Preferences On Intervals: a general framework

Meltem Öztürk
LAMSADE-CNRS, Université Paris Dauphine
75775 Paris Cedex 16, France
ozturk@lamsade.dauphine.fr

Alexis Tsoukiàs
LAMSADE-CNRS,
Université Paris Dauphine
75775 Paris Cedex 16, France
tsoukias@lamsade.dauphine.fr

Abstract

The paper presents a general framework for interval comparison for preference modelling purposes. Two dimensions are considered in order to establish such a framework: the type of preference structure to be considered and the number of values associated to each interval. It turns out that is possible to characterise well known preference structures as special cases of this general framework.

1 Introduction

Preferences are usually considered as binary relations applied on a set of objects, let's say A. Preference modelling is concerned by two basic problems (see [Vincke, 2001]).

The first can be summarised as follows. Consider a decision maker replying to a set of preference queries concerning a the elements of the set A : "do you prefer a to b ?", "do you prefer b to c ?" etc.. Given such replies the problem is to check whether exists (and under which conditions) one or more real valued functions which, when applied to A, will return (faithfully) the preference statements of the decision maker. As an example consider a decision maker claiming that, given three candidates a, b and c, he is indifferent between a and b as well as between b and c, although he clearly prefers a to c. There are several different numerical representations which could account for such preferences. For instance we could associate to a the interval $[5,10]$, to b the interval $[3,6]$ and to c the interval $[1,4]$. Under the rule that x is preferred to y iff the interval associated to x is completely to the right (in the sense of the reals) of the one associated to y and indifferent otherwise, the above numerical representation faithfully represents the decision makers preference statements.

The second problem goes the opposite way. We have a numerical representation for all elements of the set A and we would like to construct preference relations for a given decision maker. As an example consider three objects a, b and c whose cost is 10,12 and 20 respectively. For a certain decision maker we could establish that a is better than b which is better than c. For another decision maker the model could be that both a and b are better than c, but they are indifferent among them since the difference is too small. In both cases the adoption of a preference model implies the acceptation of
a number of properties the decision maker should be aware of.

In this paper we focus our attention on both cases, but with particular attention to the situations where the elements of the set A can or are actually represented by intervals (of the reals). In other terms we are interested on the one hand to the necessary and sufficient conditions for which the preference statements of a decision maker can be represented through the comparison of intervals and on the other hand on general models through which the comparison of intervals can lead to the establishment of preference relations.

Comparing intervals is a problem relevant to several different disciplines. We need intervals in order to take into account intransitivity of indifference due to the presence of one or more discrimination thresholds (an object 10 cm long is "really" different from one 10.1 cm long? When do they become different?), in order to compare time intervals ([Allen, 1983]), in order to represent imprecision or uncertainty (price of x lies between A and B, quality of y lies between "medium" and "good" ...). Indeed the paper's subject is not that new. Since the seminal work of Luce ([Luce, 1956]) there have been several contributions in literature including the classics [Fishburn, 1985], [Trotter, 1992] and [Pirlot and Vincke, 1997], as well as some key papers: [Barthélemy et al., 1982], [Cozzens and Roberts, 1982], [Doignon et al., 1986], [Fishburn, 1997], [Fishburn and Monjardet, 1992]. Our main contribution in this paper is to suggest a general framework enabling to clarify the different preference models that can be associated to the comparison of intervals including situations where the decision maker is allowed to hesitate (either using a finite set of states or a continuous valuation).

The paper is organised as follows. In Section 2 we introduce all basic notation and all hypotheses that hold in the paper. In section 3 we introduce the structure of the general framework we suggest, based on two dimensions: the type of preference structure to be used and the structure of the intervals. In section 4 we introduce some further conditions enabling to characterise well known preference structures in the literature. We conclude showing the future research directions of this work.

2 Notation and Hypotheses

In the following we consider a countable set of objects which we denote with A. Variables ranging within A will be denoted
with $x, y, z, w \cdots$, while specific objects will be denoted $a, b, c \cdots$. Letters $P, Q, I, R, L \cdots$, possibly subscribed, will denote preference relations on A, that is binary predicates on the universe of discourse $A \times A$ (each binary relation being a subset of $A \times A$). Letters $f, g, h, r, l \cdots$, possibly subscribed, will denote real valued functions mapping A to the reals. Since we work with intervals we will reserve the letters r and l for the functions representing, respectively, the right and left extreme of each interval. Letters $\alpha, \beta, \gamma \cdots$ will represent constants. The usual logical notation applies including its equivalent set notation. Therefore we will have:

- $P \cap R$ equivalent to $\forall x, y \quad P(x, y) \wedge R(x, y)$;
- $P \subseteq R$ equivalent to $\forall x, y \quad P(x, y) \rightarrow R(x, y)$.

