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Abstract. Query Personalization is the process of dynamically enhancing a 
query with related user preferences stored in a user profile with the aim of 
providing personalized answers. The underlying idea is that different users may 
find different things relevant to a search due to different preferences. Essential 
ingredients of query personalization are: (a) a model for representing and 
storing preferences in user profiles, and (b) algorithms for the generation of 
personalized answers using stored preferences. Modeling the plethora of 
preference types is a challenge. In this paper, we present a preference model 
that combines expressivity and concision. In addition, we provide algorithms 
for the selection of preferences related to a query and the progressive generation 
of personalized results, which are ranked based on user interest. 

1. Introduction 

A user accessing an information system with the intention of satisfying an 
information need, may have to reformulate the query issued several times and sift 
through many results until a satisfactory, if any, answer is obtained. This is a very 
common experience especially for Web searchers, due to information abundance and 
users’ heterogeneity in the Web. A critical observation is that different users may find 
different things relevant when searching because of different preferences, goals etc. 
Thus, they may expect different answers to the same query. Consider a simple case: 
two users, Jon and Julie, access a web-based movies database both searching for 
comedies. Jon is a fan of director W. Allen, while Julie is not. Most systems would 
consider only the request issued and return to both users the same, exhaustive list of 
comedies. However, storing user preferences in profiles gives a system the 
opportunity to return more focused, personalized (and hopefully smaller) answers. 

Query Personalization is the process of dynamically enhancing a query with 
related user preferences stored in a user profile with the purpose of providing 
personalized answers. Focusing on the user enables a shift from what is called 
‘consensus relevancy’ where the computed relevancy for the entire population is 
presumed relevant for each user, toward ‘personal relevancy’ where relevancy is 
computed based on each individual’s characteristics [18]. Personalized results for Jon 
would include W. Allen’s comedies, while personalized results for Julie would not. 
Which preferences are related to a request and how these affect the final answer are 
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dynamically determined based on the query, the profile and the personalization logic 
applied. 

Query personalization approaches have recently attracted interest in both IR and 
Databases research communities [14, 18, 16]. We are concerned with query 
personalization in the context of databases. Essential ingredients of query 
personalization are (a) a model for storing preferences in user profiles, (b) a query 
personalization framework that specifies what kind of personalized answer is 
generated given a query and a user profile, and (c) query personalization algorithms.  

We adopt the query personalization framework presented in our earlier work [14]. 
Based on that, given a query and a profile, a personalized answer is built by 
specifying the number K of top preferences from the user profile that should be 
considered, and the number L (L≤K) of those preferences that should at least be 
satisfied. Parameters K and L can be specified directly by the user or derived based on 
various criteria on the query context, such as user location, time, device, etc. Query 
personalization proceeds in two phases: (Preference Selection) Top K preferences are 
derived from the user profile. (Personalized Answer) These are combined with the 
query, and a personalized answer is returned satisfying (at least) L of the K 
preferences. 

Outline. In this paper, we present the following: 
• A Preference Model. We present a preference model that combines expressivity 

and concision. In particular, we model a set of dimensions along which several 
types of preferences may be formulated. 

• Preference Selection Algorithms. We provide efficient algorithms for the selection 
of preferences related to a query according to various criteria. The notion of degree 
of criticality is introduced for ordering preferences and selecting the top K. 

• Generation of Personalized Answers. A simple approach for generating 
personalized answers is to integrate the top K preferences into the query issued and 
construct a new one. This query is, then, executed by the underlying database 
system [14]. We see how this simple method may be adopted to the preference 
model described here and discuss its shortcomings. Then, we describe an algorithm 
for the progressive generation of personalized results, which are ranked based on 
the estimated user interest. 

• Ranking Functions. Results may be ranked based on which preferences are 
satisfied or not. Several classes of ranking functions are described. 

• Experimental Results. We have conducted experiments testing the efficiency of the 
proposed query personalization algorithms, the appropriateness of the ranking 
functions, and the effectiveness of personalized search. We will provide an 
overview of the experimental results in order to give insight so as to the 
appropriateness of ranking functions, and the effectiveness of personalized search. 

2. Related Work 

Preference is a fundamental notion in applied mathematics [7], philosophy [8], AI 
[20], and databases [15]. However, only recently this area has attracted a broader 
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interest in the database community. Two approaches have been pursued. In the 
qualitative approach, preferences between tuples in the answer to a query are 
specified using preference relations. Two frameworks have been proposed, in which 
preference relations are defined using logical formulas [5] or special preference 
constructors [12, 13]. Preference relations are embedded into relational query 
languages through a relational operator that selects from its input the set of the most 
preferred tuples (e.g., winnow [5], BMO [12, 13]). Skylines [3, 17] are special cases 
of these preference queries. In the quantitative approach, preferences in queries are 
specified using scoring functions that associate a numeric score with every tuple of 
the answer [1]. Several algorithms have been proposed for efficiently answering top-K 
queries, i.e. queries that retrieve the best K objects that minimize a specific function 
[4, 21, 9]. 

Our earlier model [14] associates degrees of interests (like scores) with 
preferences. Yet, there are substantial differences from the quantitative framework 
[1]. The latter does not capture preferences expressed on relationships between 
entities, e.g., ‘I am very interested in the actors of a film’, and implicit preferences. In 
addition, it uses distance functions for tuple ranking; thus top tuples are those with the 
smallest distance from the target values. On the other hand, ranking functions [14] 
estimate the overall interest in a tuple with respect to a combination of preferences. 
Top tuples are those with the highest interest based on this function. 

