
The Priority R-Tree: A Practically Efficient
and Worst-Case Optimal R-Tree

(extended abstract)

Lars Arge1?, Mark de Berg2, Herman J. Haverkort1??, and Ke Yi3?

1 Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, 8200 Aarhus N, Denmark, {large,herman}@daimi.au.dk

2 Department of Computer Science, TU Eindhoven,
P.O.Box 513, 5600 MB Eindhoven, The Netherlands, m.t.d.berg@tue.nl

3 Department of Computer Science, Duke University,
Box 90129, Durham, NC 27708-0129, USA, yike@cs.duke.edu

Abstract. We present the Priority R-tree, or PR-tree, which is the first
R-tree variant that always answers a window query using O((N/B)1−1/d+
T/B) I/Os, where N is the number of d-dimensional (hyper-) rectangles
stored in the R-tree, B is the disk block size, and T is the output size.
This is provably asymptotically optimal and significantly better than other
R-tree variants, where a query may visit all N/B leaves in the tree even
when T = 0. We also present an extensive experimental study of the prac-
tical performance of the PR-tree using both real-life and synthetic data.
This study shows that the PR-tree performs similar to the best known
R-tree variants on real-life and relatively nicely distributed data, but out-
performs them significantly on more extreme data.

1 Introduction

Spatial data naturally arise in numerous applications, including geographical in-
formation systems, computer-aided design, computer vision and robotics. There-
fore spatial database systems designed to store, manage, and manipulate spatial
data have received considerable attention over the years. Since these databases
often involve massive datasets, disk based index structures for spatial data have
been researched extensively—see e.g. the survey by Gaede and Günther [11]. Es-
pecially the R-tree [13] and its numerous variants (see e.g. the recent survey by
Manolopoulos et al. [19]) have emerged as practically efficient indexing methods.
In this paper we present the Priority R-tree, or PR-tree, which is the first R-tree
variant that is not only practically efficient but also provably asymptotically
optimal.
? Supported in part by the National Science Foundation through RI grant EIA–

9972879, CAREER grant CCR–9984099, ITR grant EIA–0112849, and U.S.–
Germany Cooperative Research Program grant INT–0129182.

?? Supported by the Netherlands’ Organization for Scientific Research (NWO).

Dagstuhl Seminar Proceedings 04301
Cache-Oblivious and Cache-Aware Algorithms
http://drops.dagstuhl.de/opus/volltexte/155

1.1 Background and previous results

Since objects stored in a spatial database can be rather complex they are often
approximated by simpler objects, and spatial indexes are then built on these ap-
proximations. The most commonly used approximation is the minimal bounding
box: the smallest axis-parallel (hyper-) rectangle that contains the object. The
R-tree, originally proposed by Guttman [13], is an index for such rectangles. It
is a height-balanced multi-way tree similar to a B-tree [5, 9], where each node
(except for the root) has degree Θ(B). Each leaf contains Θ(B) data rectangles
(each possibly with a pointer to the original data) and all leaves are on the same
level of the tree; each internal node v contains pointers to its Θ(B) children,
as well as for each child a minimal bounding box covering all rectangles in the
leaves of the subtree rooted in that child. If B is the number of rectangles that
fits in a disk block, an R-tree on N rectangles occupies Θ(N/B) disk blocks and
has height Θ(logB N). Many types of queries can be answered efficiently using
an R-tree, including the common query called a window query: Given a query
rectangle Q, retrieve all rectangles that intersect Q. To answer such a query
we simply start at the root of the R-tree and recursively visit all nodes with
minimal bounding boxes intersecting Q; when encountering a leaf l we report all
data rectangles in l intersecting Q.

Guttman gave several algorithms for updating an R-tree in O(logB N) I/Os
using B-tree-like algorithms [13]. Since there is no unique R-tree for a given
dataset, and because the window query performance intuitively depends on the
amount of overlap between minimal bounding boxes in the nodes of the tree, it is
natural to try to minimize bounding box overlap during updates. This has led to
the development of many heuristic update algorithms; see for example [6, 16, 23]
or refer to the surveys in [11, 19]. Several specialized algorithms for bulk-loading
an R-tree have also been developed [7, 10, 12, 15, 18, 22]. Most of these algorithms
use O(N

B logM/B
N
B) I/Os (the number of I/Os needed to sort N elements), where

M is the number of rectangles that fits in main memory, which is much less than
the O(N logB N) I/Os needed to build the index by repeated insertion. Further-
more, they typically produce R-trees with better space utilization and query
performance than R-trees built using repeated insertion. For example, while ex-
perimental results have shown that the average space utilization of dynamically
maintained R-trees is between 50% and 70% [6], most bulk-loading algorithms
are capable of obtaining over 95% space utilization. After bulk-loading an R-
tree it can of course be updated using the standard R-tree updating algorithms.
However, in that case its query efficiency and space utilization may degenerate
over time.

One common class of R-tree bulk-loading algorithms work by sorting the
rectangles according to some global one-dimensional criterion, placing them in
the leaves in that order, and then building the rest of the index bottom-up level-
by-level [10, 15, 18]. In two dimensions, the so-called packed Hilbert R-tree of
Kamel and Faloutsos [15], which sorts the rectangles according to the Hilbert
values of their centers, has been shown to be especially query-efficient in prac-
tice. The Hilbert value of a point p is the length of the fractal Hilbert space-

2

filling curve from the origin to p. The Hilbert curve is very good at clustering
spatially close rectangles together, leading to a good index. A variant of the
packed Hilbert R-tree, which also takes the extent of the rectangles into account
(rather than just the center), is the four-dimensional Hilbert R-tree [15]; in this
structure each rectangle ((xmin, ymin), (xmax, ymax)) is first mapped to the four-
dimensional point (xmin, ymin, xmax, ymax) and then the rectangles are sorted by
the positions of these points on the four-dimensional Hilbert curve. Experimen-
tally the four-dimensional Hilbert R-tree has been shown to behave slightly worse
than the packed Hilbert R-tree for nicely distributed realistic data [15]. However,
intuitively, it is less vulnerable to more extreme datasets because it also takes
the extent of the input rectangles into account.

Algorithms that bulk-load R-trees in a top-down manner have also been
developed. These algorithms work by recursively trying to find a good partition of
the data [7, 12]. The so-called Top-down Greedy Split (TGS) algorithm of Garćıa,
López and Leutenegger [12] has been shown to result in especially query-efficient
R-trees (TGS R-trees). To build the root of (a subtree of) an R-tree on a given set
of rectangles, this algorithm repeatedly partitions the rectangles into two sets,
until they are divided into B subsets of (approximately) equal size. Each subset’s
bounding box is stored in the root, and subtrees are constructed recursively on
each of the subsets. Each of the binary partitions takes a set of rectangles and
splits it into two subsets based on one of several one-dimensional orderings;
in two dimensions, the orderings considered are those by xmin, ymin, xmax and
ymax. For each such ordering, the algorithm calculates, for each of O(B) possible
partitioning possibilities, the sum of the areas of the bounding boxes of the two
subsets that would result from the partition. Then it applies the binary partition
that minimizes that sum.1

While the TGS R-tree has been shown to have slightly better query perfor-
mance than other R-tree variants, the construction algorithm uses many more
I/Os since it needs to scan all the rectangles in order to make a binary partition.
In fact, in the worst case the algorithm may take O(N logB N) I/Os. However,
in practice, the fact that each partition decision is binary effectively means that
the algorithm uses O(N

B log2 N) I/Os.
While much work has been done on evaluating the practical query perfor-

mance of the R-tree variants mentioned above, very little is known about their
theoretical worst-case performance. Most theoretical work on R-trees is con-
cerned with estimating the expected cost of queries under assumptions such as
uniform distribution of the input and/or the queries, or assuming that the in-
put are points rather than rectangles. See the recent survey by Manolopoulos
et al. [19]. The first bulk-loading algorithm with a non-trivial guarantee on the
resulting worst-case query performance was given only recently by Agarwal et

1 Garćıa et al. describe several variants of the top-down greedy method. They found
the one described here to be the most efficient in practice [12]. In order to achieve
close to 100% space utilization, the size of the subsets created is actually rounded
up to the nearest power of B (except for one remainder set). As a result, one node
on each level, including the root, may have less than B children.