We will add the following definitions:

- $P . R$ equivalent to $\forall x, y \exists z \quad P(x, z) \wedge R(z, y)$;
- $I_{o}=\{(x, x) \in A \times A\}$, the set of all identities in $A \times A$.

As far as the properties of binary relations are concerned we will adopt the ones introduced in [Roubens and Vincke, 1985]. For specific types of preference structures such as total orders, weak orders etc. we will equally adopt the definitions within [Roubens and Vincke, 1985].

We introduce the following definition, useful since we are going to use collections of binary relations in order to represent different ways to compare intervals:
Definition 2.1 A preference structure is a collection of binary relations $P_{j} j=1, \cdots n$, partitioning the universe of discourse $A \times A$:

- $\forall x, y, j P_{j}(x, y) \rightarrow \neg P_{i \neq j}(x, y)$;
$-\forall x, y \exists j P_{j}(x, y) \vee P_{j}(y, x)$
Further on we will often use the following proposition:
Proposition 2.1 Any symmetric binary relation can be seen as the union of two asymmetric relations, the one being the inverse of the other, and I_{o}.

Proof. Obvious, recalling the definition of asymmetric relation: $\forall x, y R(x, y) \rightarrow \neg R(y, x)$ and symmetric relation: $\forall x, y R(x, y) \rightarrow R(y, x)$.

We finally make the following hypotheses:
H1 We consider only intervals of the reals. Therefore there will be no incomparability in the preference structures considered.
H2 If necessary we associate to each interval an uniform uncertainty distribution. Each point in an interval may equally be the "real value".
H3 Without loss of generality we can consider only asymmetric relations.
H4 We consider only countable sets of objects. Therefore we can consider only strict inequalities.

Remark 2.1 Hypothesis 3 is based on proposition 2.1. The reason for eliminating symmetric relations from our models will become clear later on in the paper. However, we can anticipate that the use of asymmetric relations allows to better understand the underlying structure of intervals comparison.

Remark 2.2 Hypothesis 4 makes sense only when the purpose is to establish a representation theorem for a certain type of preference statements. The basis idea is that, since numerical representations of preferences are not unique, A being countable, is always possible to choose a numerical representation for which it never occurs that any of the extreme values of the intervals associated to two elements of A are the same. However, in the case the numerical representation is given and the issue is to establish the preference structure holding, the possibility that two extreme values coincide cannot be excluded.

3 General Framework

In order to analyse the different models used in the literature in order to compare intervals for preference modeling purposes we are going to consider two separate dimensions.

1. The type of preference structure. We basically consider the following cases.

- Use of two asymmetric preference relations P_{1} and P_{2}. Such a preference structure is equivalent to the classic preference structure (in absence of incomparability) considering only strict preference (P_{2} in our notation) and indifference ($P_{1} \cup P_{1}^{-1} \cup I_{o}$ in our notation). For more details see [Roubens and Vincke, 1985].
- Use of three asymmetric preference relations P_{1}, P_{2} and P_{3}. Such structures are known under the name of $P Q I$ preference structures (see [Vincke, 1988]), allowing for a strict preference (P_{3} in our notation), a "weak preference" (P_{2} in our notation), representing an hesitation between strict preference and indifference and an indifference ($P_{1} \cup P_{1}^{-1} \cup I_{o}$ in our notation).
- Use of n asymmetric relations $P_{1}, \cdots P_{n}$. Usually P_{n} to P_{2} represent $n-1$ preference relations of decreasing "strength", while $P_{1} \cup P_{1}^{-1} \cup I_{o}$ is sometimes considered as indifference. For more details the reader can see [Doignon et al., 1986].
- Use of a continuous valuation of hesitation between strict preference and indifference. In this case we consider valued preference structures, that is preference relations are considered fuzzy subsets of $A \times A$. The reader cas see more in [Perny and Roubens, 1998].