The model presented here has the aforementioned features of the earlier model, but 
is of greater expressive power. The earlier model represents only preferences of the 
kind ‘I like actor W. Allen’ (exact positive presence preference), as opposed to the 
generalized that captures several types, such as ‘I like films with duration around 2h’ 
(elastic preference), ‘I do not like thrillers’ (negative preference), ‘I like movies 
without violence’ (regarding absence of values).  

Compared to our extended model, the quantitative framework [1] does not capture 
negative preferences and preferences for the absence of values. The qualitative 
frameworks [5, 13] do not capture preferences expressed on relationships between 
entities and implicit preferences. Besides, [13] defines specific preference 
constructors, thus not considering the possibility of having arbitrary constraints in 
preferences. [5] does not express negative preferences and preferences for the absence 
of values. Furthermore, preference relations provide an abstract, generic way to talk 
about priority, and importance. Thus, [5, 13] cannot capture different degrees of 
interest, such as ‘I like comedies very much’, ‘I like dramas a little’, and preference 
queries return most preferred tuples without distinguishing how better is one tuple 
compared to another. We capture such variations in priority and importance by 
associating preferences with degrees of interest. Query results are also ranked based 
on the degree of interest. Then, an application may use qualitative descriptors for 
preferences and desired results defined in terms of intervals of degrees of interest. 
E.g., a ‘best’ descriptor could map to degrees between 0.9 and 1; then a user could 
ask for ‘best’ matches. We do not, yet, support skylines, and conditional preferences. 

All the above database approaches deal with the expression of preferences in 
queries. We focus on the representation of preferences in user profiles and query 
personalization algorithms. Although personalization is a very broad research area, 
and there are different approaches from information filtering and recommender 
systems [19, 11] to intelligent agents [2], query personalization approaches in IR [18, 
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16] and databases [14] are just emerging. 

3. Preference Model 

Consider a movies database described by the schema below; primary keys are 
underlined. 

 THEATRE(tid, name, phone, region, ticket),  
 PLAY(tid, mid, date), GENRE(mid, genre) 
 MOVIE(mid, title, year, duration)  
 CAST(mid, aid, award, role)  ACTOR(aid, name) 
 DIRECTED(mid, did),  DIRECTOR(did, name) 

Preferences may be expressed for values of attributes, and for relationships 
between entities. Preferences for values are quite involved. Preferences for 
relationships indicate to what degree, if any, entities related depend on each other (in 
particular by preferences on each other).  

Example 1. Jon’s preferences include the following. 
(p1) He likes director W. Allen very much. (p2) He does not like movies released before 

1980. (p3) He prefers a ticket price around 6 Euros. (p4) He prefers movies of duration around 
2h. (p5) He is happy if the movie is not a musical. (p6) He would rather not go to non-
downtown theatres. (p7) He is extremely interested in the director of a movie. (p8) He cares a 
lot about the movie genre. (p9) He cares less about the theatres showing a movie. (p10) He cares 
a lot about the movies of a theatre. 

Our approach to personalization is based on maintaining, for every user, a user 
profile whose structure is related to the features of the data and query models. 
Without loss of generality, we focus on queries over relational databases. 
Nevertheless, our approach is applicable to any graph model capturing entities and 
relationships. User preferences may be articulated over a higher level graph model 
representing the data other than the database schema. This is a useful abstraction for 
using a profile over multiple databases with similar information but possibly different 
schemas, and for hiding schema restructuring.  

3.1 Stored Atomic Preferences 

For an attribute R.A of a relational table R, let DA be its domain of values. Given our 
focus on query personalization, we store preferences at the level of atomic query 
elements, which are therefore called atomic preferences. Preferences for values of 
attributes are stored as atomic selections (atomic selection preferences), and 
preferences for relationships are stored as atomic joins (atomic join preferences). 

Atomic Selection Preferences. For any atomic selection condition q on attribute 
R.A, a user’s preference for values satisfying (or not) q is expressed by the degree of 
interest in q, denoted by doi(q), which is defined as follows: 

doi(q) = < dT(u), dF(u) > 
where ∀ u∈ DA satisfying q, dT(u), dF(u) ∈ [-1,1] and dT(u)*dF(u) ≤ 0.  



Personalization of Queries Based on User Preferences      5 

The last condition should hold for normal users, based on psychological evidence 
[6]. This model is quite general and can express several preference types. These are 
described below, as each part of the above definition is analyzed, by distinguishing 
three relevant dimensions of preferences: valence, concern, elasticity. 

Valence. Preferences may be positive (expressing liking), negative (expressing 
dislike) or indifferent (expressing don’t care). Valence is captured by the different 
values of the degrees of interest dT(u), and dF(u): a positive degree indicates 
increasingly higher interest (degree 1 is for ‘must-have’ domain values); a negative 
degree indicates increasing dislike (degree −1 is for ‘most-unpleasant’ values); a 
degree equal to 0 indicates indifference. Preferences with dT(u) = dF(u) = 0, are not 
stored in the profile. 

