
The Atomic Manifesto: a Story in Four Quarks

Cliff Jones, David Lomet, Alexander Romanovsky, Gerhard Weikum
Dagstuhl Seminar Organizer Authors

Alan Fekete, Marie-Claude Gaudel, Henry F. Korth, Rogerio de Lemos,
Eliot Moss, Ravi Rajwar, Krithi Ramamritham, Brian Randell, Luis Rodrigues

Dagstuhl Seminar Participant Authors.

1. INTRODUCTION
This paper is based on a five-day workshop on “Atomicity in Sys-

tem Design and Execution” that took place in Schloss Dagstuhl in
Germany [5] in April 2004 and was attended by 32 people from
different scientific communities.1 The participants included re-
searchers from the four areas of

� database and transaction processing systems,
� fault tolerance and dependable systems,
� formal methods for system design and correctness reasoning,

and
� to a smaller extent, hardware architecture and programming

languages.

The interpretations and roles of the atomicity concept(s) vary
substantially across these communities. For example, the empha-
sis in database systems is on algorithms and implementation tech-
niques for atomic transactions, whereas in dependable systems and
formal methods atomicity is viewed as an intentionally imposed
(or sometimes postulated) property of system components to sim-
plify designs and increase dependability. On the other hand, all
communities agree on the importance of gaining a deeper under-
standing of composite and relaxed notions of atomicity. Moreover,
the hope is that it will eventually be possible to unify the differ-
ent scientific viewpoints into more coherent foundations, system-
development principles, design methodologies, and usage guide-
lines. Quarks can be viewed as different aspects of (sub-)atomic,
seemingly indivisible, particles (e.g. protons) and thus the notion of
absolute atomicity could be abandoned. Similarly, this report offers
a many-faceted discussion of atomicity with emphasis on compos-
ability and relaxed or relative interpretations.2

Atomicity is, of course, an old concept; in particular, transaction
technology is considered as very mature. So why would there be
a need for reconsidering it, and why now? There are several com-
pelling reasons for reviving and intensifying the topic at this point:

� The world of network-centric computing is changing. Web
services, long-running workflows across organizational bound-
aries, large scale peer-to-peer publish-subscribe and collabo-
ration platforms, and ambient-intelligence environments with
huge numbers of mobile and embedded sensor/actor devices
critically need support for handling or even masking con-
currency and component failures, but cannot use traditional
atomicity concepts.

� There is a proliferation of open systems where applications
are constructed from pre-existing components. The compo-
nents and their configurations are not known in advance and

1The full list of participants is given at [5].
2There are six types of quarks in particle physics: Up, Down,
Charm, Strange, Top aka Truth, and Bottom aka Beauty. We leave
it to the reader to map the four communities to appropriate quarks.

they can change on the fly. Thus, it is crucial that atomicity
properties of components are composable and that we can
predict and reason about the behavior of the composite sys-
tem.

� Even if we can successfully develop adequate notions of re-
laxed atomicity, it is unlikely that one particular solution can
handle all cases across the wide spectrum of application needs.
So, application designers and programmers will be faced with
several options and critical choices. Since humans are the
bottleneck in terms of cost, time, and errors, it would be
optimal to have an autonomic approach [3] that automati-
cally chooses the most appropriate option and reconfigures
the system as the environment changes.

� Modern applications and languages like Java lead millions
of developers into concurrent programming (“synchronized
classes”). This is a drastic change from the classical situ-
ation where only a few hundred “five-star wizard” system
programmers and a few thousand programmers working in
scientific computing on parallel supercomputers would have
to cope with the inherently complex issues of concurrency
(and advanced failure handling as well).

� On an even broader scale, the drastically increasing complex-
ity of the new and anticipated applications is likely to lead to
a general “dependability crisis” in the not-too-distant future.
The multi-technology nature of these applications strongly
suggests that a multi-disciplinary approach is essential if re-
searchers are to find ways to avert such a crisis.

2. THE VIEWS OF FOUR COMMUNITIES

2.1 Database and TP Perspective

2.1.1 Position
Database transaction concepts have been driven by traditional

business applications and a style of software called OLTP (On-
Line Transaction Processing) where fast-executing, independently
coded application programs run against data stored in some general
purpose DBMSs (Data Base Management Systems), which provide
a mechanism called ACID transactions to support correct operation
of the combined system [4, 23]. ACID stands for “atomicity, con-
sistency, isolation and durability”. In the OLTP approach, the appli-
cation programmer delegates to the DBMS software responsibility
for preventing damage to the data from threats such as concurrent
execution, partial execution or system crashes, while each applica-
tion programmer retains the obligation to think about the impact on
data consistency of the code they are writing, when executed alone
and without failures.