3

al. [2]. In d dimensions their algorithm constructs an R-tree that answers a win-
dow query in O((N/B)1−1/d+T logB N) I/Os, where T is the number of reported
rectangles. However, this still leaves a gap to the Ω((N/B)1−1/d + T/B) lower
bound on the number of I/Os needed to answer a window query [2, 17]. If the
input consists of points rather than rectangles, then worst-case optimal query
performance can be achieved with e.g. a kdB-tree [21] or an O-tree [17]. Unfortu-
nately, it seems hard to modify these structures to work for rectangles. Finally,
Agarwal et al. [2], as well as Haverkort et al. [14], also developed a number of
R-trees that have good worst-case query performance under certain conditions
on the input.

1.2 Our results

In Section 2 we present a new R-tree variant, which we call a Priority R-tree
or PR-tree for short. We call our structure the Priority R-tree because our
bulk-loading algorithm utilizes so-called priority rectangles in a way similar to
the recent structure by Agarwal et al. [2]. Window queries can be answered in
O((N/B)1−1/d + T/B) I/Os on a PR-tree, and the index is thus the first R-tree
variant that answers queries with an asymptotically optimal number of I/Os in
the worst case. To contrast this to previous R-tree bulk-loading algorithms, we
also construct a set of rectangles and a query with zero output, such that all
Θ(N/B) leaves of a packed Hilbert R-tree, a four-dimensional Hilbert R-tree,
or a TGS R-tree need to be visited to answer the query. We also show how to
bulk-load the PR-tree efficiently, using only O(N

B logM/B
N
B) I/Os. After bulk-

loading, a PR-tree can be updated in O(logB N) I/Os using the standard R-tree
updating algorithms, but without maintaining its query efficiency. Alternatively,
the external logarithmic method [4, 20] can be used to develop a structure that
supports insertions and deletions in O(logB

N
M + 1

B (logM/B
N
B)(log2

N
M)) and

O(logB
N
M) I/Os amortized, respectively, while maintaining the optimal query

performance.
In Section 3 we present an extensive experimental study of the practical per-

formance of the PR-tree using both real-life and synthetic data. We compare the
performance of our index on two-dimensional rectangles to the packed Hilbert
R-tree, the four-dimensional Hilbert R-tree, and the TGS R-tree. Overall, our
experiments show that all these R-trees answer queries in more or less the same
number of I/Os on relatively square and uniformly distributed rectangles. How-
ever, on more extreme data—large rectangles, rectangles with high aspect ratios,
or non-uniformly distributed rectangles—the PR-tree (and sometimes also the
four-dimensional Hilbert R-tree) outperforms the others significantly. On a spe-
cial worst-case dataset the PR-tree outperforms all of them by well over an order
of magnitude.

2 The Priority R-tree

In this section we describe the PR-tree. For simplicity, we first describe a two-
dimensional pseudo-PR-tree in Section 2.1. The pseudo-PR-tree answers window

4

queries efficiently but is not a real R-tree, since it does not have all leaves on
the same level. In Section 2.2 we show how to obtain a real two-dimensional
PR-tree from the pseudo-PR-tree, and in Section 2.3 we discuss how to extend
the PR-tree to d dimensions. Finally, in Section 2.4 we show that a query on the
packed Hilbert R-tree, the four-dimensional Hilbert R-tree, as well as the TGS
R-tree can be forced to visit all leaves even if T = 0.

2.1 Two-dimensional pseudo-PR-trees

In this section we describe the two-dimensional pseudo-PR-tree. Like an R-tree,
a pseudo-PR-tree has the input rectangles in the leaves and each internal node
ν contains a minimal bounding box for each of its children νc. However, unlike
an R-tree, not all the leaves are on the same level of the tree and internal nodes
only have degree six (rather than Θ(B)).

The basic idea in the pseudo-PR-tree is (similar to the four-dimensional
Hilbert R-tree) to view an input rectangle ((xmin, ymin), (xmax, ymax)) as a four-
dimensional point (xmin, ymin, xmax, ymax). The pseudo-PR-tree is then basically
just a kd-tree on the N points corresponding to the N input rectangles, except
that four extra leaves are added below each internal node. Intuitively, these so-
called priority leaves contain the extreme B points (rectangles) in each of the
four dimensions. Note that the four-dimensional kd-tree can easily be mapped
back to an R-tree-like structure, simply by replacing the split value in each kd-
tree node ν with the minimal bounding box of the input rectangles stored in
the subtree rooted in ν. The idea of using priority leaves was introduced in a
recent structure by Agarwal et al. [2], they used priority leaves of size one rather
than B.

Below we give a precise definition of the pseudo-PR-tree, and then we show
that it can be used to answer a window query in O(

√
N/B + T/B) I/Os. After

that, we describe how to construct the structure I/O-efficiently.

The Structure Let S = {R1, . . . , RN} be a set of N rectangles in the plane
and assume for simplicity that no two of the coordinates defining the rectangles
are equal. We define R∗i = (xmin(Ri), ymin(Ri), xmax(Ri), ymax(Ri)) to be the
mapping of Ri = ((xmin(Ri), ymin(Ri)), (xmax(Ri), ymax(Ri))) to a point in four
dimensions, and define S∗ to be the N points corresponding to S.

A pseudo-PR-tree TS on S is defined recursively: if S contains at most B
rectangles, TS consists of a single leaf; otherwise, TS consists of a node ν with
six children, namely four priority leaves and two recursive pseudo-PR-trees. For
each child νc, we let ν store the minimal bounding box of all input rectangles
stored in the subtree rooted in νc. The node ν and the priority leaves below it
are constructed as follows: The first priority leaf νxmin

p contains the B rectangles
in S with minimal xmin-coordinates, the second νymin

p the B rectangles among
the remaining rectangles with minimal ymin-coordinates, the third νxmax

p the B
rectangles among the remaining rectangles with maximal xmax-coordinates, and
finally the fourth νymax

p the B rectangles among the remaining rectangles with

5

split on xmin

ν
xmin

p

ν
ymin

p

ν
xmax

pν
ymax

p

S<
S>

ν

ν
xmin

p

ν
ymin

p

ν
xmax

p

ν
ymax

p

TS<
TS>

ν

Fig. 1. The construction of an internal node in a pseudo-PR-tree.

maximal ymax-coordinates. Thus the priority leaves contain the “extreme” rect-
angles in S, namely the ones with leftmost left edges, bottommost bottom edges,
rightmost right edges, and topmost top edges.2 After constructing the priority
leaves, we divide the set Sr of remaining rectangles (if any) into two subsets, S<

and S>, of approximately the same size and recursively construct pseudo-PR-
trees TS< and TS> . The division is performed using the xmin, ymin, xmax, or ymax-

2 S may not contain enough rectangles to put B rectangles in each of the four priority
leaves. In that case, we may assume that we can still put at least B/4 in each of
them, since otherwise we could just construct a single leaf.

