
CONTINUOUS SEMANTICS FOR TERMINATION PROOFS

ULRICH BERGER

DRAFT, July 7, 2004

Abstract. We prove a general strong normalization theorem for higher type

rewrite systems based on Tait’s strong computability predicates and a strictly con-

tinuous domain-theoretic semantics. The theorem applies to extensions of Gödel’s

system T , but also to various forms of bar recursion for which strong normalization

was hitherto unknown.

§1. Introduction.

§2. Extended Gödel’s system T . We introduce extensions of Gödels
system T by strictly positive inductive types in way which is convenient
for our purposes.

A type system consists of a set T of types, a family E of type equations,
and a function lev from T to some wellordering such that the following
three conditions are satisfied. (1) T must be a set of (finite) expressions
which is closed under function types, i.e. if ρ, σ ∈ T , then ρ → σ ∈ T .
Types that are not of the form ρ → σ are called inductive types. (2) E
assigns to every inductive type a defining equation

ι = co1(~ρ1) | . . . | con(~ρn)

where each ~ρi is a finite list of types, and each coi is a symbol called con-
structor for ι with argument types ~ρi. Each constructor must occur only
once in E . (3) The function lev must be such that lev(ρ → σ) > lev(ρ),
lev(ρ→ σ) ≥ lev(σ), and for every inductive type ι the stratification con-
dition holds, i.e. lev(ι) ≥ lev(ρ) for every argument type ρ of a constructor
of ι.

Supported by EPSRC

Dagstuhl Seminar Proceedings 04351
Spatial Representation: Discrete vs. Continuous Computational Models
http://drops.dagstuhl.de/opus/volltexte/2005/130

2 ULRICH BERGER DRAFT, July 7, 2004

The set of inhabited types is defined inductively as follows: A type
ρ → σ is inhabited if σ is inhabited. An inductive type ι is inhabited if
it has at least one constructor co such that all argument types of co are
inhabited. A type system is called inhabited if all its types are.

The intuitive meaning of an inductive type is the same as that of a
type introduced in e.g. Haskell by the keyword data. So, the bar means a
disjoint sum and coi~ρi means a cartesian product. The stratification con-
dition ensures that inductive types can be understood as simultaneously
defined sets of wellfounded trees. Inhabited types are those containing at
least one element. A precise definition of the semantics of types as the
least solution to a domain equation will be given later.

As an example let us consider the set of types T generated from the
symbols boole, nat, ftree, ctree (for the booleans, the natural numbers
and finitely and countably branching trees) by closure under sums, ρ +
σ, products, ρ × σ, finite lists, ρ∗, and function spaces, ρ → σ. The
defining equation for inductive types are (slightly incorrectly we overload
the constructors 0 and S):

boole = T | F

nat = 0 | S(nat)

ftree = branch(ftree∗)

ctree = 0 | S(ctree) | lim(nat → ctree)

ρ+ σ = inleft(ρ) | inright(σ)

ρ× σ = π(ρ, σ)

ρ∗ = [] | cons(ρ, ρ∗)

The function lev is defined by lev(boole) = lev(nat) = lev(ftree) = 0,
lev(ctree) = 1, lev(ρ + σ) = lev(ρ × σ) = max(lev(ρ), lev(σ)), lev(ρ∗) =
lev(ρ), lev(ρ → σ) = max(lev(ρ) + 1, lev(σ)). Clearly the stratification
condition is satisfied and the system is inhabited.

In the rest of this paper we will always assume that we are give an
inhabited type system.

As usual we write ~ρ → σ for ρ1 → . . . → ρn → σ where → asso-
ciates to the right. Each type ρ can be uniquely written in the form
ρ = ~ρ → ι where lev(ρi) < lev(ρ) and ι is an inductive type with
lev(ι) ≤ lev(ρ). Using the fact that types are finite expressions we can
also define the height of a type recursively by ht(ι) = 0 for inductive types

CONTINUOUS SEMANTICS FOR TERMINATION PROOFS 3

ι and ht(ρ → σ) = max(ht(ρ), ht(σ)) + 1. Finally we define the size of a
type by size(ρ) := (lev(ρ), ht(ρ)) and we consider the pairs (lev(ρ), ht(ρ))
to be ordered lexicographically. Note that size(ρ) < size(ρ→ σ), size(σ) <
size(ρ→ σ), and if ~σ → ι′ is an argument type of a constructor of ι, then
size(σi) < size(ι) and size(ι′) ≤ size(ι).