 Concern. Preferences may be presence (concerning the presence of values) or 
absence (concerning the absence of values). A user’s concern is captured by the pair  
< dT(u), dF(u) >. As defined, dT(u) captures a user's concern for the presence of values 
u of R.A (or any other path of the schema leading to R.A) that make q evaluate to 
true. dF(u) captures a user's concern for the absence of the same values, i.e. for q 
evaluating to false. dT(u) is not derivable from dF(u), and vice versa. Strong interest in 
a value could be combined with indifference or with strong negative interest in its 
absence. 

Elasticity. Preferences may be exact or elastic depending on whether the domain 
DA is categorical or numeric. Given the mutual independence of categorical values, 
preferences for these are considered exact and are either satisfied exactly or not at all. 
On the other hand, preferences for numeric values may be smoothly continuous over 
their domain and may be satisfied approximately, in which case, they are considered 
elastic. Elasticity is captured by the form of the functions dT(u), and dF(u). Constant 
doi functions are used for exact preferences. There are many possible functions for 
the representation of elastic preferences. Fig. 1 shows possible forms of those. 
Various parameters are required for the detailed description of an elastic doi 
function, such as the interval of values for which the function is non-zero. For 
simplicity, we will use e(d) to denote an elastic function avoiding a detailed 
representation of it. The subscript denotes the maximum (min.) degree this function 
returns, depending on its form, (see Fig. 1). We have experimented with functions of 
the form of Fig. 1 (a). Using a set of elastic doi functions, a system may support 
fuzzy operators, such as ‘around’, for the expression of elastic preferences by users. 

 

Fig. 1. Example forms of elastic functions 
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Using these dimensions, all (3*2*2) combinations of the above preference types 
are valid for formulating preferences. The model in our earlier work captured only 
one type: exact positive presence preferences. 

Example 1 (cont’d). We draw examples from Jon’s preferences. Regarding 
valence, p1 is an instance of a positive preference, and p2 is an instance of a negative 
one. Regarding concern, one may be concerned for the presence (absence) of a value, 
while one is indifferent for the opposite case. These are simple preferences. E.g., Jon 
has a positive interest in the presence of W. Allen but he does not care if W. Allen has 
not directed a film. Consequently, p1 is a simple positive presence preference. On the 
other hand, he prefers downtown theatres and he is against the idea of a theatre not 
being there. P6 combines positive presence and negative absence preference as one; it 
is a complex preference. Regarding elasticity, p1, and p2 are instances of exact 
preferences. However, Jon’s preference for movies with duration around 2 hours is 
elastic, as movies of 122 or 115 minutes are close matches probably of similar interest 
to him. Thus, p4 is an elastic preference. 

Join Preferences. Join preferences are simpler as they do not lend themselves to 
any of the variations mentioned above. A user’s preference for a join condition q is 
expressed by the degree of interest in q, doi(q), defined as follows: 

doi(q) = < d >,  where d ∈ [0, 1].  

Degree 0 indicates lack of any interest in the join condition, while degree 1 
indicates extreme (‘must-have’) interest. In addition, join preferences are directed. 
E.g., movies and theatres are related but Jon thinks that theatres depend on movies 
(p10) much more than the other way around (p9). Therefore, a join preference 
expresses the dependence of the left part of the join on the right part. In other words, 
the left part indicates the relation already included in a query and the right 
corresponds to the relation that may be included influencing the final result, if the join 
is considered. Fig.2 shows how Jon’s profile may look like. 

< DIRECTOR.name=‘W. Allen’,  0.8, 0 > 
< MOVIE.year<1980, -0.7, 0 > 
< THEATRE.ticket=‘6Euros’, e(0.5), 0 > 
< MOVIE.duration=‘2h’, e(0.7), e(-0.5)> 
< GENRE.genre=‘musical’, -0.9, 0.7 > 
< THEATRE.region=‘downtown’  0.7, -0.5 > 
< MOVIE.mid=DIRECTED.mid, 1 > 
< DIRECTED.did=DIRECTOR.did, 0.9 > 
< MOVIE.mid=GENRE.mid, 0.8 > 
< MOVIE.mid=PLAY.mid, 0.7 > 
< PLAY.tid=THEATRE.tid, 1 > 
< THEATRE.tid=PLAY.tid, 1 > 
< PLAY.mid=MOVIE.mid, 1 > 

Fig. 2. Example user profile 

A user’s preferences over the contents of a database can be expressed on top of a 
personalization graph [14]. This is a directed graph G(V, E) (V: the set of nodes; E: the 
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set of edges) and it is an extension of the database schema graph. Nodes in V are (a) 
relation nodes, one for each relation in the schema, (b) attribute nodes, one for each 
attribute of each relation in the schema, and (c) value nodes, one for each value that is 
of any interest to a particular user. Likewise, edges in E are (a) selection edges, from 
an attribute node to a value node; such an edge represents the potential selection 
condition connecting the attribute and the value, and (b) join edges, from an attribute 
node to another attribute node; such an edge represents the potential join condition 
between these attributes. As explained earlier, two attribute nodes may be connected 
through two different join edges, in the two possible directions. Given the 1-to-1 
mapping between edges in the graph and atomic preferences, degrees of interest are 
placed as labels on the edges. Part of the personalization graph corresponding to Jon’s 
profile is illustrated in Fig. 3. 

As a matter of notation, we use <q, dT(u), dF(u) > to denote a selection preference 
p, and <q, d > to denote a join preference p. For simplicity, we may omit parameter u 
from the doi of selection preferences. 