6

coordinate in a round-robin fashion, as if we were building a four-dimensional
kd-tree on S∗r , that is, when constructing the root of TS we divide based on
the xmin-values, the next level of recursion based on the ymin-values, then based
on the xmax-values, on the ymax-values, on the xmin-values, and so on. Refer to
Figure 1 for an example. Note that dividing according to, say, xmin corresponds
to dividing based on a vertical line ` such that half of the rectangles in Sr have
their left edge to the left of ` and half of them have their left edge to the right
of `.

We store each node or leaf of TS in O(1) disk blocks, and since at least four
out of every six leaves contain Θ(B) rectangles we obtain the following (in the
subsection on efficient construction below, we discuss how to guarantee that
almost every leaf is full).

Lemma 1. A pseudo-PR-tree on a set of N rectangles in the plane occupies
O(N/B) disk blocks.

Query complexity We answer a window query Q on a pseudo-PR-tree exactly
as on an R-tree by recursively visiting all nodes with minimal bounding boxes
intersecting Q. However, unlike for known R-tree variants, for the pseudo-PR-
tree we can prove a non-trivial (in fact, optimal) bound on the number of I/Os
performed by this procedure.

Lemma 2. A window query on a pseudo-PR-tree on N rectangles in the plane
uses O(

√
N/B + T/B) I/Os in the worst case.

Proof. Let TS be a pseudo-PR-tree on a set S of N rectangles in the plane.
To prove the query bound, we bound the number of nodes in TS that are “kd-
nodes”, i.e. not priority leaves, and are visited in order to answer a query with
a rectangular range Q; the total number of leaves visited is at most a factor of
four larger.

We first note that O(T/B) is a bound on the number of nodes ν visited where
all rectangles in at least one of the priority leaves below ν’s parent are reported.
Thus we just need to bound the number of visited kd-nodes where this is not
the case.

Let µ be the parent of a node ν such that none of the priority leaves of µ
are reported completely, that is, each priority leaf µp of µ contains at least one
rectangle not intersecting Q. Each such rectangle E can be separated from Q by
a line containing one of the sides of Q—refer to Figure 2. Assume without loss of
generality that this is the vertical line x = xmin(Q) through the left edge of Q,
that is, E’s right edge lies to the left of Q’s left edge, so that xmax(E) ≤ xmin(Q).
This means that the point E∗ in four-dimensional space corresponding to E
lies to the left of the axis-parallel hyperplane H that intersects the xmax-axis
at xmin(Q). Now recall that TS is basically a four-dimensional kd-tree on S∗

(with priority leaves added), and thus that a four-dimensional region R4
µ can be

associated with µ. Since the query Q visits µ, there must also be at least one
rectangle F in the subtree rooted at µ that has xmax(F) > xmin(Q), so that F ∗

7

µ

ν

Q

x = xmin(Q)

y = xmax(Q)

E

F

µ
xmax

p

G

R
4

µ

Q

H
:
x

m
a
x

=
x

m
in
(Q

)

H
′ : ymin = ymax(Q)

E
∗

F
∗

G
∗

X

xmax

ymin

y = xmax(Q)

Fig. 2. The proof of Lemma 2, with µ in the plane (upper figure), and µ in four-
dimensional space (lower figure—the xmin and ymax dimensions are not shown). Note
that X = H∩H ′ is a two-dimensional hyperplane in four-dimensional space. It contains
a two-dimensional facet of the transformation of the query range into four dimensions.

lies to the right of H. It follows that R4
µ contains points on both sides of H and

therefore H must intersect R4
µ.

Now observe that the rectangles in the priority leaf µxmax
p cannot be separated

from Q by the line x = xmin(Q) through the left edge of Q: Rectangles in µxmax
p

are extreme in the positive x-direction, so if one of them lies completely to the
left of Q, then all rectangles in µ’s children—including ν—would lie to the left of
Q; in that case ν would not be visited. Since (by definition of ν) not all rectangles

8

in µxmax
p intersect Q, there must be a line through one of Q’s other sides, say

the horizontal line y = ymax(Q), that separates Q from a rectangle G in µxmax
p .

Hence, the hyperplane H ′ that cuts the ymin-axis at ymax(Q) also intersects R4
µ.

By the above arguments, at least two of the three-dimensional hyperplanes
defined by xmin(Q), xmax(Q), ymin(Q) and ymax(Q) intersect the region R4

µ as-
sociated with µ when viewing TS as a four-dimensional kd-tree. Hence, the
intersection X of these two hyperplanes, which is a two-dimensional plane in
four-dimensional space, also intersects R4

µ. With the priority leaves removed,
TS becomes a four-dimensional kd-tree with O(N/B) leaves; from a straight-
forward generalization of the standard analysis of kd-trees we know that any
axis-parallel two-dimensional plane intersects at most O(

√
N/B) of the regions

associated with the nodes in such a tree [2]. All that remains is to observe that
Q defines O(1) such planes, namely one for each pair of sides. Thus O(

√
N/B)

is a bound on the number of nodes ν that are not priority leaves and are visited
by the query procedure, where not all rectangles in any of the priority leaves
below ν’s parent are reported.

Efficient construction algorithm Note that it is easy to bulk-load a pseudo-
PR-tree TS on a set S of N rectangles in O(N

B log N) I/Os by simply constructing
one node at a time following the definition in the description of the structure
given above. We will now describe how, under the reasonable assumption that
the amount M of available main memory is Ω(B4/3), we can bulk-load TS using
O(N

B logM/B
N
B) I/Os.

Our algorithm is a modified version of the kd-tree construction algorithm
described in [1, 20]; it is easiest described as constructing a four-dimensional kd-
tree TS on the points S∗. In the construction algorithm we first construct, in
a preprocessing step, four sorted lists Lxmin , Lymin , Lxmax , Lymax containing the
points in S∗ sorted by their xmin-, ymin-, xmax-, and ymax-coordinate, respec-
tively. Then we construct Θ(log M) levels of the tree, and recursively construct
the rest of the tree.

To construct Θ(log M) levels of TS efficiently we proceed as follows. We first
choose a parameter z (which will be explained below) and use the four sorted
lists to find the (kN/z)-th coordinate of the points S∗ in each dimension, for all
k ∈ {1, 2, ..., z − 1}. These coordinates define a four-dimensional grid of size z4;
we then scan S∗ and count the number of points in each grid cell. We choose z
to be Θ(M1/4), so that we can keep these counts in main memory.