2. The structure of the numerical representation of the interval. We consider the following cases:

- Use of two values. Such two values can be equivalently seen as the left and the right extreme of each interval associated to each element of A or as a value associated to each element of A and a threshold allowing to discriminate any two values.
- Use of three values. Again several different interpretations can be considered. For instance the three values can be seen as the two extremes of each interval plus an intermediate value aiming to represent a particular feature of the interval. They can
be seen as a value associated to each element of A and two thresholds aiming to describe two different states of discrimination. They can also be seen as representing an extreme value of the interval, while the other extreme is represented by an interval.
- Use of four or more values. The reader will realise that we are extending the previous structures. The four values can be seen as the two extremes and two "special" intermediate values or as two imprecise extremes such that each of them is represented
by an interval. The use of n values can be seen as a value associated to each element of A and $n-1$ thresholds representing different intensities of preference. Possibly we can extend such a structure to the whole length of any interval associated to each element of A such that we may obtain a continuous valuation of the preference intensity.
In table 1 we summarise the possible combinations of preference structures and interval structures.

	2 values	3 values	>3 values
2 asymmetric relations	Interval Orders and Semi Orders	Split Interval Orders and Semi Orders	Tolerance and Bi-tolerance orders
3 asymmetric relations	PQI Interval Orders and Semi Orders	Pseudo orders and double threshold orders	-
n asymmetric relations	-	Multiple Interval Orders and Semi Orders	
valued relations	Fuzzy Interval Orders and Semi Orders Continuous PQI Interval Orders		

Table 1: A general framework for interval comparison

The reader can see more details in the following references: - Interval Orders and Semi Orders: [Fishburn, 1985], [Fishburn, 1997], [Luce, 1956], [Pirlot and Vincke, 1997];

- Split Interval Orders and Semi Orders: [Bogart and Isaak, 1998], [Fishburn and Trotter, 1999];
- Tolerance and Bi-tolerance orders: [Bogart et al., 2001], [Bogart and Trenk, 1994], [Bogart and Trenk, 2000], [Golumbic and Monma, 1982], [Golumbic et al., 1984];
- PQI Interval Orders and Semi Orders: [Ngo The and Tsoukiàs, 2005], [Ngo The et al., 2000], [Tsoukiàs and Vincke, 2003];
- Pseudo Orders and Double Threshold Orders: [Roy and Vincke, 1984], [Roy and Vincke, 1987], [Tsoukiàs and Vincke, 1998], [Vincke, 1988];
- Multiple Interval Orders and Semi Orders: [Cozzens and Roberts, 1982], [Doignon, 1987], [Doignon et al., 1986];
- Valued Preference Structures: [De Baets and Van de Walle, 1996], [Oztürk and Tsoukiàs, 2004], [Perny and Roubens, 1998], [Perny and Roy, 1992], [Van De Walle et al., 1998].

4 Further Conditions

The general framework discussed in the previous section suggests that there exist several different ways to compare intervals in order to model preferences. Each of such preference models could correspond to different interpretations associated to the values representing each interval. For instance consider the case where only the two extreme values of each interval are available and only two asymmetric relations are used. We can establish:

- $P_{2}(x, y) \Leftrightarrow l(x)>r(y)$
- $P_{1}(x, y) \Leftrightarrow r(y)>l(x)>l(y)$
and we obtain a classic Interval Order preference structure or we can establish:
- $P_{2}(x, y) \Leftrightarrow l(x)>l(y) \wedge r(x)>r(y)$
- $P_{1}(x, y) \Leftrightarrow r(x)>r(y)>l(y)>l(x)$
and we obtain a partial order of dimension $2\left(P_{2}\right)$.
A first general question is the following:
- given a set A, if it is possible to associate to each element x of $A n$ functions $f_{i}(x), i=1, \cdots n$, such that $f_{n}(x)>\cdots>$ $f_{1}(x)$, how many preference relations can be established?