There are many threats to the overall dependability of the com-

Dagstuhl Seminar Proceedings 04181
http://drops.dagstuhl.de/opus/volltexte/2004/9



bined system formed from the databases and the application pro-
grams. The focus of database transactions is on dealing with threats
from concurrent execution, from incomplete execution (e.g., due to
client crash or user-initiated cancellation) and from system crashes
that lose up-to-date information from volatile buffers. The tradi-
tional DBMS solution is to provide “ACID transactions”. There are
two ways a transaction can finish: it can commit, or it can abort. If
it commits, all its changes to the database are installed, and they
will remain in the database until some other application makes fur-
ther changes. Furthermore, the changes will seem to other pro-
grams to take place together. If the transaction aborts, none of its
changes will take effect, and the DBMS will “rollback” by restoring
previous values to all the data that was updated by the application
program.

From a programmer’s perspective, the power of the transaction
paradigm is that it reduces the task of concurrent failure-aware pro-
gramming of the whole system to that of correct sequential pro-
gramming of each application program separately. It is worth point-
ing out that while other fields describe the concept of apparently in-
divisible, point-like behavior as “atomicity”, in the database com-
munity, “atomic” means that all the changes happen, or none do.
The appearance of happening at a point is refered to as “isolated”
(or serializable) behavior.

Internally, the DBMS uses a variety of mechanisms including
locking, logging, and two-phase commit, to ensure that the appli-
cation programs get the ACID transactional behavior they expect.
The basic algorithms are fairly straightforward, but they interact in
subtle ways, and have serious performance impacts, so the actual
implementation of these facilities is very complicated [8].

2.1.2 Challenges Ahead
One major theme that came up during the workshop is the need

to provide support for application domains that need different de-
sign points than the very short, completely independent, programs
typical of OLTP, but where there is still the goal to help avoid prob-
lems from interleaving, system crashes etc. For example, design
applications were studied extensively in the 1980s; in the late 1990s
workflows (or business processes) became important, and the latest
domain of this type is composite web services where several busi-
ness processes interact across organizational trust boundaries. Key
features in these domains include the expectation for cooperation
between programs rather than complete independence; the long du-
ration (hours or even weeks) of an activity; and the desire to move
forward even when something goes wrong, rather than throwing
away all the work and returning to a previous state (so, we really
want “exactly once” or “run then compensate” rather than “all or
nothing”). Another very different class of domain occurs in se-
curity work, e.g., identifying attacks, where immediate results are
more important than precise ones, and where the activity taking
place against the database is itself data of importance (and should
be recorded and preserved even if the activity fails).

In all these domains, it seems impossible to have each applica-
tion program written in complete ignorance of the other applica-
tions, and to have the infrastructure work no matter what the ap-
plication programs do; however, one would wish to limit the cross-
component dependencies in some way, so that it is possible to rea-
son about the combined effect of applications in the presence of
concurrency, partial execution, and system crashes. The database
community has already proposed a range of extended transaction
models [12] (often based on some form of nesting of scopes). There
have even been designs for a broad framework within which one
can describe multiple extended transaction models. However few
of the extended transaction models have seen wide use by appli-

cation programmers so far, and there remain two open questions:
what transaction-like (unbundled, relaxed, or extended) features the
infrastructure should provide and how to reason about application
programs that use these features.

Two other important workshop themes connect the database com-
munity with others. One needs close cooperation with both formal
methods and hardware people; this concerns the implementation of
transactional mechanisms inside the DBMS. As noted above, the
internals are very complex, and their design is sometimes based on
principles such as internal support for atomicity through layered
notions of transactions. Indeed many of the early proposals for
richer models of transactions which did not get taken up by applica-
tion programmers can today be found in DBMS implementations,
where small groups of sophisticated programmers can work with
them. It is still unclear how to best reason about the full complex-
ity of a DBMS implementation of transactions in ways that take
account of the interactions between aspects like buffer manage-
ment, fancy synchronisation properties of the hardware disk con-
troller and OS, and multiple threads running in the DBMS code.
These low-level internals are likely to be the cause of occasional
(albeit very infrequent) “Heisenbugs” [8], and recovery code is the
last resort to avoid damage by such software failures. So it would
be highly desirable to verify mathematically the correctness of this
transactional core of the mission-critical DBMS software.