 

Fig. 3. Example personalization graph 

3.2 Implicit Preferences 

By composing atomic user preferences that are adjacent in the personalization graph 
(composable), one is able to build implicit preferences, i.e., preferences expressed 
through relationships. Given the one-to-one mapping between edges in the 
personalization graph and atomic preferences, an implicit user preference is mapped 
to a directed path. An implicit join preference is mapped to a path in the 
personalization graph between two attribute nodes. It is comprised of composable join 
edges and represents the “implicit” join condition between the corresponding 
attributes. An implicit selection preference is mapped to a path in the personalization 
graph from an attribute node to a value node. It is comprised of join edges and a 
selection edge that are composable, and represents the ‘implicit’ selection condition 
connecting the corresponding attribute and value. An implicit query element is the 
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conjunction of the constituent atomic ones. The degree of interest in an implicit 
preference is a function of the degrees of interest in the participating atomic 
preferences. In principle, one may imagine several functions. All of them, however, 
should satisfy the condition that the absolute degree of interest in an implicit 
preference decreases as the length of the corresponding directed path increases, 
capturing human intuition and cognitive evidence [6]. We have chosen multiplication 
as this function. 

Example 2. These preferences from Jon’s profile 
< MOVIE.mid=DIRECTED.mid, 1 > 
< DIRECTED.did=DIRECTOR.did, 0.9 > 
< DIRECTOR.name=‘W. Allen’, 0.8 0 > 

are composed into this implicit preference for movies directed by W. Allen: 
 < MOVIE.mid=DIRECTED.mid and  
  DIRECTED.did=DIRECTOR.did and 
 DIRECTOR.name=‘W. Allen’,      0.72, 0 > 

Note that any directed path in the personalization graph could map to an implicit 
preference. However, based on human intuition and cognitive evidence [6], we deal 
with acyclic paths only.  

3.3 Combinations of Preferences 

Satisfaction of an atomic or implicit selection preference <q, dT, dF > is equivalent to 
satisfaction of q if dT ≥ 0 or failure of q if dF ≥ 0. Failure of a preference is the exact 
opposite. Thus, the doi in the satisfaction of a preference is d+(u) = max(dT(u), dF(u)). 
The degree of interest in the failure is d− (u) = min(dT(u), dF(u)). 

Example 3. Consider these preferences of Jon. 
< DIRECTOR.name=‘W. Allen’, 0.8, 0 > 
< GENRE.genre=‘musical’, -0.9, 0.7 > 

The first one is satisfied by tuples that satisfy the corresponding condition, e.g., 
movies directed by W. Allen. The second one is satisfied by tuples that do not satisfy 
the corresponding condition, e.g., theatres that do not play musicals. 

The overall degree of interest in a combination of preferences is calculated using a 
ranking function. We distinguish the following cases: (a) all preferences are satisfied 
(positive combination), (b) none of the preferences is satisfied (negative 
combination), and (c) some preferences are satisfied and others not (mixed 
combination). 

Positive Combinations. Consider a set P+ of N+ preferences and the set D+ of the 
corresponding satisfaction (non-negative) doi's (for simplicity, we omit u): 

D+ ={di+ | di+: doi in pi ∈ P+, i = 1… N+} 
The degree of interest in a positive combination should be a function of the degrees 

di
+. In principle, one may imagine several functions. A parameter that appears pivotal 

in this issue is max(D+). Around it, one may see three different philosophies. 
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Inflationary. The degree of interest in multiple preferences satisfied together 
increases with the number of these preferences, i.e., r + (D+) ≥ max(D+), expressing a 
philosophy of ‘the more the better’. The function proposed in [14] belongs here: 

∏
=

++ −−=
N

1i
i1 )d1(1r  

(1) 

Dominant. The degree of interest in multiple preferences satisfied together is 
exactly equal to the degree of interest of the most interesting of these preferences, i.e.  
r + (D+) = max(D+). This function captures a ‘winner-takes-all’ philosophy, thus it does 
not depend on the number of preferences. In other words, an answer is as good as its 
best feature.  

Reserved. The degree of interest in multiple preferences satisfied together is 
between the highest and the lowest degrees of interest among the original preferences, 
i.e. min(D+) ≤ r+ (D+) ≤ max(D+). The underlying principle is that the degree of interest 
in satisfying multiple preferences should primarily depend on the importance of them. 
The following function belongs to this category: 

∏
=

++ −−=
N

1i

N/1
i2 )d1(1r  

(2) 

The appropriateness of a ranking function is judged only by the philosophy of the 
approach taken towards personalization and, more importantly, by how closely it 
reflects human behavior. We have experimented with the above functions, and we 
will discuss results giving insight as to the appropriateness and intuitiveness of each 
one of them. 

Negative Combinations. A similar issue arises with respect to the degree of 
interest in multiple preferences not satisfied, i.e., dealing with multiple non-positive 
degrees in a set D_. This case is symmetric with the previous one and may be treated 
in a similar fashion. The pivotal parameter is min(D_ ) and one may define 
inflationary, dominant, and reserved ranking functions. The counterparts of r1+ and 
r2

+ above, are exactly the same, only with an exchange of the ‘+’ and ‘−’ sign 
everywhere. 