In order to reply to this question we consider different conditions which may apply to the values of each interval and their differences. For notation purposes, given an interval to which n values are associated, we denote the i-th subinterval of any element $x \in A$ (from value $f_{i}(x)$ to value $f_{i+1}(x)$) as x_{i}. When there is no risk of confusion x_{i} will also represent the "length" of the same sub-interval (the quantity $f_{i+1}(x)-f_{i}(x)$). We are now ready to consider the following cases:

1. No conditions. We consider that the functions describing the intervals are free to take any value.
2. Coherence conditions. We impose that $\forall i f_{1}(x)>$ $f_{1}(y) \rightarrow f_{i}(x)>f_{i}(y)$. This is equivalent to claim that $\forall i x_{1}>y_{1} \rightarrow x_{i}>y_{i}$.
3. Weak monotonicity conditions. We now impose that $\forall i, j, \quad i \geq j ; x_{1}>y_{1} \rightarrow x_{i} \geq y_{j}$. In other terms we demand that there are no sub-intervals of x included
to any sub-interval of y. Such a condition implies coherence (but not vice-versa).
4. Monotonicity conditions. We now impose that $\forall i x_{i} \geq$ $\overline{y_{i}} \geq x_{i-1} \geq y_{i-1}$ (sub-intervals of x or y are never included and they increase as the index i increases). Such a conditions implies weak monotonicity (but not viceversa). The reader can easily check that a representation
which satisfies such a condition is the one where all subintervals have the same constant length.
In table 2 we summarise the situation for all the above cases. The reader will note that the number of possible relations follows a combinatorial structure. This is important both for complexity issues and for establishing the possible numerical representations of such preference structures.

	free	coherent	weak monotone	monotone
2 values:	3	2	2	2
3 values:	10	5	4	3
4 values:	35	14	8	4
n values:	$\frac{(2 n)!}{2(n!)^{2}}$	$\frac{1}{n+1}\binom{2 n}{n}$	$?\left(2^{n-1}\right) ?$	n

Table 2: Number of possible relations comparing intervals

A second question concerns the existence of a general structure among the possible relations that the comparison of intervals allow. Consider for instance the ten possible relations allowed by the use of three values associated to each interval. Is there any relation among them?

In order to reply to this question we consider any preference relation as a vector of $2 n$ elements. Indeed, since $P_{j}(x, y)$ compares two vectors (x and y) of n elements each $\left(\left\langle f_{1}(x), \cdots f_{n}(x)\right\rangle\right.$ and $\left.\left\langle f_{1}(y), \cdots f_{n}(y)\right\rangle\right)$, there is a unique sequence of such $2 n$ values which exactly describes each relation P_{j}. Consider the case of three values and the ten possible relations. These can be described as follows:
$P_{1}(x, y):\left\langle f_{1}(y), f_{1}(x), f_{2}(x), f_{3}(x), f_{2}(y), f_{3}(y)\right\rangle$
$P_{2}(x, y):\left\langle f_{1}(y), f_{1}(x), f_{2}(x), f_{2}(y), f_{3}(x), f_{3}(y)\right\rangle$
$P_{3}(x, y):\left\langle f_{1}(y), f_{1}(x), f_{2}(y), f_{2}(x), f_{3}(x), f_{3}(y)\right\rangle$
$P_{4}(x, y):\left\langle f_{1}(y), f_{1}(x), f_{2}(x), f_{2}(y), f_{3}(y), f_{3}(x)\right\rangle$
$P_{5}(x, y):\left\langle f_{1}(y), f_{1}(x), f_{2}(y), f_{2}(x), f_{3}(y), f_{3}(x)\right\rangle$
$P_{6}(x, y):\left\langle f_{1}(y), f_{2}(y), f_{1}(x), f_{2}(x), f_{3}(x), f_{3}(y)\right\rangle$
$P_{7}(x, y):\left\langle f_{1}(y), f_{1}(x), f_{2}(y), f_{3}(y), f_{2}(x), f_{3}(x)\right\rangle$
$P_{8}(x, y):\left\langle f_{1}(y), f_{2}(y), f_{1}(x), f_{2}(x), f_{3}(y), f_{3}(x)\right\rangle$
$P_{9}(x, y):\left\langle f_{1}(y), f_{2}(y), f_{1}(x), f_{3}(y), f_{2}(x), f_{3}(x)\right\rangle$
$P_{10}(x, y):\left\langle f_{1}(y), f_{2}(y), f_{3}(y), f_{1}(x), f_{2}(x), f_{3}(x)\right\rangle$

We now introduce the following definition.
Definition 4.1 For any two relations $P_{l}, P_{k}, l, k \in I$ we write $P_{l} \triangleright P_{k}$ and we read "relation P_{l} is stronger than relation P_{k} " iff relation P_{k} can be obtained from P_{l} by a single shift of values of x and y or it exists a sequence of P_{i} such that $P_{l} \triangleright \cdots P_{i} \triangleright \cdots P_{k}$.