Next we build the Θ(log M) levels of TS without worrying about the priority
leaves: To construct the root ν of TS , we first find the slice of z3 grid cells
with common xmin-coordinate such that there is a hyperplane orthogonal to the
xmin-axis that passes through these cells and has at most half of the points in
S∗ on one side and at most half of the points on the other side. By scanning the
O(N/(Bz)) blocks from Lxmin that contain the O(N/z) points in these grid cells,
we can determine the exact xmin-value x to use in ν such that the hyperplane
H, defined by xmin = x, divides the points in S∗ into two subsets with at most
half of the points each. After constructing ν, we subdivide the z3 grid cells

9

intersected by H, that is, we divide each of the z3 cells in two at x and compute
their counts by rescanning the O(N/(Bz)) blocks from Lxmin that contain the
O(N/z) points in these grid cells. Then we construct a kd-tree on each side of
the hyperplane defined by x recursively (cycling through all four possible cutting
directions). Since we create O(z3) new cells every time we create a node, we can
ensure that the grid still fits in main memory after constructing z nodes, that
is, log z = Θ(log M) levels of TS .

After constructing the Θ(log M) kd-tree levels, we construct the four priority
leaves for each of the z nodes. To do so we reserve main memory space for
the B points in each of the priority leaves; we have enough main memory to
hold all priority leaves, since by the assumption that M is Ω(B4/3) we have
4 · Θ(B) · Θ(z) = O(M). Then we fill the priority leaves by scanning S∗ and
“filtering” each point R∗i through the kd-tree, one by one, as follows: We start at
the root of ν of TS , and check its priority leaves νxmin

p , νymin
p , νxmax

p , and νymax
p one

by one in that order. If we encounter a non-full leaf we simply place R∗i there;
if we encounter a full leaf νp and R∗i is more extreme in the relevant direction
than the least extreme point R∗j in νp, we replace R∗j with R∗i and continue the
filtering process with R∗j . After checking νymax

p we continue to check the priority
leaves of the child of ν in TS whose region contains the point we are processing;
if ν does not have such a child (because we arrived at leaf level in the kd-tree)
we simply continue with the next point in S∗.

It is easy to see that the above process correctly constructs the top Θ(log M)
levels of the pseudo-PR-tree TS on S, except that the kd-tree divisions are slightly
different than the ones defined in before, since the points in the priority leaves are
not removed before the divisions are computed. However, the bound of Lemma 2
still holds: The O(T/B) term does not depend on the choice of the divisions,
and the kd-tree analysis that brought the O(

√
N/B) term only depends on the

fact that each child gets at most half of the points of its parent.
After constructing the Θ(log M) levels and their priority leaves, we scan

through the four sorted lists Lxmin , Lymin , Lxmax , Lymax and divide them into
four sorted lists for each of the Θ(z) leaves of the constructed kd-tree, while
omitting the points already stored in priority leaves. These lists contain O(N/z)
points each; after writing the constructed kd-tree and priority leaves to disk we
use them to construct the rest of TS recursively.

Note that once the number of points in a recursive call gets smaller than
M , we can simply construct the rest of the tree in internal memory one node
at a time. This way we can make slightly unbalanced divisions, so that we have
a multiple of B points on one side of each dividing hyperplane. Thus we can
guarantee that we get at most one non-full leaf per subtree of size Θ(M), and
obtain almost 100% space utilization. To avoid having an underfull leaf that
may violate assumptions made by update algorithms, we may make the priority
leaves under its parent slightly smaller so that all leaves contain Θ(B) rectangles.
This also implies that the bound of Lemma 1 still holds.

Lemma 3. A pseudo-PR-tree can be bulk-loaded with N rectangles in the plane
in O(N

B logM/B
N
B) I/Os.

10

Proof. The initial construction of the sorted lists takes O(N
B logM/B

N
B) I/Os.

To construct Θ(log M) levels of TS we use O(N/B) I/Os to construct the initial
grid, as well as O(N/(Bz)) to construct each of the z nodes for a total of O(N/B)
I/Os. Constructing the priority leaves by filtering also takes O(N/B) I/Os, and
so does the distribution of the remaining points in S∗ to the recursive calls. Thus
each recursive step takes O(N/B) I/Os in total. The lemma follows since there
are O(log N

B / log M) = O(logM
N
B) levels of recursion.

2.2 Two-dimensional PR-tree

In this section we describe how to obtain a PR-tree (with degree Θ(B) and all
leaves on the same level) from a pseudo-PR-tree (with degree six and leaves on
all levels), while maintaining the O(

√
N/B + T/B) I/O window query bound.

The PR-tree is built in stages bottom-up: In stage 0 we construct the leaves
V0 of the tree from the set S0 = S of N input rectangles; in stage i ≥ 1 we
construct the nodes Vi on level i of the tree from a set Si of O(N/Bi) rectangles,
consisting of the minimal bounding boxes of all nodes in Vi−1 (on level i − 1).
Stage i consists of constructing a pseudo-PR-tree TSi on Si; Vi then simply
consists of the (priority as well as normal) leaves of TSi

; the internal nodes are
discarded.3 The bottom-up construction ends when the set Si is small enough
so that the rectangles in Si and the pointers to the corresponding subtrees fit
into one block, which is then the root of the PR-tree.

Theorem 1. A PR-tree on a set S of N rectangles in the plane can be bulk-
loaded in O(N

B logM/B
N
B) I/Os, such that a window query can be answered in

O(
√

N/B + T/B) I/Os.

Proof. By Lemma 3, stage i of the PR-tree bulk-loading algorithm uses
O((|Si|/B) logM/B(|Si|/B)) I/Os, which is O((N/Bi+1) logM/B

N
B). Thus the

complete PR-tree is constructed in

O(logB N)∑

i=0

O

(
N

Bi+1
logM/B

N

B

)
= O

(
N

B
logM/B

N

B

)
I/Os.

To analyze the number of I/Os used to answer a window query Q, we will
analyze the number of nodes visited on each level of the tree. Let Ti (i ≤ 0) be
the number of nodes visited on level i. Since the nodes on level 0 (the leaves)
correspond to the leaves of a pseudo-PR-tree on the N input rectangles S, it
follows from Lemma 2 that T0 = O(

√
N/B+T/B); in particular, for big enough

3 There is a subtle difference between the pseudo-PR-tree algorithm used in stage
0 and the algorithm used in stages i > 0. In stage 0, we construct leaves with
input rectangles. In stages i > 0, we construct nodes with pointers to children and
bounding boxes of their subtrees. The number of children that fits in a node might
differ by a constant factor from the number B of rectangles that fits in a leaf, so the
number of children might be Θ(B) rather than B. For our analysis the difference
does not matter and is therefore ignored for simplicity.

11

N and B, there exists a constant c such that T0 ≤ c
√

N/B + c(T/B). There
must be Ti−1 rectangles in nodes of level i ≥ 1 of the PR-tree that intersect
Q, since these nodes contain the bounding boxes of nodes on level i − 1. Since
nodes on level i correspond to the leaves of a pseudo-PR-tree on the N/Bi

rectangles in Si, it follows from Lemma 2 that for big enough N and B, we
have Ti ≤ (c/

√
Bi)

√
N/B + c(Ti−1/B). Summing over all O(logB N) levels and

solving the recurrence reveals that O(
√

N/B + T/B) nodes are visited in total.

2.3 Multi-dimensional PR-tree

In this section we briefly sketch how our PR-tree generalizes to dimensions
greater than two. We focus on how to generalize pseudo-PR-trees, since a d-
dimensional PR-tree can be obtained using d-dimensional pseudo-PR-trees in
exactly the same way as in the two-dimensional case; that the d-dimensional
PR-tree has the same asymptotic performance as the d-dimensional pseudo-PR-
tree is also proved exactly as in the two-dimensional case.

