa-
tion called RepresentationOf, µ or in Ancient Egyptian.

Obviously, this mega-model could be improved substantially. As said before, we delib-
erately concentrates on a single relation in this first episode. More will be provided in
next episodes.

 For instance, in this paper all models have been considered in isolation, but another
abstraction dimension is necessary to improve model engineering. In episode II [29] the
story of Thotus the Baboon will be related. This story will shows how metamodels were
discovered in ancient Egypt by Nivizeb with the help of his baboon. This discovery led
Nivizeb to design a series of meta-pyramids of different shapes.

The first one, the Saqqara "step" pyramid, was build four thousand years ago [54].
At that time, the step pyramid was isolated in the desert. It was the most prominent rep-
resentation of metamodeling in ancient Egypt. In fact, it played a role similar to the role
played today by the MDA meta-pyramid [5]. The MDA set of standards is arranged
within a unique pyramidal structure, with a single and unique meta-metamodel on the
top, namely the MOF [6][8]. In episode III, it will be shown that seeing the MDA meta-
pyramid in isolation was a wrong interpretation of the MDE approach. In this episode
the notion of multiple technological spaces [33] has been defined as a fundamental as-
pect of Model Driven Engineering. This notion will be studied further in episode III.

Figure 15 The µ-MegaModel

Figure 16 Egyptian pyramids built after Nivizeb’ meta-pyramids models [29][54]

J.-M. Favre

29.

Though the first pyramids grown separately in the desert, pyramids were later grouped
in a structured way as shown in the figure below.

It will be shown in further episodes how concepts such as decomposition, interpretation,
syntax, semantics, transformation could fit in the mega-model.

7 Acknowledgments

I would like to thanks Jean Bézivin, Jacky Estublier and German Vega, for the fruitful
discussions we had on this topic. I would also like to thanks Colin Atkinson and Thomas
Kühne to introduce me to Fido and Lassie; Vincent Lestideau to introduce me the Tho-
tus the Baboon, Jean Bézivin to introduce me to Antonio. Thanks to all participants of
the Dagsthul seminar on Language Engineering as well as the participant of the AS
MDE project [18]. Discussions largely contribute to this series, but all errors are mine.
Finally I would apologize for the errors that might have occured during historical nar-
rations.

8 Photographic credits

The photos in this paper have been graciously provided by the following individuals or
organizations. Special thanks to John Bodsworth for its help.

• J. Bodsworth, The Egypt Archive, http://www.egyptarchive.co.uk
Figure 4.a,b,c,f; Figure 16, Figure 17

• European Space Agency, Figure 4.h
• History Link101, http://historylink101.net, Figure 2, courtesy of Kersker.

9 References

[1] Y.F. Chen, "From Ancient Egyptian Language to Future Conceptual Modelling", Concep-
tual Modelling, LNCS 1565, 1999

[2] Series "From Ancient Egypt to Model Driven Engineering", resources available at
http://www-adele.imag.fr/mda

[3] D. Chandler, "Semiotics: The Basics", Routledge Editor, ISBN 0415265940, 2001
[4] J.F. Sowa, "Ontology, Metadata and Semiotics", Lecture Notes in AI #1867, Springer-Ver-

lag, 2000
[5] OMG, "OMG, "Model Driven Architecture (MDA)", ormsc/2001-07-01, July 2001, avail-

able at www.omg.org/mda
[6] OMG, MDA Web Site, www.omg.org/mda
[7] S. Cook, "Domain Specific Modelling and Model Driven Architecture", MDA Journal,

January 2004, available at www.bptrends.com

Figure 17 The Ghiza plateau: a organized set of technological spaces [30][54]

Foundations of Model (Driven) (Reverse) Engineering: Models

30.

[8] OMG, "Meta Object Facility (MOF) Specification" Version 1.4, April 2002
[9] M. Fowler, "UML Distilled", Addison Wesley, 1999
[10] S.J. Mellor, K. Scott, A. Uhl, D. Weise, "MDA Distilled: Principle of Model Driven Ar-

chitecture", Addison Wesley, March 2004
[11] S.J. Mellor, M.J. Balcer, "Executable UML: A Foundation for Model-Driven Architec-

ture", Addison Wesley, May 2002
[12] J. Bézivin, "Models as First Class Entities", Presentation at Dagstuhl Seminar 4101, 2004
[13] J. Rho, "A Comparison of ECMA PCTE and ODMG-93", Technical Report
[14] A. Uhl, "Model Driven Engineering Is Ready for Prime Time", IEEE Software, Sept. 2003
[15] S. Mellor, L. Rioux, J. Bézivin, "MDA-components: Is there a Need and a Market?", Com-

mon Meeting to: OMG MDA WG/UG and the OFTA, June 2003, available at
www.omg.org/docs/ad/03-06-01.pdf

[16] OFTA, "Ingénierie des Modèles - Logiciels et Systèmes", Observatoire Français Des
Techniques Avancées, OFTA, ISBN 2-906028-16-9, May 2004

[17] INRIA, "Model Transformation at INRIA", Institut National de Recherche en Informa-
tique et Automatisme, Web site at http://modelware.inria.fr

[18] CNRS, "Action Spécifique CNRS MDA", Centre National de Recherche Scientifique,
Web site at http://www-adele.imag.fr/mda/as

[19] S. Gérard, P.A. Muller, "TopModL Initiative", Web site at http://www.topmodel.org
[20] "Joseph Fourier, Hier et Aujourd’hui", Papyrus Thema, Université Joseph Fourier, 2003
[21] Bibliothèque Nationale de France, "Description de l’Egypte", 1809-1828,