Mixed Combinations. The degree of interest in a combination of positive (D+) and 
negative (D_) degrees is a function of the degrees of interest in the two sets satisfying 
the followings conditions: 

r−(D_ ) ≤ r D+, D_ ) ≤  r+(D+) (3) 

r(d, _ d) = 0 (4) 

Examples of such functions are the following: 
−+ += rrr1  (5) 

−+

−
−

+
+

+
+

=
NN

r*Nr*N
r2  

(6) 
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We have experimented with these formulas as well. Formula (6) is more 
appropriate, as it captures the intuition that the overall degree of interest should be 
affected not only by the degrees of interest in its positive and negative parts, but also 
by the number of preferences contributing to each one of them. Personalized answers 
may be ranked with the use of a ranking function. 

3.4 Preference Order 

The notion of degree of criticality is introduced for ordering preferences and selecting 
the top K of them. Intuitively, the most important or critical preference is the one with 
the highest d+, and the lowest d−.  

The degree of criticality c of a preference <q, dT(u), dF(u) > is defined as follows  

c = d0
+ + d0 

− (7) 

c ∈ [0, 2] and d0+ = max(d + (u)), d0− = |min(d − (u))|. 
Based on the degree of criticality, preferences are ordered as the following 

example shows. 

Example 4. These preferences from Jon’s profile  
p1: < DIRECTOR.name=‘W. Allen’,  0.8, 0 > 
p4: < MOVIE.duration=‘2h’, e(0.7), e(-0.5)> 
p5: < GENRE.genre=‘musical’, -0.9, 0.7 > 

are ordered in decreasing criticality as follows:  
p5 (c5 = 1.6), p4 (c4 = 1.2), p1 (c1 = 0.8). 

Criticality can be extended to join preferences by assuming the degree of interest in 
their failure as being equal to 0. For joins, the property of decreasing degree of 
interest as the length of the corresponding path increases transfers over to the degree 
of criticality as well. Unfortunately, the same does not hold for implicit selections. 
Consider an implicit selection preference with degree of criticality cS. For any 
constituent implicit join with a degree of criticality cJ, the following bound is derived 
by applying simple mathematics  

cS ≤ 2*cJ (8) 

4. Preference Selection 

The first step of the query personalization process deals with for the extraction of the 
top (most critical) K preferences related to a query. A preference may be related at a 
syntactic or semantic level. Our system currently supports the former level. A 
preference is syntactically related to a query, if it maps to a path attached to the query 
graph. This is a sub-graph on top of the personalization graph and includes all the 
nodes corresponding to relations involved in the query (possibly replicated if multiple 
tuple variables range over them) and all the selection and join edges corresponding to 
the atomic conditions of the query qualification. For example, in Fig. 4 the query  
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select title  
from MOVIE M, PLAY P 
where M.mid=P.mid and P.date=‘28/07/2004’ 

is depicted as a sub-graph in grey color on top of the personalization graph 
corresponding to Jon’s profile. 

 

Fig. 4. A query on top of a personalization graph  

An implicit preference related to this query is:  
MOVIE.mid=GENRE.mid and GENRE.genre=‘comedy’ 

Parameter K is specified with the use of some criterion. For example, a criterion 
based on the degree of criticality of preferences, may specify that the top 5 
preferences, or preferences with a degree of criticality above a threshold c0, should be 
selected; a criterion based on the desired degree of interest in results, may designate 
results of degree > 0.8. 

Problem Formulation. Given the personalization graph G corresponding to a user 
profile and the query sub-graph on top of this graph representing a query Q, we 
consider the set PN of all paths pi in G that are related to Q in decreasing order of 
criticality ci, i.e.,  

PN = {pi | i∈ [1, N], ci-1 ≥ ci  } 

The set of preferences that may affect the query, based on some criterion C(.) on 
the degrees of criticality, is the ordered subset PK = {pi| i∈ [1, K], ci-1 ≥ ci } of 
PN such that:  

K=max ({ t| t∈ [1, N]: C(Pt) holds }). 

Algorithms. A preference selection algorithm should gradually construct directed 
paths attached to the query sub-graph on the personalization graph G in decreasing 
order of criticality. Consider the personalization graph depicted in Fig. 5. For 
simplicity, attributes and values involved in joins and selections are omitted. Each 
edge is labeled with the degree of criticality of the corresponding atomic preference. 
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Implicit joins have the property of decreasing degree of criticality as the length of the 
corresponding path increases. This gives the possibility of a best-first traversal of the 
personalization graph G. In Fig. 5, AB is more critical than AE and, due to the 
abovementioned property, it is guaranteed that ABD is more critical than AEF. 

 

Fig. 5. Example graph with degrees of criticality 

Unfortunately, monotonicity is lost for the degree of criticality of implicit selection 
preferences. Hence, a best-first traversal of the graph does not guarantee that implicit 
selections are generated in the proper order. Indeed, ABDs1 is not more critical than 
AEFs2. 

An implicit selection preference may be safely output only if it is more important 
than the most critical selection preference unseen (mcsu). Based on Formula (8), the 
latter is comprised of the most critical implicit join currently known followed by an 
atomic selection with a degree of criticality equal to 2. Thus, an implicit selection 
preference may be safely output only if it has a degree of criticality at least equal to 
the degree of criticality of that join multiplied by two. Otherwise, the algorithm should 
expand that join and examines longer paths stemming from it.  