Recall that a two-dimensional pseudo-PR-tree is basically a four-dimensional
kd-tree, where four priority leaves containing extreme rectangles in each of the
four directions have been added below each internal node. Similarly, a d-dimen-
sional pseudo-PR-tree is basically a 2d-dimensional kd-tree, where each node has
2d priority leaves with extreme rectangles in each of the 2d standard directions.
For constant d, the structure can be constructed in O(N

B logM/B
N
B) I/Os using

the same grid method as in the two-dimensional case; the only difference is that
in order to fit the 2d-dimensional grid in main memory we have to decrease z
(the number of nodes produced in one recursive stage) to Θ(M1/2d).

To analyze the number of I/Os used to answer a window query on a d-dimen-
sional pseudo-PR-tree, we analyze the number of visited internal nodes as in the
two-dimensional case; the total number of visited nodes is at most a factor 2d
higher, since at most 2d priority leaves can be visited per internal node visited.
As in the two-dimensional case, O(T/B) is a bound on the number of nodes
ν visited where all rectangles in at least one of the priority leaves below ν’s
parent are reported. The number of nodes ν visited such that each priority leaf
of ν’s parent contains at least one rectangle not intersecting the query can then
be bounded using an argument similar to the one used in two dimensions; it is
equal to the number of regions associated with the nodes in a 2d-dimensional
kd-tree with O(N/B) leaves that intersect the (2d− 2)-dimensional intersection
of two orthogonal hyperplanes. It follows from a straightforward generalization
of the standard kd-tree analysis that this is O((N/B)1−1/d) [2].

Theorem 2. A PR-tree on a set of N hyperrectangles in d dimensions can be
bulk-loaded in O(N

B logM/B
N
B) I/Os, such that a window query can be answered

in O((N/B)1−1/d + T/B) I/Os.

2.4 Lower bound for heuristic R-trees

The PR-tree is the first R-tree variant that always answers a window query
worst-case optimally. In fact, most other R-tree variants can be forced to visit

12

Θ(N/B) nodes to answer a query even when no rectangles are reported (T = 0).
In this section we show how this is the case for the packed Hilbert R-tree, the
four-dimensional Hilbert R-tree, and the TGS R-tree.

Theorem 3. There exist a set of rectangles S and a window query Q that does
not intersect any rectangles in S, such that all Θ(N/B) nodes are visited when
Q is answered using a packed Hilbert R-tree, a four-dimensional Hilbert R-tree,
or a TGS R-tree on S.

Proof. We will construct a set of points S such that all leaves in a packed Hilbert
R-tree, a four-dimensional Hilbert R-tree, and a TGS R-tree on S are visited
when answering a line query that does not touch any point. The theorem follows
since points and lines are all special rectangles.

For convenience we assume that B ≥ 4, N = 2kB and N/B = Bm, for
some positive integers k and m, so that each leaf of the R-tree contains B
rectangles, and each internal node has fanout B. We construct S as a grid of
N/B columns and B rows, where each column is shifted up a little, depending
on its horizontal position (each row is in fact a Halton-Hammersley point set; see
e.g. [8]). More precisely, S has a point pij = (xij , yij), for all i ∈ {0, ..., N/B−1}
and j ∈ {0, ..., B − 1}, such that xij = i + 1/2, and yij = j/B + h(i)/N . Here
h(i) is the number obtained by reversing, i.e. reading backwards, the k-bit binary
representation of i. An example with N = 64, B = 4 is shown in Figure 3.

Fig. 3. Worst-case example

Now, let us examine the structure of each of the three R-tree variants on this
dataset.

Two- and four-dimensional packed Hilbert R-tree: the Hilbert curve
visits the columns in our grid of points one by one; when it visits a column, it
visits all points in that column before proceeding to another column (we omit
the details of the proof from this abstract). Therefore, the packed Hilbert R-tree
makes a leaf for every column, and a horizontal line can be chosen to intersect
all these columns while not touching any point.

TGS R-tree: The TGS algorithm will partition S into B subsets of equal
size and partition each subset recursively. The partitioning is implemented by
choosing a partitioning line that separates the set into two subsets (whose sizes
are multiples of N/B), and then applying binary partitions to the subsets recur-
sively until we have partitioned the set into N subsets of size N/B. Observe that
on all levels in this recursion, the partitioning line will leave at least a fraction
1/B of the input on each side of the line. Below we prove that TGS will always
partition by vertical lines; it follows that TGS will eventually put each column
in a leaf. Then a line query can intersect all leaves but report nothing.

13

Suppose TGS is about to partition the subset S(i1, i2) of S that consists of
columns i1 to i2 inclusive, with i2 > i1, i.e. S(i1, i2) = {pij |i ∈ {i1, ..., i2}, j ∈
{0, ..., B − 1}}. When the greedy split algorithm gets to divide such a set into
two, it can look for a vertical partitioning line or for a horizontal partitioning
line. Intuitively, TGS favors partitioning lines that create a big gap between the
bounding boxes of the points on each side of the line. As we will show below,
we have constructed S such that the area of the gap created by a horizontal
partitioning line is always roughly the same, as is the area of the gap created by
a vertical line, with the latter always being bigger.

Partitioning with a vertical line would always leave a gap of roughly a square
that fits between two columns—see Figure 4. More precisely, it would partition
the set S(i1, i2) into two sets S(i1, c−1) and S(c, i2), for some c ∈ {i1 +1, ..., i2}.
The bounding boxes of these two sets would each have height less than 1, and
their total width would be (c − 1 − i1) + (i2 − c), so their total area Av would
be less than i2 − i1 − 1.

i
′

1
= k · 2t i

′

2
= (k + 1)2t

− 1column i1 i2

σ = 1

2tB
≥ 1 − σ

< 1 1

Fig. 4. TGS partitioning the worst-case example. A vertical division creates two bound-
ing boxes with a total area of less than i2 − i1 − 1. A horizontal division creates two
bounding boxes with a total area of more than (i2 − i1)(1− 2σ) > i2 − i1 − 1.

The width of a gap around a horizontal partitioning line depends on the
number of columns in S(i1, i2). However, the more columns are involved the
bigger the density of the points in those columns when projected on the y-axis,
and the lower the gap that can be created—see Figure 4 for an illustration. As
a result, partitioning with a horizontal line can lead to gaps that are wide and
low, or relatively high but not so wide; in any case, the area of the gap will be
roughly the same. More precisely, when we partition this set by a horizontal line,
the total area Ah of the resulting bounding boxes must be at least i2− i1− 4/B
(we omit the details from this abstract).

Recall that Av is less than i2 − i1 − 1. Since B ≥ 4, we can conclude that
Ah > Av, and that partitioning with a vertical line will always result in a smaller

14

total area of bounding boxes than with a horizontal line. As a result, TGS will
always cut vertically between the columns.