The third theme that came up consistently at Dagstuhl connects
the database community to formal methods work. It was the need
to reason about applications that do not use ACID transactions. In
commercial reality, the performance impact of the ACID mecha-
nisms is so high, that most application programs actually do not
use the full functionality. While the applications do want “all or
nothing” and “committed state persists despite crashes”, they are
usually willing to give up on ”the activity appears like a point”,
by using weaker isolation levels than serializability. Indeed, some
vendors do not implement serializability exactly, but rather use a
“snapshot isolation” approach which avoids many but not all cases
of data interference in concurrent execution. Since weak isolation
is widely used, researchers need to offer help for the application
developer to use it correctly.

2.2 Dependable Systems Perspective

2.2.1 Position
The dependability of a computing system is its ability to deliver

service that can justifiably be trusted [2]. The major activities as-
sociated with the means of achieving dependability are fault tol-
erance, prevention, removal, and forecasting. Atomicity plays an
important role in designing and analysing dependable systems. As
the fundamental approach assisting abstraction and system struc-
turing, it is crucial in attempts to prevent the occurrence and intro-
duction of faults since it allows the complexity of a design to be
reduced. Use of abstraction and structuring in system development
facilitates fault tolerance (by confining error) and fault removal (by
allowing component validation and verification). Atomicity often
makes fault forecasting simpler as it makes it easier to reason about
likely consequences of faults.

Fault tolerance is a means for achieving dependability despite
the likelihood that a system still contains faults and aiming to pro-
vide the required services in spite of them. Fault tolerance is achieved
either by fault masking, or by error processing, which is aimed at
removing errors from the system state before failures happen, and
fault treatment, which is aimed at preventing faults from being ac-
tivated again [2]. Atomic actions can be used as the basis of error
confinement strategies — these play a central role in the design and



justification of both error masking and error recovery policies.
The development of atomic action techniques supporting the struc-

tured design of fault tolerant distributed and concurrent applica-
tions is an important strand of dependability research. The work ef-
fectively started with the paper [20] where the concept of a conver-
sation was introduced. An atomic action (conversation) consists of
a number of concurrent cooperating participants entering and leav-
ing it at the same time (i.e. concurrently). Here the word atomic
also refers to the property that the changes made by an operation
are only visible when it completes. When an error is detected in a
conversation all participants are involved in cooperative recovery.
Backward error recovery (rollback, retry, etc.) and forward error
recovery (exception handling) are allowed. Actions can be nested
and when recovery is not possible the responsibility for recovery is
passed to the containing action. Action isolation makes the actions
into error confinement areas and allows recovery to be localised, at
the same time making reasoning about the system simpler.

2.2.2 Challenges Ahead
Atomic actions, initially introduced for systems consisting of co-

operating activities, were later extended to allow actions to com-
pete for shared resources (e.g. data, objects, devices). By this
means the work was brought together with that on database trans-
actions, which concerned systems of independent processes that
simply competed for shared resources, i.e. the database. Coordi-
nated atomic actions [24] thus can be used to structure distributed
and concurrent systems in which participants both cooperate and
compete, and allow a wide range of faults to be tolerated by us-
ing backward and forward recovery. These actions can have mul-
tiple outcomes, extending the traditional all-or-nothing semantics
to make it possible to deal with those environments that do not roll
back or for which backward recovery is too expensive (web ser-
vices, external devices, human beings, external organisations, etc.).
The challenge here is to work closely with the formal method group
on developing rigorous design methods and tools supporting atomic
actions and error recovery. More effort needs to be invested into
developing advanced atomic actions techniques for emerging ap-
plication domains and architectures, such as mobile and pervasive
systems, ambient intelligence applications, and service-oriented ar-
chitecture.

As seen above, cooperation and coordination are essential for the
kind of atomicity required for the structured design of distributed
fault-tolerant systems. When building such systems, one is often
faced with the necessity of ensuring that different processes obtain
a consistent view of the system evolution. This requirement may
be expressed in different ways, for instance:

� A set of processes involved in a distributed transaction may
need to agree on its outcome: if a transaction is aborted at
some process it should not be committed at some other pro-
cesses. This is known as the distributed atomic commitment
problem.

