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Extended Abstract

We will write√
a1 +

√
a2 +

√
a3 + · · · + √

an = Sn =
√

a1, a2, a3, . . . , an,

and consider continued radicals of form limn→∞ Sn =
√

a1, a2, a3, . . . .
Convergence criteria for continued radicals are given in [2], and [3]. We

consider the sets S(M) of real numbers which are representable as a continued
radical whose terms a1, a2, . . . are all from a finite set M = {m1, m2, . . . , mp} ⊆
N where 0 < m1 < m2 < · · · < mp.

For any nonnegative number n,
√

n, n, n, . . . converges to ϕn ≡ 1+
√

4n+1
2

.
It is easy to see that ϕn = k ∈ N if and only if n = k(k − 1) for some integer
k ≥ 2.

If S(M) is to be an interval, then to insure that no gaps occur in S(M),
it is necessary that the largest value representable with a1 = mi equal or
exceed the smallest value representable with a1 = mi+1 (for i = 1, . . . , p−1).
That is, it is necessary that

√
mi, mp, mp, mp, . . . ≥

√
mi+1, m1, m1, m1, . . . ∀i ∈ {1, . . . , p − 1},

In fact, this condition will be necessary and sufficient: A greedy algorithm
proves the following result.
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Theorem 0.1 Suppose M = {m1, m2, . . . , mp} ⊆ N where 0 < m1 < m2 <
· · · < mp and√

mi + ϕmp ≥
√

mi+1 + ϕm1 ∀i ∈ {1, . . . , p − 1}.

Then the set of numbers representable as a continued radical
√

a1, a2, a3, . . .
with terms ai ∈ M is the interval [ϕm1 , ϕmp ].

To limit non-unique rerpesentation as much as possible, we should take
the inequalities in Theorem 0.1 to be equalities. These equalities will not
eliminate all duplication of representation, but will limit it to continued rad-
icals of form

√
c1, . . . , cz, mi, mp, mp, mp, . . . =

√
c1, . . . , cz, mi+1, m1, m1, m1, . . .

where repeating the largest value mp is equal to raising the preceding term
from mi to mi+1 and repeating the smallest value m1. (Compare to the
decimal equation 1.3999 = 1.4000.)

The inequalities of Theorem 0.1 are equalties if and only if ϕm1 = n+1 ∈
N and ϕmp = j + 1 ∈ N, so M contains n + j + 2 equally spaced terms from
n(n + 1) to j(j + 1).

Theorem 0.2 If M is an “efficient” set of terms as described in the para-
graph above and x =

√
a1, a2, a3, . . . where (ai)

∞
i=1 is a periodic sequence in

M , then x is either an integer or irrational.

Allowing zero as a term in our continued radicals introduces some compli-
cations. We now assume our terms an all come from a set M = {m1, m2, . . . ,
mp} ⊆ N ∪ {0} where 0 = m1 < m2 < · · · < mp. To prevent gaps in
the set S(M) of numbers representable with these terms, the largest value
of form

√
mi, a2, a3, . . . must equal or exceed the smallest value of form√

mi+1, b2, b3, . . .. That is, we must have

√
mi, mp, mp, mp, . . . ≥

√
mi+1, 0, 0, 0, . . .√

mi + ϕmp ≥ √
mi+1.

However, note that besides the single value
√

mi+1 =
√

mi+1, 0, 0, 0, . . ., every

other value representable as
√

mi+1, b2, b3, . . . must be greater than√
mi+1, 1 =

√
mi+1 + 1 = lim

k→∞

√
mi+1, 0, 0, . . . , 0, 0, bk, 0, 0, . . . where bk �= 0.
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We now see that if m1 = 0, then the numbers representable as
√

mi, a2, . . .
where an ∈ M ∀n ∈ N will be a subset of {√mi }∪(

√
mi + 1,

√
mi + ϕmp ] =

Ji. To prevent any gaps in the set of numbers representable, it is necessary
that

⋃
{Ji : i = 1, 2, . . . , p} forms a solid interval. Consequently, it is neces-

sary that √
mi + ϕmp ≥

√
mi+1 + 1 ∀i = 1, 2, . . . , p − 1.

Again we find that choosing the values of m1, . . . , mp so that the above
inequalities are equalities will result in the most efficient representation of
the largest possible interval using the smallest number of terms. For equality
to hold, we must have that ϕmp ∈ N, and thus mp = (q +1)q for some q ∈ N,
so that M = {0, q, 2q, 3q, . . . , (q + 1)q}.
Theorem 0.3 A real number b ∈ (

√
q, q + 1) has a unique representation

as
√

a1, a2, a3, . . . where ai ∈ Mq = {0, q, 2q, . . . , (q + 1)q} with q ≥ 2
if and only if it cannot be represented as a terminating continued radical√

a1, a2, . . . , az, 0, 0, 0, . . .. A number b ∈ (
√

q, q + 1) has a terminating con-
tinued radical representation

√
a1, a2, . . . , az, 0, 0, 0, . . . if and only if it has a

continued radical representation ending in repeating (q − 1)q’s. Observe that√
q, 0, 0, 0, . . . and

√
(q + 1)q, (q + 1)q, (q + 1)q, . . .

respectively are the unique representations of
√

q and ϕ(q+1)q = q + 1.

The result below was proved by Sizer [3].

Theorem 0.4 Any number b ∈ (1, 2) can be represented as a continued rad-
ical

√
a1, a2, . . . where ai ∈ {0, 1, 2}. This representation is unique unless

b has such a representation ending in repeating 0s. A number b ∈ (1, 2)
has such a representation ending in repeating 0s if and only if it has such a
representation ending in repeating 2s.

Note that
√

1, 0, 0, 0, 0, . . . = 1 and
√

2, 2, 2, 2, 2, . . . = 2 are the unique
representations of 1 and 2.

Finally, we consider continued radicals whose terms assume only two val-
ues. If M = {m1, m2} ⊆ N, then S(M) cannot be an interval, and the corre-
sponding gaps in S(M) recur regularly at at the ith position of

√
a1, a2, a3, . . .

for each i ∈ N.

Theorem 0.5 If m1 and m2 are natural numbers with m1 < m2, then the
set D = {√a1, a2, . . . : ai ∈ {m1, m2} ∀i ∈ N} is homeomorphic to the Cantor
ternary set C.
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