3 Experiments

In this section we describe the results of our experimental study of the perfor-
mance of the PR-tree. We compared the PR-tree to several other bulk-loading
methods known to generate query-efficient R-trees: The packed Hilbert R-tree
(denoted H in the rest of this section), the four-dimensional Hilbert R-tree (de-
noted H4), and the TGS R-tree (denoted TGS). Among these, TGS has been
reported to have the best query performance, but it also takes many I/Os to
bulk-load. In contrast, H is simple to bulk-load, but it has worse query perfor-
mance because it does not take the extent of the input rectangles into account.
H4 has been reported to be inferior to H [15], but since it takes the extent into
account (like TGS) it should intuitively be less vulnerable to extreme datasets.

3.1 Experimental setup

We implemented the four bulk-loading algorithms in C++ using TPIE [3]. TPIE
is a library that provides support for implementing I/O-efficient algorithms and
data structures. In our implementation we used 36 bytes to represent each input
rectangle; 8 bytes for each coordinate and 4 bytes to be able to hold a pointer to
the original object. Each bounding box in the internal nodes also used 36 bytes;
8 bytes for each coordinate and 4 bytes for a pointer to the disk block storing the
root of the corresponding subtree. The disk block size was chosen to be 4KB,
resulting in a maximum fanout of 113. This is similar to earlier experimental
studies, which typically use block sizes ranging from 1KB to 4KB or fix the
fan-out to a number close to 100.

As experimental platform we used a dedicated Dell PowerEdge 2400 work-
station with one Pentium III/500MHz processor running FreeBSD 4.3. A local
36GB SCSI disk (IBM Ultrastar 36LZX) was used to store all necessary files:
the input data, the R-trees, as well as temporary files. We restricted the main
memory to 128MB and further restricted the amount of memory available to
TPIE to 64MB; the rest was reserved to operating system daemons.

3.2 Datasets

We used both real-life and synthetic data in our experiments.

Real-life data As the real-life data we used the tiger/Line data [24] of ge-
ographical features in the United States. This data is the standard benchmark
data used in spatial databases. It is distributed on six CD-ROMs and we chose
to experiment with the road line segments from two of the CD-ROMs: disk
one containing data for sixteen eastern US states and disk six containing data

15

from five western US states; we use Eastern and Western to refer to these two
datasets, respectively. To obtain datasets of varying sizes we divided the East-
ern dataset into five regions of roughly equal size, and then put an increasing
number of regions together to obtain datasets of increasing sizes. The largest set
is just the whole Eastern dataset. For each dataset we used the bounding boxes
of the line segments as our input rectangles. As a result, the Eastern dataset
had 16.7 million rectangles, for a total size of 574MB, and the Western data
set had 12 million rectangles, for a total size of 411MB. Note that the biggest
dataset is much larger than those used in previous works (which only used up
to 100,000 rectangles) [15, 12]. Note also that our tiger data is relatively nicely
distributed; it consist of relatively small rectangles (long roads are divided into
short segments) that are somewhat (but not too badly) clustered around urban
areas.

Synthetic data To investigate how the different R-trees perform on more
extreme datasets than the tiger data, we generated a number of synthetic
datasets. Each of these synthetic datasets consisted of 10 million rectangles (or
360MB) in the unit square.

– size(max side): We designed the first class of synthetic datasets to in-
vestigate how well the R-trees handle rectangles of different sizes. In the
size(max side) dataset the rectangle centers were uniformly distributed and
the lengths of their sides uniformly and independently distributed between 0
and max side. When generating the datasets, we discarded rectangles that
were not completely inside the unit square (but made sure each dataset
had 10 million rectangles). A portion of the dataset size(0.001) is shown in
Figure 5.

Fig. 5. Synthetic dataset SIZE(0.001)

16

– aspect(a): The second class of synthetic datasets was designed to inves-
tigate how the R-trees handle rectangles with different aspect ratios. The
areas of the rectangles in all the datasets were fixed to 10−6, a reasonably
small size. In the aspect(a) dataset the rectangle centers were uniformly
distributed but their aspect ratios were fixed to a and the longest sides cho-
sen to be vertical or horizontal with equal probability. We also made sure
that all rectangles fell completely inside the unit square. A portion of the
dataset aspect(10) is shown in Figure 6. Note that if the input rectangles
are bounding boxes of line segments that are almost horizontal or vertical,
one will indeed get rectangles with very high aspect ratio—even infinite in
the case of horizontal or vertical segments.

Fig. 6. Synthetic dataset ASPECT(10)

– skewed(c): In many real-life multidimensional datasets different dimensions
often have different distributions, some of which may be highly skewed com-
pared to the others. We designed the third class of datasets to investigate
how this affects R-tree performance. skewed(c) consists of uniformly dis-
tributed points that have been “squeezed” in the y-dimension, that is, each
point (x, y) is replaced with (x, yc). An example of skewed(5) is shown in
Figure 7.

– cluster: Our final dataset was designed to illustrate the worst-case behav-
ior of the H, H4 and TGS R-trees. It is similar to the worst-case example
discussed in Section 2. It consists of 10 000 clusters with centers equally
spaced on a horizontal line. Each cluster consists of 1000 points uniformly
distributed in a 0.000 01 × 0.000 01 square surrounding its center. Figure 8
shows a part of the cluster dataset.

3.3 Experimental results

Below we discuss the results of our bulk-loading and query experiments with the
four R-tree variants.

17

Fig. 7. Synthetic dataset SKEWED(5)

Fig. 8. Synthetic dataset CLUSTER

Bulk-loading performance We bulk-loaded each of the R-trees with each of
the real-life tiger datasets, as well as with the synthetic datasets for various
parameter values. In all experiments and for all R-trees we achieved a space
utilization above 99%.4 We measured the time spent and counted the number of
4KB blocks read or written when bulk-loading the trees. Note that all algorithms
we tested read and write blocks almost exclusively by sequential I/O of large
parts of the data; as a result, I/O is much faster than if blocks were read and
written in random order.

Figure 9 shows the results of our experiments using the Eastern and Western
datasets. Both experiments yield the same result: The H and H4 algorithms use
the same number of I/Os, and roughly 2.5 times fewer I/Os than PR. This is not
surprising since even though the three algorithms have the same O(N

B logM/B
N
B)

I/O bounds, the PR algorithm is much more complicated than the H and H4
algorithms. The TGS algorithm uses roughly 4.5 times more I/Os than PR,
which is also not surprising given that the algorithm makes binary partitions
so that the number of levels of recursion is effectively O(log2 N). In terms of
time, the H and H4 algorithms are still more than 3 times faster than the PR
algorithm, but the TGS algorithm is only roughly 3 times slower than PR. This
shows that H, H4 and PR are all more CPU-intensive than TGS.

4 When R-trees are bulk-loaded to subsequently be updated dynamically, near 100%
space utilization is often not desirable [10]. However, since we are mainly interested
in the query performance of the R-tree constructed with the different bulk-loading
methods, and since the methods could be modified in the same way to produce
non-full leaves, we only considered the near 100% utilization case.

18

Hilbert (H/H4)

PR-tree (PR)

Greedy (TGS)

451 s

1 495 s

4 421 s

Hilbert (H/H4)

PR-tree (PR)

Greedy (TGS)

1.2 mln

3.1 mln

14.7 mln

583 s

2 138 s

6 530 s

1.7 mln

4.4 mln

21.1 mln

Western data Eastern data

Fig. 9. Bulk-loading performance on TIGER data: I/O (upper figure) and time (lower
figure).