� Replicas of a component, when applying non-commutative
updates, must agree not only on the set of updates to apply
but also on the order in which these updates are applied. This
is known as the atomic multicast problem.

Many of the challenges that are involved in solving these agree-
ment problems in fault-tolerant distributed systems are captured by
the consensus problem, defined in the following way: each pro-
cess proposes an initial value to the others, and, despite failures,
all correct processes have to agree on a common value (called a
decision value), which has to be one of the proposed values. Un-
fortunately, this apparently simple problem has no deterministic so-

lution in asynchronous distributed systems that are subject to even
a single process crash failure: this is the so-called Fischer-Lynch-
Paterson’s impossibility result [7]. This impossibility result does
not apply to synchronous systems but, on the other hand, fully syn-
chronous systems are hard to build in practice.

A significant amount of research has been devoted to defining
models that have practical relevance (because they capture prop-
erties of existing systems) and allow for consensus to be solvable
in a deterministic way. Such models include partial synchronous,
quasi-synchronous, and asynchronous models augmented with fail-
ure detectors, among others [22]. At the workshop, there was some
confusion among the participants from the database community as
to how these various models relate to each other, what (realistic as
well as unrealistic) assumptions they make, and what properties and
limitations they have. A unifying framework would be highly de-
sirable, and this should include also the database-style (2PC-based)
distributed commitment.

In component-based development, atomicity, seen as guarantee-
ing hermetic interfaces of components, is a key element of the so-
called orthogonality property of system designs. The aim of an
orthogonal design is to ensure that a component of the system does
not create side effects on other components. The global properties
of a system consisting of components can then be stated strictly
from the definition of the components and the way they are com-
posed.

Some extended notions of atomicity and orthogonality could be
used as a mechanism for composing services by incorporating the
interactions between components. This would be feasible if it was
possible to abstract the actual component behaviour from the well-
defined interfaces that allow expression of the different roles which
a component might play. However, for this to happen it is necessary
to replace the traditional notion of atomicity with a more relaxed
one where, for example, the components taking part in a transac-
tion are not fully tied up for the whole length of the transaction.
Although different applications might require different forms of
such quasi-atomicity, it might be possible to identify useful design
patterns specific for the application domain. Even assuming that
a useful relaxed notion of atomicity could be defined and imple-
mented, the task of incorporating this concept into a development
process is still not a straightforward one. For example, the trans-
formation of a business dataflow into an implementation based on
the synchronization of components cannot be captured by a simple
top-down process consisting of refinement rules, if system decom-
position leads to the identification of new behaviours (including
new failure behaviours). Instead, this essentially top-down process
should be modified by allowing bottom-up revisions.

2.3 Hardware and Language Perspective

2.3.1 Position
Explicit hardware support for multithreaded software, either in

the form of shared-memory-chip multiprocessors or hardware mul-
tithreaded architectures, is becoming increasingly common. As
such support becomes available, application developers are expected
to exploit these developments by employing multithreaded pro-
gramming. But although threads simplify the program’s concep-
tual design, they also increase programming complexity. In writ-
ing shared memory multithreaded applications, programmers must
ensure that threads interact correctly, and this requires care and ex-
pertise. Errors in accessing shared data objects can cause incor-
rect program execution and can be extremely subtle. This is ex-
pected to become an even greater problem as we go towards heav-
ily threaded systems where their programmability, debuggability,



reliability, and performance become major issues.
Explicitly using atomicity for reasoning about and writing mul-

tithreaded programs becomes attractive since stronger invariants
may be assumed and guaranteed. For example, consider a linked
list data structure and two operations upon the list: insertion and
deletion. Today, the programmer would have to ensure the appro-
priate lock is acquired by any thread operating upon the linked list.
However, an attractive approach would be to declare all operations
upon the linked list as “atomic”. How the atomicity is provided
is abstracted away for the programmer and the underlying system
(hardware or software) guarantees the contract of atomicity.

The hardware notion of atomicity involves performing a sequence
of memory operations atomically. The identification of the se-
quence is, of course, best left to the programmer. However, the pro-
vision and guarantee of atomicity comes from the hardware. The
core algorithm of atomically performing a sequence of memory op-
erations involves obtaining the ownership of appropriate locations
in hardware, performing temporary updates to the locations, and
then releasing these locations and making the updates permanent
instantaneously. In the event of failures, any temporary updates
are discarded, thus leaving all critical state consistent. Hardware
has become exceedingly proficient in optimistically executing op-
erations, performing updates temporarily, and then making them
permanent instantaneously if necessary.