Assuming that the most critical implicit join currently known is followed by an 
atomic selection with a degree of criticality equal to 2 gives a worst-case estimate for 
mcsu. What the algorithm needs would be the real degree of criticality of the most 
critical selection preference following that join. For this purpose, a pre-processing 
step would be necessary: for each join edge, all subsequent paths should be visited in 
order to find the maximum degree of criticality among them. Then, this degree could 
be tagged on that join edge. However, neither this pre-processing step nor, 
maintenance of that extra information is cheap. If the degree of criticality of some 
edge changes, or a new edge is added, then all join edges that expand to paths 
including this edge must be updated. A cheap alternative is keeping a fake criticality 
fc, defined as follows: 

For every selection edge, fc is set to 1. For every join edge, fc is set to the 
maximum degree of criticality of all edges following this one. If one of those is a join, 
its degree of criticality is multiplied by 2. 

Both creation and maintenance of fake criticalities are cheap. Then, a preference 
selection algorithm may treat each path with a degree of criticality c and a fake 
criticality fc, as if it were an implicit selection preference with criticality equal to 
c∗fc (instead of c). As a result, a best-first traversal of the personalization graph G 
based on the product c∗fc is now possible. Whenever a selection preference is 
constructed, it is output immediately. The algorithm, called FakeCrit, is outlined 
below.  

It generates the set PK of top K preferences based on some criterion C(.). A queue 
QP of preferences is kept in order of decreasing c∗fc. Initially, it contains atomic 
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preferences related to the query. In each round, the algorithm picks from QP the head 
p. If p is a selection satisfying the criterion C(PK ∪ {p}), then it is output. If p is a join 
satisfying the criterion C(PK ∪ {p }), then, it is expanded into longer paths which are 
added into QP. A new path p ∧ ACi is generated for each atomic preference ACi that is 
composable with p. These atomic preferences are considered in order of decreasing 
c*fc. A new path is not inserted in QP: (a) if it expands to a relation included into p 
or Q, because a cycle is generated; (b) if the product of its degree of criticality and its 
fake degree of criticality (cPA*fcPA) is < c0, provided that criterion C specifies that top 
K preferences must have a degree of criticality greater than c0 > 0. The algorithm 
terminates when all top K preferences have been derived. 

5. Generation of Personalized Answers 

The top K preferences are integrated into the user query and a personalized answer is 
generated. This should be: 

(a) Interesting to the user, i.e. it should satisfy (at least) L from the top K 
preferences. 

(b) Ranked based on the degree of interest.  
(c) Self-explanatory. For each tuple returned, the preferences satisfied and/or not 

should be provided in order to explain its selection and ranking.  
We describe two approaches for the generation of personalized answers. Elastic 

preferences are translated into appropriate range conditions using a set of rules before 
they can be inserted into a query. 

Simply Personalized Answers (SPA). One approach is to integrate the top K 
preferences into the initial query and build a new one, which is executed. We 
formulate the personalized query as the union of a set of sub-queries, each one 
mapping to one or more of the K preferences selected. Each sub-query is built by 
extending the initial query by an appropriate qualification involving the participating 
preferences. This sub-query also returns the positive degree of interest of the 
corresponding preference. If it contains an elastic preference, then the corresponding 
elastic function provides the degree of interest in each tuple. This approach is adapted 
from [14], so that it can handle elastic and absence preferences. We will give a 
representative example, without going into technical details.  

Example 6. Suppose Jon submitted a simple query 
 select title from movies 

Assume that the following preferences have been selected, from which L=2 should 
be satisfied.  

p1: MOVIE.mid=DIRECTED.mid and  
DIRECTED.did=DIRECTOR.did and  
DIRECTOR.name=‘W. Allen’     (presence) 

p2: MOVIE.year<1980              (absence 1-1) 

p3: MOVIE.mid=GENRE.mid and GENRE.genre=‘musical’         
                             (absence 1-n) 
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The kind of sub-query built depends on the preference type. A preference to be 
satisfied may be presence or absence preference. Moreover, we distinguish between 
1−1 and 1−n absence preferences. The following sub-queries are built for each case. 

(Presence preferences) 
Q1: select title, 0.72 degree  
 from   MOVIE M, DIRECTED D, DIRECTOR DI 
 where M.mid=D.mid and D.did=DI.did and 

DI.name=‘W. Allen’ 

(1−1 absence preferences) They are mapped to sub-queries in the same way as 
presence ones. The only difference is the change of the condition’s operator: 

Q2: select title, 0 degree  
 from   MOVIE M 
 where M.year>=1980 

(1−n absence preferences) 
Q3: select title, 0.7 degree  
 from   MOVIE M 
 where M.mid not in  (select M.mid  

     from MOVIES M, GENRE G 
     where M.mid=G.mid and  
     G.genre=‘musical’) 

The expected results are obtained by taking the union of the partial results of the 
sub-queries, grouping by the projected attributes of the initial query, and excluding all 
groups with less than L rows. Results are ranked based on the combination of 
preferences satisfied. 

select title,r(degree)  
from   Q1 Union All Q2 Union All Q3  
group by title 
having count(*) = 2 
order by r(degree) 

where r is a ranking function (implemented as a user-defined aggregate function), 
and each sub-query is replaced by Qi for presentation purposes. 

Although this approach is simple, it has certain disadvantages. It does not generate 
self-explanatory results. It cannot rank results based both on preferences from the K 
selected are satisfied and which are not. It may become very inefficient when there 
are 1−n absence preferences. It does not allow for a progressive retrieval of tuples. 
Tuples are returned only after they have all been retrieved, merged, grouped and 
ordered. 

Progressive Personalized Answers (PPA).We present an algorithm for generation 
of progressive, personalized, self-explanatory, ranked results, which handles 
1−to−many absence preferences more efficiently. 