Figure 10 shows the results of our experiments with the five Eastern datasets.
These experiments show that the H, H4 and PR algorithms scale relatively lin-
early with dataset size; this is a result of the dlogM/B

N
B e factor in the bulk-

loading bound being the same for all datasets. The cost of the TGS algorithm
seems to grow in an only slightly superlinear way with the size of the data set.
This is a result of the dlog2 Ne factor in the bulk-loading bound being almost
the same for all data sets.

Hilbert (H/H4)

PR-tree (PR)

Greedy (TGS)

2.1 mln 5.7 mln 9.2 mln 12.7 mln 16.7 mln rectangles

1.8

6.2

11.0

15.2

21.1

0.6
1.5

2.4
3.3

4.4

0.2 0.6
0.9 1.3 1.7

million blocks read or written

Fig. 10. Bulk-loading performances on Eastern datasets (I/Os)

In our experiments with the synthetic data we found that the performance
of the H, H4 and PR bulk-loading algorithms was practically the same for all
the datasets, that is, unaffected by the data distribution. This is not surpris-
ing, since the performance should only depend on the dataset size (and all the
synthetic datasets have the same size). The PR algorithm performance varied
slightly, which can be explained by the small effect the data distribution can

19

have on the grid method used in the bulk-loading algorithm (subtrees may have
slightly different sizes due to the removal of priority boxes). On average, the H
and H4 algorithms spent 381 seconds and 1.0 million I/Os on each of the syn-
thetic datasets, while the PR algorithm spent 1289 seconds and 2.6 million I/Os.
On the other hand, as expected, the performance of the TGS algorithm varied
significantly over the synthetic datasets we tried; the binary partitions made by
the algorithm depend heavily on the input data distribution. The TGS algorithm
was between 4.6 and 16.4 times slower than the PR algorithm in terms of I/O,
and between 2.8 and 10.9 times slower in terms of time. Due to lack of space,
we only show the performance of the TGS algorithm on the size(max side) and
aspect(a) datasets in Figure 11. The point datasets, skewed(c) and cluster,
were all built in between 3 471 and 4 456 seconds.

3 726 3 929
4 552

5 837

8 952

12 111

14 024

4 613

13 196

12 738 14 034

8 283

0.2 0.5 1 2 5 10 20% 101 102 103 104 105

SIZE(max side) ASPECT(a)

Fig. 11. Bulk-loading time in seconds of Top-down Greedy Split on synthetic data sets
of 10 million rectangles each.

Query performance After bulk-loading the four R-tree variants we experi-
mented with their query performance; in each of our experiments we performed
100 randomly generated queries and computed their average performance (a
more exact description of the queries is given below). Following previous exper-
imental studies, we utilized a cache (or “buffer”) to store internal R-tree nodes
during queries. In fact, in all our experiments we cached all internal nodes since
they never occupied more than 6MB. This means that when reporting the num-
ber of I/Os needed to answer a query, we are in effect reporting the number of

20

leaves visited in order to answer the query.5 For several reasons, and following
previous experimental studies [6, 12, 15, 16], we did not collect timing data. Two
main reasons for this are (1) that I/O is a much more robust measure of per-
formance, since the query time is easily affected by operating system caching
and by disk block layout; and (2) that we are interested in heavy load scenarios
where not much cache memory is available or where caches are ineffective, that
is, where I/O dominates the query time.

Greedy (TGS)

PR-tree (PR)

Hilbert 2D (H)

Hilbert 4D (H4)

100%

110%

120%

123

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00% of total area

463 777 1231 1647 2403 2814 3928B rectangles output

Fig. 12. Query performance for queries with squares of varying size on the Western
TIGER data. The performance is given as the number of blocks read divided by the
output size T/B.

TIGER data: We first performed query experiments using the Eastern and
Western datasets. The results are summarized in Figure 12, 13, and 14. In Fig-
ure 12 and 13 we show the results of experiments with square window queries
with areas that range from 0.25% to 2% of the area of the bounding box of all
input rectangles. We used smaller queries than previous experimental studies
(for example, the maximum query in [15] occupies 25% of the area) because
our datasets are much larger than the datasets used in previous experiments—
without reducing the query size the output would be unrealistically large and
the reporting cost would thus dominate the overall query performance. In Fig-
ure 14 we show the results of experiments on the five Eastern datasets of various
sizes with a fixed query size of 1%. The results show that all four R-tree variants

5 Experiments with the cache disabled showed that in our experiments the cache
actually had relatively little effect on the window query performance.

21

Greedy (TGS)

PR-tree (PR)

Hilbert 2D (H)

Hilbert 4D (H4)

100%

110%

120%

350

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00% of total area

685 1208 1814 1959 2676 3460 4386B rectangles output

Fig. 13. Query performance for queries with squares of varying size on the Eastern
TIGER data. The performance is given as the number of blocks read divided by the
output size T/B.

perform remarkably well on the tiger data; their performance is within 10% of
each other and they all answer queries in close to T/B, the minimum number
of necessary I/Os. Their relative performance generally agrees with earlier re-
sults [15, 12], that is, TGS performs better than H, which in turn is better than
H4. PR consistently performs slightly better than both H and H4 but slightly
worse than TGS.

Synthetic data. Next we performed experiments with our synthetic datasets,
designed to investigate how the different R-trees perform on more extreme
datasets than the tiger data. For each of the datasets size, aspect and skewed
we performed experiments where we varied the parameter to obtain data ranging
from fairly normal to rather extreme. Below we summarize our results.

The left side of Figure 15 shows the results of our experiments with the
dataset size(max side) when varying max side from 0.002 to 0.2, that is, from
relatively small to relatively large rectangles. As queries we used squares with
area 0.01. Our results show that for relatively small input rectangles, like the
tiger data, all the R-tree variants perform very close to the minimum number
of necessary I/Os. However, as the input rectangles get larger, PR and H4 clearly
outperform H and TGS. H performs the worst, which is not surprising since it
does not take the extent of the input rectangles into account. TGS performs
significantly better than H but still worse than PR and H4. Intuitively, PR and
H4 can handle large rectangles better, because they rigorously divide rectangles
into groups of rectangles that are similar in all four coordinates. This may enable

22

Greedy (TGS)

PR-tree (PR)

Hilbert 2D (H)

Hilbert 4D (H4)

100%

110%

120%

154

2.08 5.67 9.16 12.66 16.72 mln rectangles input

574 809 1265 1814 B rectangles output

TGS

H

PR

H4

Fig. 14. Query performance for queries with squares of area 0.01 on Eastern TIGER
data sets of varying size. The performance is given as the number of blocks read divided
by the output size T/B.

these algorithms to group likely answers, namely large rectangles, together so
that they can be retrieved with few I/Os. It also enables these algorithms to
group small rectangles nicely, while TGS, which strives to minimize the total area
of bounding boxes, may be indifferent to the distribution of the small rectangles
in the presence of large rectangles.

The middle of Figure 15 shows the results of our experiments with the dataset
aspect(a), when we vary a from 10 to 105, that is, when we go from rect-
angles (of constant area) with small to large aspect ratio. As query we again
used squares with area 0.01. The results are very similar to the results of the
size dataset experiments, except that as the aspect ratio increases, PR and H4
become significantly better than TGS and especially H. Unlike with the size
dataset, PR performs as well as H4 and they both perform close to the mini-
mum number of necessary I/Os to answer a query. Thus this set of experiments
re-emphasizes that both the PR-tree and H4-tree are able to adopt to varying
extent very well.