Transactional Memory [10] was an initial proposal for employ-
ing hardware support for developing lock-free programs where ap-
plications did not suffer from the drawbacks of locking. It advo-
cated a new programming model replacing locks. Recently, Trans-
actional Lock-Free Execution [18, 19] has been proposed, where
the hardware can dynamically identify and elide synchronization
operations, and transparently execute lock-based critical sections
as lock-free optimistic transactions while still providing the cor-
rect semantics. The hardware identifies, at run time, lock-protected
critical sections in the program and executes these sections with-
out acquiring the lock. The hardware mechanism maintains cor-
rect semantics of the program in the absence of locks by executing
and committing all operations in the now lock-free critical section
“atomically”. Any updates performed during the critical section
execution are locally buffered in processor caches. They are made
visible to other threads instantaneously at the end of the critical
section. By not acquiring locks, the hardware can extract inherent
parallelism in the program independent of locking granularity.

While the mechanism sounds complex, much of the hardware
required to implement it is already present in systems today. The
ability to recover to an earlier point in an execution and re-execute
is used in modern processors and can be performed very quickly.
Caches retain local copies of memory blocks for fast access and
thus can be used to buffer local updates. Cache coherence proto-
cols allow threads to obtain cache blocks containing data in either
shared state for reading or exclusive state for writing. They also
have the ability to upgrade the cache block from a shared state to
an exclusive state if the thread intends to write into the block. The
protocol also ensures all shared copies of a block are kept consis-
tent. A write on a block by any processor is broadcast to other pro-
cessors with cached copies of the block. Similarly, a processor with
an exclusive copy of the block responds to any future requests from
other processors for the block. The coherence protocols serve as a
distributed conflict detection and resolution mechanism and can be
viewed as a giant distributed conflict manager. Coherence protocols
also provide the ability for processors to retain exclusive ownership
of cache blocks for some time until the critical section completes. A
deadlock avoidance protocol in hardware prevents various threads
from deadlocking while accessing these various cache blocks.

2.3.2 Challenges Ahead
Crucial work remains both in hardware and software systems.

The classic chicken-and-egg problem persists. On one hand, exist-
ing software-only implementations of atomicity and transactions
for general use suffer from poor performance, and on the other
hand, no hardware systems today provides the notion of general-
ized atomic transactions. A major hurdle for hardware transactions
remains in their specification. Importantly, what hardware transac-
tion abstraction should be provided to the software? How is the
limitation of finite hardware resources for temporarily buffering
transactions handled? A tension will always exist between power
users who would like all the flexibility available from the hard-
ware and the users who would prefer a hardware abstraction where
they do not worry about underlying implementations. These are
some of the questions that must be addressed even though many
of the core mechanisms in hardware required for atomic transac-
tions, such as speculatively updating memory and subsequently
committing updates, are well understood and have been proposed
for other reasons, including speculatively parallelizing sequential
programs [21].

The software area requires significant work. The first question
remains the language support. Harris and Fraser [9] provided a sim-
ple yet powerful language construct employing conditional critical
regions. In simple form, it is as follows:

atomic (p) � S �

Semantically this means S executes if p is true. If p is false, it needs
to wait for some other process to change some variable on which p
depends.

However, more rigorous constructions are required for specifica-
tion of such language constructs. At least from the formal methods
community perspective, specifying a concise formal description of
the above constructs as a semantic inference rule in the operational
semantics style would be necessary.

A first pass at such a declaration would be as follows:

s�p�s�� true�� s��S�s�� � s�atomic (p) � S ��s��

In English: If we start in state s and the guard predicate p evaluates
to true, then we make the atomic state transition that evaluates p
and then S. No other other process will be able to observe or affect
the intermediate state s� or any other intermediate state.