The reader will easy verify the following proposition.
Proposition 4.1 Relation \triangleright is a partial order defining a complete lattice on the set of possible preference relations.

In figure 1 we show the lattice for the cases where $n=2$ (3 relations) and $n=3$ (10 relations).

Figure 1: Partial Order among Preference Relations

How do well known in the literature preference structures fit the above presentation? The reader can easily check the following equivalences.

Interval orders:
$P=P_{3}, I=P_{1} \cup P_{2} \cup I_{o} \cup P_{1}^{-1} \cup P_{2}^{-1}$
Partial Orders of dimension. 2:
$P=P_{3} \cup P_{2}, I=P_{1} \cup I_{o} \cup P_{1}^{-1}$
Semi Orders:
$P=P_{3}, I=P_{2} \cup I_{o} \cup P_{2}^{-1}, P_{1}$ empty
$P Q I$ Interval orders:
$P=P_{3}, Q=P_{2}, I=P_{1} \cup I_{o} \cup P_{1}^{-1}$
$P Q I$ Semi orders:
$P=P_{3}, Q=P_{2}, I=I_{o}, P_{1}$ empty

Split Interval orders:
$P=P_{10} \cup P_{9}, I$ the rest
Double Threshold orders:
$P=P_{10} Q=P_{9} \cup P_{8} \cup P_{6}, I$ the rest
Pseudo Orders:
$P=P_{10} Q=P_{9} \cup P_{8}, I=P_{5} \cup P_{7} \cup I_{o} \cup P_{7}^{-1} \cup P_{5}^{-1}$,
$P_{1}, P_{2}, P_{3}, P_{4}, P_{6}$ empty
Constant thresholds:
$P=P_{10} Q=P_{9}, I=P_{5} \cup I_{o} \cup P_{5}^{-1}$,
$P_{1}, P_{2}, P_{3}, P_{4}, P_{6}, P_{7}, P_{8}$ empty
Remark 4.1 The reader should note that in representing an Interval Order under the equivalence $P=P_{3}$ and $I=P_{2} \cup$ $P_{1} \cup I_{o} \cup P_{1}^{-1} \cup P_{2}^{-1}$ we did an implicit hypothesis that I is separable in the relations P_{2}, P_{1} and I_{o}. However, this is not always possible. The general representation of an Interval Order within our framework requires the existence of only two asymmetric relations P_{2} and P_{1} such that $P=P_{2}$ and $I=P_{1} \cup I_{o} \cup P_{1}^{-1}$.

How well known preference structures are characterised within our framework? We give here as an example the translation (within our frame) of two well known preference structures: interval orders and $P Q I$ interval orders.
Theorem 4.1 An interval order is a $\left\langle P_{2}, P_{1}, I_{o}\right\rangle$ preference structure such that:

- $P_{2} P_{2} \subseteq P_{2}$
- $P_{2} P_{1} \subseteq P_{2}$
- $P_{1}^{-1} P_{2} \subseteq P_{2}$

Proof.
From $P_{2} P_{2} \subseteq P_{2}$ we get $P_{2} I_{o} P_{2} \subseteq P_{2}$
From $P_{2} P_{1} \subseteq P_{2}$ we get $P_{2} P_{1} P_{2} \subseteq P_{2}$
From $P_{1}^{-1} P_{2} \subseteq P_{2}$ we get $P_{2} P_{1}-1 P_{2} \subseteq P_{2}$
Since $P_{1} \cup I_{o} \cup P_{1}-1=I$ and $P_{2}=P$ we get $P I P \subseteq P$
this condition characterising interval orders (see [Fishburn, 1985]).

Theorem 4.2 An interval order is a $\left\langle P_{3}, P_{2}, P_{1}, I_{o}\right\rangle$ preference structure such that:
$-P_{3} P_{3} \subseteq P_{3}$
$-P_{2} P_{3} \subseteq P_{3}$
$-P_{3} P_{2} \subseteq P_{3}$
$-P_{3} P_{1} \subseteq P_{3}$

- $P_{1}^{-1} P_{3} \subseteq P_{3}$
- $P_{2} P_{2} \subseteq P_{2} \cup P_{3}$
- $P_{1} P_{2} \subseteq P_{1} \cup P_{2}$
- $P_{2} P_{1}^{-\overline{1}} \subseteq P^{-1} \cup P_{2}$

Proof.