The term language (over a given type system) is determined by a set C of
typed constants cρ. Typed terms are constructed from typed variables, xρ,
and constants, cρ, by abstraction, (λxρMσ)ρ→σ, application, (M ρ→σNρ)σ,

and constructor term formation, co(~M ~ρ)ι, for each co(~ρ) occurring in the
defining equation of the inductive type ι. Type information will often be
omitted provided this doesn’t cause ambiguities. Instead of M ρ we will

sometimes write M : ρ. In a constructor term co(~M)ι the terms ~M are
called arguments.

Lemma 2.1. For every type ρ (of an inhabited type system) there exists
a closed term of type ρ without constants.

Proof. Induction along the definition of being inhabited. a

We select for each type ρ a term without constants and denote it 0ρ.
β-conversion is defined as usual by

(λxM)N 7→M [N/x]

where by M [N/x] we mean the usual substitution of every free occurrence
of x in M by N renaming bound variables in M if necessary. More general
we will consider substitutions θ, which are mappings from (all) variables
to terms of the same type, and defineMθ as the simultaneous replacement
in M of x by θ(x) renaming bound variables in M if necessary.

The operational meaning of a constant c ∈ C of type ρ1 → . . .→ ρn → σ
is determined by constant-conversion rules of the form

cLρ1

1 . . . Lρn

n 7→ Rσ

Consider, for example, the constants if : boole → ρ → ρ → ρ, < : nat →
nat → boole, lh : ρ∗ → nat, get : ρ∗ → nat → ρ, and ++: ρ∗ → ρ∗ → ρ∗,

4 ULRICH BERGER DRAFT, July 7, 2004

with the rules

if Tx y 7→ x

if Fx y 7→ y

n < 0 7→ F

0 < S(m) 7→ T

S(n) < S(m) 7→ n < m

lh [] 7→ 0

lh cons(x, s) 7→ S(lh(s))

get []n 7→ 0ρ

get cons(x, s) 0 7→ x

get cons(x, s)S(n) 7→ get s n

[] ++ t 7→ t

cons(x, s) ++ t 7→ cons(x, s++ t)

The conversion rules above are all examples of definition by primitive re-
cursion in higher types. Gödel’s system T in its original form summarizes
this definition pattern by constants for primitive recursion

Rnat,ρ : ρ→ (nat → ρ→ ρ) → nat → ρ

with the rules

Rnat,ρxy0 7→ x

Rnat,ρxyS(z) 7→ yz(Rnat,ρxyz)

Similar conversion rules for recursion constants Rι,ρ can be introduced for
any inductive type ι.

In sections 5 and 6 we will also consider constants with rules that cannot
be derived from primitive recursion.

By a conversion we mean a β-conversion or an instance of a constant-
conversion rule, i.e. Lθ 7→ Rθ for some constant-conversion rule L 7→ R
and substitution θ. We write M →1 N if N is obtained from M by
replacing one subterm occurrence of the left hand side of a conversion
by its right hand side. We call a term M strongly normalizing, SN(M),
if M is in the accessible part of the relation →1, i.e. there is no infinite

CONTINUOUS SEMANTICS FOR TERMINATION PROOFS 5

reduction sequence M →1 M1 →1 M2 →1 We prefer the (classically
equivalent) definition of SN as a predicate inductively defined by the rule

∀P (M →1 P → SN(P))

SN(M)

We call a system of conversion rules R strongly normalizing if every term
is strongly normalizing with respect to R.

It is well-known that Gödel’s system T , i.e. the system of conversion
rules for primitive recursion in finite type is strongly normalizing. In the
next section we will reexamine the proof of this fact using Tait’s strong
computability predicates and generalize it so as to accommodate further
constants and conversions.

§3. Proving strong normalization using strong computability.

We define for every type ρ what it means for a term M ρ to be strongly
computable, SCρ(M). The definition is by recursion on size(ρ). For all
inductive types ι of the same size (or level) SCι is given by a simultaneous
inductive definition, whereas SCρ→σ is defined explicitely from SCρ and
SCσ. For an inductive type ι the predicate SCι is defined by two groups
of rules, constructor rules for each constructor co and a reduction rule.

∀ ~N (SC~σi
(~N) → SCιi(Mi

~N)) (i = 1, . . . , n)
Cons

SCι(co(M~σ1→ι1
1 , . . . ,M~σn→ιn

n))

Red
∀P (M→1P → SCι(P))

SCι(M)
(M not a constructor term)

where SC~σ(~N) is shorthand for SCσ1
(N1) ∧ . . . ∧ SCσk

(Nk). For function
types we define

SCρ→σ(M) ≡ ∀N (SCρ(N) → SCσ(MN))

Lemma 3.1. (a) If SCρ(M) and M →1 M
′, then SCρ(M

′).
(b) A constructor term is strongly computable iff all its arguments are.