Looking forward, we suggest language designs will need to go
beyond such simple constructs. Some of the issues designs might
want to handle include: connecting with durability somehow, per-
haps through providing special durable memory regions; express-
ing relative ordering constraints (or lack thereof) for transactions
issued conceptually concurrently (e.g. iterations of counted loops,
as typical of scientific programs operating on numerical arrays);
supporting closed nesting [16] and the bounded rollback that it im-
plies on failure; supporting open nesting where commitment of a
nested transaction releases basic resources (e.g. cache lines) but
implies retention of semantic locks and building a list of undo rou-
tines to invoke if the higher level transaction fails; providing for
lists of actions to perform only if the top-level enclosing transac-
tion commits; supporting the leap-frogging style of locking along a
path one is accessing in data structures like linked lists and trees.



2.4 Formal Methods Perspective

2.4.1 Position
Formal methods [13] offer rigorous and tractable ways of de-

scribing systems. This is nowhere more necessary than with subtle
aspects of concurrency: being precise about atomicity, granularity
and observability is crucial.

The concept of atomicity –which is central to this manifesto–
can easily be described using “operational semantics”. McCarthy’s
seminal contribution on operational semantics [15] presented an
“abstract interpreter” as a recursive function exec : Program�Σ�
Σ where Σ is the domain of possible states of a running program. As
an interpreter, exec computes the final state (if any) which results
from running a program from a given starting state; such descrip-
tions are abstract in the sense that they use sets, maps, sequences,
etc. rather than the actual representations on a real computer.

The obvious generalisation of McCarthy’s idea to cope with con-
currency turns out not to provide perspicuous descriptions because
functions which yield sets of possible final states have to compound
each other’s non-determinism. In 1981 Ploktin [17] proposed pre-
senting “structural operational semantics” (SOS) descriptions as in-
ference rules. Essentially, rather than the function above, a relation
can be defined P ��Program� Σ��Σ� where, if ��p�σ��σ�� is in
that relation, σ� is a possible final state of executing p in a starting
state σ.

Since the origin of these ideas is with programming language se-
mantics, the description begins there; but the relevance to the fields
above is easily demonstrated. Consider a simple language with
two threads each containing sequences of assignment statements.
It is assumed initially that assignment statements execute atomi-
cally. Two simple symmetric rules show that a statement from the
head of either sequence can execute atomically

hd�s1� � x� e
�e�σ� e

��v

�s1��s2�σ� s
���tl�s1���s2�σ †�x � v	�

hd�s2� � x� e
�e�σ� e

��v

�s1��s2�σ� s
���s1��tl�s2��σ †�x � v	�

In these rules: hd and tl stand for the head and tail of a list; x� e
denotes the assignment of expression e to variable x; �e�σ� e

��v
denotes that in program state σ expression e can evaluate to value
v; �� denotes parallel execution of two statements; σ†�x� v	 is the
state that is identical to σ except for the fact that variable x is now
mapped to value v; and �l�σ� s

�� �l��σ�� means that the exeuction
of statement list l in state σ leads to state σ� with the statement list
l� left to be executed (the overall relation P ��Program�Σ��Σ� is
derived when the statement list l� is empty).

From the above rules, it is easy to show that

�x� x
2;x � x
3����x� x
4;x � x
5�

will, if the initial value of x is 1, set the final value of x to factorial 5.
Whereas, when x starts at 1

�x� x�1;x � x�1����x� x
2;x � x�2�

can leave x as 1 or a range of other values.
This second example begins to form the bridge to transactions

but, before taking that step, it is worth thinking a little more about

atomicity. It would be trivial to extend the programming language
to fix the second example so that it always left x at 1. One way to
do this would be to add some sort of atomic brackets so that s1;�
s2;s3 �;s4 executes as three (rather than four) atomic transitions.
The changes to the SOS rules are simple. Moving atomicity in the
other direction, it would actually be extremely expensive in terms
of dynamic locking to implement assignments atomically. Showing
all of the places where another thread can intervene is also possible
in the SOS rules. Programming language designers have spent a lot
of effort on developing features to control concurrency; see [11] for
a discussion of “(conditional) critical sections”, “modules” etc.

SOS rules can be read in different ways and each provides in-
sight. As indicated above, they can be viewed as inductively defin-
ing a relation between initial and final states. They can also be
viewed as defining a logical frame for reasoning about constructs
in a language. Implications of this point are explored in [14].

As might be guessed by now, it is easy to define the basic no-
tion of database “serializability” by fixing the meaning of a collec-
tion of transactions as non-deterministically selecting them one at
a time for atomic execution. Of course, this overall specification
gives no clues to the invention of the clever implementation algo-
rithms studied in the database community. As with programming
language descriptions, the relation defined by the SOS rules should
be thought of as a specification of allowed behaviour.