The basic idea is as follows. Preferences are integrated into sub-queries as 
described in the SPA methodology. 1−to−many absence preferences are integrated as 
if they were presence ones. Hence, two sets of sub-queries are formed: a set of sub-
queries involving presence and 1−to−1 absence preferences, Qs, and a set of sub-
queries involving 1−to−many absence preferences, Qa. We consider both sets ordered 
in increasing selectivity, and we use simple histograms to obtain this information. 
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PPA (In:  Q, preferences PK, criterion for L, Out:  personalized results) 
Begin 
1. R := {}; Pactive := PK; MEDI := r

+(Pactive); Build QS; Build Qa  

2. Foreach qi ∈ QS 
2.1. If other preferences in QS, Qa do not satisfy criterion for L then 

2.1.1. output tuples from R and stop  
 end if 

2.2. execute qi 

2.3. Foreach t returned by qi, t ∉ R 
2.3.1. execute Qi

s(t) 
2.3.2. PSatisfied:={prefs satisfied by t in results by qi and Qi

s } 
2.3.3. execute Q1

a(t) 
2.3.4. ASatisfied :={preferences satisfied by t in results by Q1

a } 
2.3.5. PrefsSatisfied:=PSatisfied ∪ ASatisfied;  
2.3.6. PrefsNotSatisfied := PK - PrefsSatisfied 
2.3.7. If t satisfies the criterion for L then 

 calculate dt;  
 R := add(R, t, PrefsSatisfied, PrefsNotSatisfied, dt) 
 end if 
 end for  

2.4. output all t ∈ R not yet output with dt ≥ MEDI 
2.5. Pactive := Pactive − {preferences in qi }; MEDI := r+( Pactive) 

 End for 

3. Foreach qi ∈ Qa 
3.1. If rest of preferences in Qa do not satisfy criterion for L then 

3.1.1. output tuples from R and stop 
 end if 

3.2. execute qi 

3.3. Foreach t returned by qi, t ∉ R 
3.3.1. execute Qi

a(t); IdsA:= add(IdsA, t) 
3.3.2. PrefsSatisfied :={prefs satisfied by t in results by Qi

a } 
3.3.3. PrefsNotSatisfied := PK - PrefsSatisfied 
3.3.4. If t satisfies the criterion for L then 

 calculate dt;   
 R := add(R, t, PrefsSatisfied, PrefsNotSatisfied, dt) 
 end if 
 end for  

3.4. output all t ∈ R not yet output with dt ≥ MEDI 
3.5. Pactive := Pactive − {preferences in qi }; MEDI := r+( Pactive) 

 end for 
4. If preferences in queries in Qa satisfy the criterion for L then 

4.1. execute Q 

4.2. Foreach t returned by Q, t ∉ R, t ∉ IdsA 
4.2.1. PrefsSatisfied := {all 1-n absence queries} 
4.2.2. If t satisfies the criterion for L then 

 calculate dt; 
 R := add(R, t, PrefsSatisfied, PrefsNotSatisfied, dt) 
 end if 
 end for  
5. output remaining tuples from R 
End 

Fig. 6. Algorithm PPA 



16      Georgia Koutrika , Yannis Ioannidis 

Sub-queries are executed sequentially starting from the queries in Qs. A tuple id 
returned by a sub-query may satisfy one or more preferences, depending on its 
frequency in the results. For each tuple id, we check whether it is also returned by 
other sub-queries, thus it satisfies more preferences. We assemble all occurrences of a 
tuple id and record the preferences satisfied, their number, and the degree of interest 
in this tuple. A tuple that satisfies the criterion on L, is output based on evidence that 
no coming tuple could have a degree of interest greater than the degree of the former.  

The algorithm is called PPA and is provided in Fig. 6. Its inputs are: the initial 
query Q, the set of preferences selected from the previous step of query 
personalization, and an explicit or implicit specification for L. Results of Q that satisfy 
at least L preferences are accumulated in a list R ordered in decreasing degree of 
interest. From there, tuples are progressively output when their degree of interest is 
greater than the degree of any future tuple. 

More specifically, consider the two sets of sub-queries formed: 
− Each sub-query qi ∈ Qs identifies tuples that satisfy a presence or 1−to−1 absence 

preference, and returns the tuple id t, the relation attribute and value satisfying the 
corresponding preference and the associated positive degree of interest. 

− Each sub-query qj ∈ Qa identifies tuples that do not satisfy a 1−to−many absence 
preference, and returns the tuple id t, the relation attribute and value referred in the 
corresponding preference and the associated negative degree of interest. 
First, queries in Qs are sequentially executed. For each distinct tuple id t returned 

by a query qi ∈ Qs, we check whether t is also returned by queries following qi in Qs. 
For this purpose, a parameterized query Qis(t) that is the union of these queries is 
executed with input parameter the tuple id t. Each occurrence of t in the results 
returned by Qis(t) and qi satisfies some (presence or 1−to−1 absence) preference. 
The relation attribute − value pair returned in each occurrence of t describes the 
preference satisfied. From them, we build the set of presence or 1−to−1 absence 
preferences satisfied by t, PSatisfied. In addition, for the same tuple id t, a 
parameterized query Q1a(t) that is the union of all queries qj ∈ Qa is executed. Each 
occurrence of t in the results of this query corresponds to a 1− to−many absence 
preference that is not satisfied. Since the set of 1− to−many absence preferences is 
known, we can easily find which of them are satisfied by t. This is the set ASatisfied. 