The right side of Figure 15 shows the result of our experiments with the
dataset skewed(c), when we vary c from 1 to 9, that is, when we go from a
uniformly distributed point set to a very skewed point set. As query we used
squares with area 0.01 that are skewed in the same way as the dataset (that
is, where the corner (x, y) is transformed to (x, yc)) so that the output size
remains roughly the same. As expected, the PR performance is unaffected by the

23

0.2 0.5 1 2 5 10 20% 101 1 3 5 7 9102 103 104 105

SIZE(max side) ASPECT(a) SKEWED(c)

100%

150%

200%

902 935 986 1090 1433 2147 3879 913 986 1195 1836 3864 886 887 892 904 968B rectangles
output

TGS

PR

H

H4

TGS

PR

H

H4

TGS

PR

H

H4

340%

H

TGS

H

Fig. 15. Query performance for queries with squares of area 0.01 on synthetic data
sets. The performance is given as the number of blocks read divided by the output size
T/B.

transformations, since our bulk-loading algorithm is based only on the relative
order of coordinates: x-coordinates are only compared to x-coordinates, and y-
coordinates are only compared to y-coordinates; there is no interaction between
them. On the other hand, the query performance of the three other R-trees
degenerates quickly as the point set gets more skewed.

As a final experiment, we queried the cluster dataset with long skinny
horizontal queries (of area 1×10−7) through the 10 000 clusters; the y-coordinate
of the leftmost bottom corner was chosen randomly such that the query passed
through all clusters. The results are shown in Table 1. As anticipated, the query
performance of H, H4 and TGS is very bad; the cluster dataset was constructed
to illustrate the worst-case behavior of the structures. Even though a query only
returns around 0.3% of the input points on average, the query algorithm visits
37%, 94% and 25% of the leaves in H, H4 and TGS, respectively. In comparison,
only 1.2% of the leaves are visited in PR. Thus the PR-tree outperforms the
other indexes by well over an order of magnitude.

tree: H H4 PR TGS

I/Os: 32 920 83 389 1 060 22 158

% of the R-tree visited: 37% 94% 1.2% 25%

Table 1. Query performances on synthetic dataset CLUSTER.

24

3.4 Conclusions of the experiments

The main conclusion of our experimental study is that the PR-tree is not only
theoretically efficient but also practically efficient. Our bulk-loading algorithm
is slower than the packed Hilbert and four-dimensional Hilbert bulk-loading al-
gorithms but much faster than the TGS R-tree bulk-loading algorithm. Further-
more, unlike for the TGS R-tree, the performance of our bulk-loading algorithm
does not depend on the data distribution. The query performance of all four R-
trees is excellent on nicely distributed data, including the real-life tiger data.
On extreme data however, the PR-tree is much more robust than the other R-
trees (even though the four-dimensional Hilbert R-tree is also relatively robust).

4 Concluding remarks

In this paper we presented the PR-tree, which is the first R-tree variant that
can answer any window query in the optimal O(

√
N/B + T/B) I/Os. We also

performed an extensive experimental study, which showed that the PR-tree is
not only optimal in theory, but that it also performs excellent in practice: for
normal data, it is quite competitive to the best known heuristics for bulk-loading
R-trees, namely the packed Hilbert-R-tree [15] and the TGS R-tree [12], while
for data with extreme shapes or distributions, it outperforms them significantly.

The PR-tree can be updated using any known update heuristic for R-trees,
but then its performance cannot be guaranteed theoretically anymore and its
practical performance might suffer as well. Alternatively, we can use the dy-
namic version of the PR-tree using the logarithmic method, which has the same
theoretical worst-case query performance and can be updated efficiently. In the
future we wish to experiment to see what happens to the performance when we
apply heuristic update algorithms and when we use the theoretically superior
logarithmic method.

References

1. P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. A framework for index
bulk loading and dynamization. In Proc. International Colloquium on Automata,
Languages, and Programming, pages 115–127, 2001.

2. P. K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammar, and H. J. Haverkort.
Box-trees and R-trees with near-optimal query time. Discrete and Computational
Geometry, 28(3):291–312, 2002.

3. L. Arge, O. Procopiuc, and J. S. Vitter. Implementing I/O-efficient data structures
using TPIE. In Proc. European Symposium on Algorithms, pages 88–100, 2002.

4. L. Arge and J. Vahrenhold. I/O-efficient dynamic planar point location. Interna-
tional Journal of Computational Geometry & Applications, 2003. To appear.

5. R. Bayer and E. McCreight. Organization and maintenance of large ordered in-
dexes. Acta Informatica, 1:173–189, 1972.

6. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An ef-
ficient and robust access method for points and rectangles. In Proc. SIGMOD
International Conference on Management of Data, pages 322–331, 1990.

25

7. S. Berchtold, C. Böhm, and H.-P. Kriegel. Improving the query performance of
high-dimensional index structures by bulk load operations. In Proc. Conference
on Extending Database Technology, LNCS 1377, pages 216–230, 1998.

8. B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge
University Press, New York, 2001.

9. D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, 1979.
10. D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, and J.-B. Yu. Client-server paradise.

In Proc. International Conference on Very Large Databases, pages 558–569, 1994.
11. V. Gaede and O. Günther. Multidimensional access methods. ACM Computing

Surveys, 30(2):170–231, 1998.
12. Y. J. Garćıa, M. A. López, and S. T. Leutenegger. A greedy algorithm for bulk

loading R-trees. In Proc. 6th ACM Symposium on Advances in GIS, pages 163–164,
1998.

13. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc.
SIGMOD International Conference on Management of Data, pages 47–57, 1984.

14. H. J. Haverkort, M. de Berg, and J. Gudmundsson. Box-trees for collision checking
in industrial installations. In Proc. ACM Symposium on Computational Geometry,
pages 53–62, 2002.

15. I. Kamel and C. Faloutsos. On packing R-trees. In Proc. International Conference
on Information and Knowledge Management, pages 490–499, 1993.

16. I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using fractals. In
Proc. International Conference on Very Large Databases, pages 500–509, 1994.

17. K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-
replicating index structures. In Proc. International Conference on Database The-
ory, LNCS 1540, pages 257–276, 1999.

18. S. T. Leutenegger, M. A. López, and J. Edgington. STR: A simple and efficient
algorithm for R-tree packing. In Proc. IEEE International Conference on Data
Engineering, pages 497–506, 1996.

19. Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodor-
idis. R-trees have grown everywhere. Technical Report available at
http://www.rtreeportal.org/, 2003

20. O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter. Bkd-tree: A dynamic scal-
able kd-tree. In Proc. International Symposium on Spatial and Temporal Databases,
2003.

21. J. Robinson. The K-D-B tree: A search structure for large multidimensional dy-
namic indexes. In Proc. SIGMOD International Conference on Management of
Data, pages 10–18, 1981.

22. N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases using
packed R-trees. In Proc. SIGMOD International Conference on Management of
Data, pages 17–31, 1985.

23. T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index
for multi-dimensional objects. In Proc. International Conference on Very Large
Databases, pages 507–518, 1987.

24. TIGER/LineTM Files, 1997 Technical Documentation. Washington, DC, Septem-
ber 1998. http://www.census.gov/geo/tiger/TIGER97D.pdf.

26