2.4.2 Challenges Ahead
It is not only in the database world that “pretending atomicity”

is a powerful abstraction idea. It was argued at the workshop that a
systematic way of “splitting atoms safely” could be a useful devel-
opment technique with applicability to a wide range of computing
problems. Essentially, given a required overall relation defined by
an SOS description, one needs to show that an implementation in
which sub-steps can overlap in time, exhibits no new behaviours at
the external level.

An interesting debate at the workshop was what one might learn
from trying to merge programming and database languages. De-
spite considerable research efforts in this direction [6], no convinc-
ing solution seems to have emerged yet. The most important chal-
lenge would be to look at how the two communities handle concur-
rency control.

SOS rules are certainly not the only branch of formal methods
which could help record, reason about, and understand concurrency
notions in, for example, databases. For example, we emphasize the
insight which can be derived from process algebras and the distinc-
tion between interleaving and “true concurrency” as explored by
the Petri Net community.

Finally, the intriguing notion of refinements that are accompa-
nied by rigorous correctness reasoning has been successfully ap-
plied in the small [1], for example, to derive highly concurrent and
provably correct data structures, e.g. priority queues, but it is un-
clear to what extent it can cope with the complexity of large soft-
ware pieces like the full lock manager or recovery code of a DBMS
or the dynamic replication protocol of a peer-to-peer file-sharing
system. Tackling the latter kinds of problems requires teaming up
expertise in formal methods with system-building knowhow.

3. LESSONS AND CHALLENGES
There was clear consensus across all four participating commu-

nities that atomicity concepts, if defined and used appropriately,
can lead to simpler and better programming, system description,
reasoning, and possibly even better performance. Some of the tech-
nical challenges that emerged as common themes across all com-
munities are the following:



� A widely arising issue in complex systems is how to build
strong guarantees on top of weaker ones, or global guaran-
tees at the system and application level on top of local ones
provided by components. Examples of this theme are how
to ensure global serializability on top of components that use
snapshot isolation or how to efficiently implement lazy repli-
cation on top of order-preserving messages.

� There was consensus that we still lack a deep understanding
of the many forms of relaxed atomicity, their mutual rela-
tionships, prerequisites, applicability, implications, and lim-
itations. For example, what are the benefits and costs of seri-
alizability vs. relaxed isolation, lazy vs. eager replication, or
distributed commit in the database world vs. weaker forms
of distributed consensus in peer-to-peer systems?

� Given the variety of unbundled, relaxed, and extended atom-
icity concepts, there is a high demand for design patterns and
usage methodology that helps systems designers to choose
the appropriate techniques for their applications and make
judicious tradeoff decisions. For example, when exactly is
it safe to use snapshot isolation so that serializability is not
needed; and under which conditions is it desirable to trade
some degree of reliability for better performance?

� Along more scholarly but nevertheless practically important
lines, we should aim to develop a unified catalog of failure
models, cost models, and formal properties of all variations
of atomicity and consensus concepts, as a basis for improv-
ing the transfer of results across communities and for easier
comprehension, appreciation, and acceptance of the existing
variety of techniques by practitioners.

� A long-term issue that deserves high attention is the veri-
fication of critical code that handles concurrency and fail-
ures, for example, the recovery manager of a DBMS. Which
high-level structuring ideas from the dependability commu-
nity and which formal reasoning and automated verification
techniques from the formal-methods world can be leveraged
to this end and how should they be used and interplay with
each other when tackling the highly sophisticated software
that we have in the kernels of DBMSs, middleware systems,
and workflow management systems?

For compelling reasons pointed out in the introduction, now is
the right time for the different research communities to jointly tackle
the technical challenges that impede the turning of atomicity con-
cepts into best-practice engineering for more dependable next gen-
eration software systems. With rapidly evolving and anticipated
new applications in networked and embedded environments that
comprise many complex components, we face another quantum
leap in software systems complexity. We are likely to run into a
major dependability crisis unless research can come up with rig-
orous, well-founded, and at the same time practically significant
and easy-to-use concepts for guaranteeing correct system behav-
ior in the presence of concurrency, failures, and complex cross-
component interactions. The atomicity theme is a very promising
starting point with great hopes for clear foundations, practical im-
pact, and synergies across different scientific communities.