From $P_{3} P_{3} \subseteq P_{3}, P_{3} P_{2} \subseteq P_{3}, P_{3} P_{1} \subseteq P_{3}$ we get $P_{3}\left(P_{3} \cup\right.$ $\left.P_{2} \cup P_{1}\right) \subseteq \bar{P}_{3}$
From $P_{3} P_{3} \subseteq P_{3}, P_{2} P_{3} \subseteq P_{3}, P_{1}^{-1} P_{3} \subseteq P_{3}$ we get $\left(P_{3} \cup\right.$ $\left.P_{2} \cup P_{1}^{-1}\right) P_{3} \subseteq P_{3}$
From $P_{2} P_{3} \subseteq P_{3}, P_{2} P_{2} \subseteq P_{2} \cup P_{3} P_{2} P_{1}^{-1} \subseteq P^{-1} \cup P_{2}$ we get $P_{2}\left(P_{3} \cup P_{2} \cup P_{1}^{-1}\right) \subseteq P_{3} \cup P_{2} \cup P_{1}^{-1}$
From $P_{3} P_{2} \subseteq P_{3}, P_{2} P_{2} \subseteq P_{2} \cup P_{3}, P_{1} P_{2} \subseteq P_{1} \cup P_{2}$ we get $\left(P_{3} \cup P_{2} \cup \bar{P}_{1}\right) P_{2} \subseteq P_{3} \cup P_{2} \cup P_{1}$
the above four conditions characterising a $P Q I$ interval order (see [Tsoukiàs and Vincke, 2003].

5 Conclusions

In this paper we introduce a general framework for the comparison of intervals under preference modeling purposes. Two possible extensions of such a framework can be envisaged. The first concerns the comparison of intervals for other purposes such as comparing time intervals. The second concerns the possibility to derive a general structure for representation theorems concerning any preference structure which can be conceived within the above framework.

Acknowledgement

We would like to thank Marc Pirlot who suggested that the number of coherent preference relations when n values are associated to each interval is nothing else than the Catalan number. Large portions of this paper have been worked while the second author was visiting Universit Libre de Bruxelles under IRSIA and FNRS grants. Their support is gratefully acknowledged.