Thus, the preferences satisfied by t are the set PrefsSatisfied := PSatisfied ∪ 
ASatisfied. The set of preferences not satisfied is easily found: PrefsNotSatisfied := PK 
−{PSatisfied ∪ ASatisfied}. Then, the degree of interest dt in it may be calculated using 
any ranking function for positive, negative or mixed combinations of preferences.  

Parameter L may be specified explicitly or implicitly by providing a minimum 
degree of interest in the results. If t satisfies the criterion on L, then a result tuple is 
produced with the following elements: 

{t, PrefsSatisfied, PrefsNotSatisfied, dt}.  
This is placed in the list of results R. 
When all queries in Qs have been executed, queries in Qa are sequentially executed 

following the same logic as before. For each distinct tuple id t returned by a query qi 
∈ Qa, if not already in R, a parameterized query that is the union of all queries 
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following qi in Qa is executed. A tuple {t, PrefsSatisfied, PrefsNotSatisfied, dt} is 
constructed and placed in the list of results if it satisfies the criterion on L. In addition, 
the algorithm keeps a list IdsA of all tuple ids returned by absence queries. At the end, 
any tuple of the initial query Q with id not in this list is also part of the results returned 
by the algorithm. 

The list of results, R, is ordered in decreasing degree of interest. A tuple from this 
list may be output based on evidence that no coming tuple could have a degree of 
interest greater than the degree of the former. Such evidence is provided in the form 
of a maximum estimated degree of interest (MEDI) that any unseen result can achieve. 
This is the degree of interest of the maximal set of preferences that may be satisfied at 
each point of the algorithm. Initially, this is the whole set of preferences. When the 
algorithm proceeds with the next sub-query in sequence, the preferences involved in 
the previous one are not applicable any more, thus they are removed from this set of 
preferences. 

Tuples in R whose degree of interest becomes greater than or equal to MEDI are 
output. However, they are not removed from R. In this way, the algorithm always 
knows which tuples have already been encountered and does not create duplicates. 
Since R is ordered in decreasing degree of interest, there is a pointer to the first tuple 
there not output yet. As tuples are progressively output this pointer moves towards the 
bottom of the list. 

The algorithm terminates when the preferences involved in the remaining sub-
queries do not suffice for satisfying the criterion on L, and it outputs any remaining 
tuples in R. 

6. Experimental Results 

Experiments were conducted using a system implemented on top of Oracle 9i. Our 
data comes from the Internet Movies Database [10] with information about over 
340000 films. We conducted several experiments with various sets of profiles and 
queries. We discuss results of experiments concerning (a) the appropriateness of the 
described ranking functions, and (b) the benefits of query personalization.  

We conducted an empirical evaluation of our approach with human subjects. 
Almost half of them have a diploma in computer science, the rest of them being 
simple users of computers. First, each user provided his preferences. Two trials were 
conducted using a web-based client developed for this purpose.  

In the first trial, all subjects were given a set of queries. Each user submitted these 
queries twice in arbitrary order. Queries were executed once without personalization 
and once with personalization. This was also performed arbitrarily. Our intention was 
to let individuals judge the results unbiased by what happens to their query. In the 
second trial, all users were asked to think of a specific need, e.g., to find a theatre to 
go or a DVD to rent. Queries submitted by half of them were not changed, while 
queries of the rest were personalized.  

Each user was asked to electronically evaluate each tuple returned by a query, and 
the overall answer to a query. We compared user interest in each tuple to the degree 
of interest returned by the three positive ranking functions described earlier. Overall 
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evaluation of the answer was performed by providing: (a) an estimation of the degree 
of difficulty to find something interesting, if they found anything, (b) an estimation of 
how well the answer covered their need, and (c) an overall score of the results.  

Regarding ranking functions, our results indicated that the inflationary function is 
not appropriate, because it approaches 1 very quickly, and when it is already close to 
1, adding more preferences causes only slight changes to the degree calculated. 
Almost half of our users followed a dominant philosophy when evaluating the results, 
while the rest of them followed a reserved philosophy. These results are indicative as 
to the appropriateness and intuitiveness of the described ranking functions, and have 
shown that it may be possible to learn for each user the most appropriate ranking 
function, and store this information in the user profile. 

Regarding the effectiveness of personalized queries, experiments have shown that 
the benefits of personalized search can be significant in terms of the effort required by 
people -novices and experts alike- to find information.  

7. Conclusions and Future Work 

We have focused on query personalization and we have presented a preference model, 
efficient query personalization algorithms, ranking functions, and experimental 
results.  

Personalized database information access opens the door to a new set of challenges 
and opportunities for the future. Combining personal preferences with other aspects of 
a query’s context that call for query customization, such as time of day, user location, 
device used for querying, etc is certainly an outstanding research challenge in the near 
future. Furthermore, since query personalization alters the search experience, the user 
interface needs to provide a way to explain what the system is doing to personalize 
the experience as well as to undo the personalization. Therefore, an interesting 
research direction is towards design of user interfaces that allow users to control the 
extent of the personalization, and can help alleviate inaccurate personalization. Other 
interesting issues are the expression of preferences over a higher level model that may 
be transparently mapped to an underlying database’s schema, and algorithms for 
(semi-) automatic construction of user profiles. 
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