Observations on Sociology: It was both ambitious and interest-
ing to run a workshop with participants from four different commu-
nities. Many of the discussions led to misunderstandings because
of different terminologies and implicit assumptions in the underly-
ing computation models (failure models, cost models, etc.). A not
quite serious but somewhat typical spontaneous interruption of a
presentation was the remark “What were you guys smoking?”. The
wonderful atmosphere at the Dagstuhl seminar site, the excellent
Bordeaux, and a six-mile hike on the only day of the week with

rain were extremely helpful in overcoming these difficulties. In
the end there were still misunderstandings, but the curiosity about
the applicability of the other communities’ results outweighed the
skepticism, and a few potentially fruitful point-to-point collabora-
tions were spawned. We plan to hold a second Dagstuhl on this
theme, again with participation from multiple research communi-
ties, in spring 2006.

4. REFERENCES
[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings.

Cambridge University Press, 1996.
[2] A Avizienis, J-C Laprie, C. Landwehr, B. Randell. Basic Concepts and

Taxonomy of Dependable and Secure Computing. IEEE Trans. on
Dependable and Secure Computing 1(1):11-13, 2004.

[3] 1st Int’l. Conference on Autonomic Computing. New York, 2004.
http://www.caip.rutgers.edu/˜parashar/ac2004/

[4] P. Bernstein and E. Newcomer. Principles of Transaction Processing
for the Systems Professional. Morgan Kaufmann, 1997.

[5] Dagstuhl Seminar 04181. Atomicity in System Design and Execution.
Organized by C. Jones, D. Lomet, A. Romanovsky, G. Weikum.
http://www.dagstuhl.de/04181/

[6] Int’l. Workshops on Database Programming Languages,
http://www.cs.toronto.edu/ mendel/dbpl.html

[7] M. Fischer, N. Lynch, M. Paterson. Impossibility of Distributed
Consensus with One Faulty Process. Journal of the ACM
32(2):374-382, 1985.

[8] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[9] T. Harris, K. Fraser. Language support for lightweight transactions. In
Proc. of the Int’l. Conference on Object-Oriented Progamming
Systems, Languages, and Applications, 2003.

[10] M. Herlihy and J.E.B. Moss. Transactional Memory: Architectural
support for lock-free data structures. In Proc. of the Int’l. Symposium
on Computer Architecture, 1993.

[11] C.A.R. Hoare, C.B. Jones. Essays in Computing Science. Prentice
Hall International, 1989.

[12] S. Jajodia and L. Kerschberg (Editors). Advanced Transaction
Models and Architectures. Kluwer, 1997.

[13] C.B. Jones. Systematic Software Development using VDM. Prentice
Hall, 1990.

[14] C.B. Jones. Operational semantics: concepts and their expression.
Information Processing Letters 88:27–32, 2003.

[15] J. McCarthy. A formal description of a subset of ALGOL. In Formal
Language Description Languages for Computer Programming.
North-Holland, 1966.

[16] J.E.B. Moss. Nested Transactions: An Approach to Reliable
Distributed Computing. MIT Press, 1985.

[17] G.D. Plotkin. A structural approach to operational semantics. Journal
of Functional and Logic Programming, forthcoming.

[18] R. Rajwar and J.R. Goodman. Transactional Execution: Toward
Reliable, High-Performance Multithreading. In IEEE Micro
23(6):117–125, 2003.

[19] R. Rajwar and J.R. Goodman. Transactional lock-free execution of
lock-based programs. In Proc. of the Int’l. Conference on Architectural
Support for Programming Languages and Operating Systems, 2002.

[20] B. Randell. System Structure for Software Fault- Tolerance. IEEE
Trans. on Software Engineering SE-1(2):220-232, 1975.

[21] G.S. Sohi, S.E. Breach, and T.N. Vijaykumar. Multiscalar processors.
In Proc. of the 22nd Int’l. Symposium on Computer Architecture, 1995.

[22] P. Verissimo, L. Rodrigues. Distributed Systems for System
Architects. Kluwer, 2000.

[23] G. Weikum and G. Vossen. Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and
Recovery. Morgan Kaufmann, 2002.

[24] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud, Z. Wu.
Fault Tolerance in Concurrent Object-Oriented Software through
Coordinated Error Recovery. In Proc. of the 25th Int’l. Symposium on
Fault-Tolerant Computing Systems, 1995.