References

[Allen, 1983] J.F Allen. Maintaining knowledge about temporal intervals. Journal of the ACM, 26:832-843, 1983.
[Barthélemy et al., 1982] J.P Barthélemy, Cl. Flament, and B. Monjardet. Ordered sets and social sciences. In I. Rankin, editor, Ordered Sets, pages 721-787. D. Reidel, Dordrecht, 1982.
[Bogart and Isaak, 1998] K.P. Bogart and G. Isaak. Proper and unit bitolerance orders and graphs. Discrete Mathematics, 181:37-51, 1998.
[Bogart and Trenk, 1994] K.P. Bogart and A.N. Trenk. Bipartite tolerance orders. Discrete Mathematics, 132:1122, 1994.
[Bogart and Trenk, 2000] K.P. Bogart and A.N. Trenk. Bounded bitolerance digraphs. Discrete Mathematics, 215:13-20, 2000.
[Bogart et al., 2001] K.P. Bogart, M.S. Jacobson, L.J. Langley, and F.R. Mcmorris. Tolerance orders and bipartite unit tolerance graphs. Discrete Mathematics, 226:35-50, 2001.
[Cozzens and Roberts, 1982] M.B. Cozzens and F.S. Roberts. Double semiorders and double indifference graphs. SIAM Journal on Algebraic and Discrete Methods, 3:566-583, 1982.
[De Baets and Van de Walle, 1996] B. De Baets and B. Van de Walle. Weak and strong fuzzy interval orders. Fuzzy Sets and Systems, 79:213-225, 1996.
[Doignon et al., 1986] J.P Doignon, B. Monjardet, M. Roubens, and Ph. Vincke. Biorder families, valued relations and preference modelling. Journal of Mathematical Psychology, 30:435-480, 1986.
[Doignon, 1987] J.P. Doignon. Thresholds representation of multiple semiorders. SIAM Journal on Algebraic and Discrete Methods, 8:77-84, 1987.
[Fishburn and Monjardet, 1992] P.C. Fishburn and B. Monjardet. Norbert wiener on the theory of measurement(1914, 1915, 1921). Journal of Mathematical Psychology, 36:165-184, 1992.
[Fishburn and Trotter, 1999] P.C. Fishburn and W.T. Trotter. Split semiorders. Discrete Mathematics, 195:111-126, 1999.
[Fishburn, 1985] P.C. Fishburn. Interval Orders and Interval Graphs. J. Wiley, New York, 1985.
[Fishburn, 1997] P.C. Fishburn. Generalisations of semiorders: a review note. Journal of Mathematical Psychology, 41:357-366, 1997.
[Golumbic and Monma, 1982] M.C. Golumbic and C.L. Monma. A characterization of interval graphs with tolerances. Congressus Numerantium, 35:321-331, 1982.
[Golumbic et al., 1984] M.C. Golumbic, C.L. Monma, and W.T. Trotter. Tolerance graphs. Discrete Applied Mathematics, 9:157-170, 1984.
[Luce, 1956] R.D. Luce. Semiorders and a theory of utility discrimination. Econometrica, 24:178-191, 1956.
[Ngo The and Tsoukiàs, 2005] A. Ngo The and A. Tsoukiàs. Numerical representation of PQI interval orders. Discrete Applied Mathematics, 147:125-146, 2005.
[Ngo The et al., 2000] A. Ngo The, A. Tsoukiàs, and Ph. Vincke. A polynomial time algorithm to detect PQI interval orders. International Transactions in Operational Research, 7:609-623, 2000.
[Oztürk and Tsoukiàs, 2004] M. Oztürk and A. Tsoukiàs. Positive and negative reasons in interval comparisons: Valued pqi interval orders. In Proceedings of IPMU 2004, pages 983-989, 2004.
[Perny and Roubens, 1998] P. Perny and M. Roubens. Fuzzy preference modelling. In R. Slowinski, editor, Fuzzy sets in decision analysis, operations research and statistics, pages 3-30. Kluwer Academic, Dordrecht, 1998.
[Perny and Roy, 1992] P. Perny and B. Roy. The use of fuzzy outranking relations in preference modelling. Fuzzy Sets and Systems, 49:33-53, 1992.
[Pirlot and Vincke, 1997] M. Pirlot and Ph. Vincke. Semi Orders. Kluwer Academic, Dordrecht, 1997.
[Roubens and Vincke, 1985] M. Roubens and Ph. Vincke. Preference Modeling. LNEMS 250, Springer Verlag, Berlin, 1985.
[Roy and Vincke, 1984] B. Roy and Ph. Vincke. Relational systems of preference with one or more pseudo-criteria: Some new concepts and results. Management Science, 30:1323-1335, 1984.
[Roy and Vincke, 1987] B. Roy and Ph. Vincke. Pseudoorders: definition, properties and numerical representation. Mathematical Social Sciences, 14:263-274, 1987.
[Trotter, 1992] W.T Trotter. Combinatorics and partially ordered sets. John Hopkins University Press, Baltimore, 1992.
[Tsoukiàs and Vincke, 1998] A. Tsoukiàs and Ph. Vincke. Double threshold orders: A new axiomatization. Journal of Multi-criteria Decision Analysis, 7:285-301, 1998.
[Tsoukiàs and Vincke, 2003] A. Tsoukiàs and Ph. Vincke. A characterization of PQI interval orders. Discrete Applied Mathematics, 127(2):387-397, 2003.
[Van De Walle et al., 1998] B. Van De Walle, B. De Baets, and E. Kerre. Charaterizable fuzzy preference structures. Annals of Operations Research, 80:105-136, 1998.
[Vincke, 1988] Ph. Vincke. P,Q,I preference structures. In J. Kacprzyk and M. Roubens, editors, Non conventional preference relations in decision making, pages 72-81. LNEMS 301, Springer Verlag, Berlin, 1988.
[Vincke, 2001] Ph. Vincke. Preferences and numbers. In A. Colorni, M. Paruccini, and B. Roy, editors, A-MCDA - Aide Multi Critère à la Décision - Multiple Criteria Decision Aiding, Joint Research Center, pages 343-354. The European Commission, 2001.