Digital version available at www.bnf.fr
[22] OMG, "MDA Guide Version 1.0.1", omg/2003-06-01, June 2003
[23] E. Seidewitz, "What Models Mean", IEEE Software, September 2003
[24] C. Atkinson, T. Kühne, "Model-Driven Development: A Metamodeling Foundation",

IEEE Software, September 2003
[25] J. Bézivin, "In Search of a Basic Principle for Model-Driven Engineering", Novatica Jour-

nal, Special Issue, March-April 2004
[26] J. Bézivin, O. Gerbé, "Towards a Precise Definition of the OMG/MDA Framework", Pro-

ceedings of ASE’01, November 2001
[27] J. Alvarez, A. Evans, P. Sammut, "MML and the Metamodel Architecture", available from

www.puml.org
[28] J.M. Favre, "Metamodel-driven Reverse Engineering - Stories of the Dagktis Stone and of

the Rosetta Stone", presentation at Dagstuhl Seminar on Model Driven Approaches for
Language Engineering, March 2004, available from http://www-adele.imag.fr/~jmfavre/

[29] J.M. Favre, "Foundations of Meta-Pyramids: Languages and Metamodels - Episode II:
Story of Thotus the Baboon", post-proceedings of Dagsthul Seminar on Model Driven Re-
verse Engineering, May 2004, available at www-adele.imag.fr/~jmfavre

[30] J.M. Favre, "Foundations of Metamodel (Driven) (Reverse) Engineering - Episode III:
Story of the Ghiza plateau and of the Rosetta Stone", available at http://www-adele.im-
ag.fr/~jmfavre

[31] J.M. Favre, "Meta-models and Models Co-Evolution in the 3D Software Space", Proceed-
ings of ELISA, Workshop on the Evolution of Large scale Industrial Software Applica-
tions, Joint workshop with ICSM, Sept.2003, available at www-adele.imag.fr/~jmfavre

[32] OMG, "UML2.0 Infrastructure Specification", ptc/03-09-15, September 2003

J.-M. Favre

31.

[33] I. Kurtev, J. Bézivin, M. Aksit, "Technological Spaces: an Initial Appraisal", CoopIS,
DOA'2002 Federated Conferences, Industrial track, Irvine, 2002

[34] R. Hausser, "Complexity in Left-Associative Grammar", Theoretical Computer Science,
1992

[35] D. Karagiannis, H. Kühn, "Metamodelling Platforms", Third International Conference EC-
Web – Dexa 2002, LNCS 2455, September 2002

[36] E.J. Chikofsky, J.H. Cross, "Reverse Engineering and Design Recovery: A Taxonomy",
IEEE Software, January 1990

[37] M. Shaw, “Prospects for an Engineering Discipline of Software”, IEEE Software, 1990
[38] J. Bézivin, "MDA: From Hype to Hope, and Reality", Guest talk at UML’2003
[39] D. Exertier, O. Kaht, B. Langlois, "PIMs Definition and Description to Model a Domain",

MASTER Project, Model-driven Architecture inSTrumentation, Master-2002-D.2.1-
V1.0-public, December 2002

[40] P. Klint, R. Lämmel, C. Verhoef, "Towards an engineering discipline for Grammarware",
submitted for publication, available at http://homepages.cwi.nl/~ralf/

[41] S. Demeyer, S. Ducasse, O. Niestrasz, "Object-Oriented Reengineering Patterns", Morgan
Kaufman Publishers, 2002.

[42] J. Bézivin, N. Ploquin, "Tooling the MDA framework: a new software maintenance and
evolution scheme proposal", Journal of Object-Oriented Programming, 2001

[43] L. Bouillon, J. Vanderdonckt, J. Eisenstein, "Model-Based Approaches to Reengineering
Web Pages", International Workshop on Task Model and Diagrams for user interface de-
sign, TAMODIA 2002

[44] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer. "Enabling and using the UML for
model driven refactoring", 4th International Workshop on Object-Oriented Reengineering.
TR 2003-07, University of Antwerp, 2003

[45] .J.M. Favre, "CacOphoNy: Metamodel-Driven Software Architecture Reconstruction",
Working Conference on Reverse Engineering, Nov. 2004

[46] J.M. Favre, "Towards a Megamodel to Model Software Evolution Through Transforma-
tion", SETRA Workshop, ENCTS 2004

[47] J.M. Sprinkle, "Metamodel-Driven Model Migration", PhD, Univ. of Nashville, Aug. 2003
[48] J.M. Favre, M. Godfrey, A. Winter Editors, "ateM2003: 1st International Workshop on

Metamodels and Schemas for Reverse Engineering", Electronic Notes in Theoretical Com-
puter Science, Vol. 94, at the Working Conference on Reverse Engineering, Nov. 2003

[49] A. Winter, J.M. Favre, M. Godfrey, "ateM2004: 2nd International Workshop on Metamo-
dels, Schemas and Grammars for Reverse Engineering: Integrating Reverse Engineering
and Model Driven Engineering", WCRE 2004

[50] J. Bézivin and al., "Model Driven Legacy Evolution: Tools and techniques to facilitate de-
velopment of adaptable enterprise systems", Workshop at EDOC 2004

[51] OMG, "A Model-driven Approach to Modernizing IT Systems", Workshop, March 2004
[52] OMG, "Architecture-Driven Modernization (ADM)", http://www.omg.org/adm/
[53] A. Kleppe, S. Warmer, W. Bast, "MDA Explained. The Model Driven Architecture: Prac-

tice and Promise", Addison-Wesley, April 2003
[54] J. Bodsworth, "The Egypt Archive", http://www.egyptarchive.co.uk/
[55] J.M. Favre, and al., "Reverse Engineering a Large Component-based Software Product",

European Conf. on Software Maintenance and Reengineering, CSMR'2001

Foundations of Model (Driven) (Reverse) Engineering: Models