Proof. (a) Easy induction on lev(ρ). If ρ is an inductive type the
assertion is proved by a side induction on the definition of SCρ. For
function types we use the (main) induction hypothesis.

(b) Obvious. a

6 ULRICH BERGER DRAFT, July 7, 2004

Lemma 3.2. (a) SCρ(M) → SN(M).
(b) SCρ(x) for every variable x of type ρ.

Proof. Induction on size(ρ). In order to get the proof through we need
to strengthen part (b) to

(b’) SN(A) → SCρ(A) for every term A with ‘variable head’,

where terms with variable head are variables and terms of the form AM
where A is a term with variable head.

(a) If ρ is an inductive type, then the implication follows easily by
induction on the definition of SCρ(M). Case ρ→ σ. Assume SCρ→σ(M).
By i.h. (b’) we have SC(xρ). Hence SCσ(Mx). By i.h. (a), SN(Mx).
Hence SN(M).

(b’) Let A be a strongly normalizing term with variable head. If A has
an inductive type, then we show SC(A) by a side induction on SN(A).
By rule Red it suffices to show SC(B) for all one step reducts B of A.
Clearly B has variable head, hence SC(B) by side induction hypothesis.
If A has type ρ → σ, we assume SCρ(M) and have to show SCσ(AM).
By induction hypothesis (a) we have SN(M). Hence SN(AM) (one easily
proves SN(A) ∧ SN(M) → SN(AM) for terms Aρ→σ with variable head,
since a reduction of AM can only take place in A or in M and any reduct
of A has variable head). Hence SC(AM), by induction hypothesis (b’). a

We call a term reactive if it is an abstraction, or of the form (cL1 . . . Lk)θ
for some conversion rule cL1 . . . Ln 7→ R with n > k and some substitution
θ. The property of a term M to be neutral is defined by recursion on M .
If M is not a constructor term, then M is neutral if M is not reactive.
If M is a constructor term, then M is neutral iff all its arguments are
neutral. Clearly, if M ρ→σ is neutral, then for any term N ρ the term is
MN is again neutral, and any one step reduction of MN must happen by
converting either M or N . However, neutral terms are not closed under
one step reduction.

Lemma 3.3. A neutral term is strongly computable iff all its one step
reducts are.

Proof. Because of lemma 3.1 (a) it suffices to show that a neutral term
M is strongly computable provided all of its one step reducts are. The
proof is by induction on the size of the type of M . For inductive types
ι the assertion is proved by a side induction on neutral terms of type ι.
If M ι is not a constructor term, then the assertion holds by definition

CONTINUOUS SEMANTICS FOR TERMINATION PROOFS 7

of SCι. Now let M ι = co(~M). We assume that all one step reducts of
M are strongly computable. It follows, by lemma 3.1 (b), that all one
steps reducts of the arguments Mi are strongly computable. Let Mi be

of type ~σ → ι and assume SC~σ(~N). We have to show SC(Mi
~N). If the

vector ~N is empty, then Mi is a neutral subterm of of M of type ι. Hence

the side induction hypothesis applies. If ~N is nonempty, we argue by a

second side induction on SN(~N) (using lemma 3.2 (a)). Since in this case

the term Mi
~N is not a constructor term, it suffices to show that all its

one step reducts are strongly computable. Since Mi is neutral, either Mi

or one of the Nk must be reduced. In the first case we are done since
all one step reducts of Mi are strongly computable. In the second case
we apply the second side induction hypothesis. Let finally M be of type
ρ → σ. We show SCσ(MN) for all strongly computable terms N by a
side induction on SN(N). Since the term MN is neutral it suffices, by
the main induction hypothesis, to show the strong computability of all its
one step reducts. If M is reduced, we are done by assumption on M , if
N is reduced, we use the side induction hypothesis. a

Lemma 3.4. If M [N/x] is strongly computable for all strongly com-
putable terms N , then λxM is strongly computable.

Proof. LetM ρ→σ fulfill the assumption of part (a) and assume SCρ(N).
We have to show SCσ((λxM)N). Since the latter term is neutral it suf-
fices to show that all its one step reducts are strongly computable. By
lemma 3.2 (a) and lemma 3.1 (a) we may argue by induction on SN(M,N).
Assume (λxM)N →1 P . If the conversion has happened within M or
N , then we may use the induction hypothesis. If not, then we must have
P = M [N/x] which is strongly computable by assumption. a

Proposition 3.5. A term containing only strongly computable con-
stants is strongly normalizable.

Proof. By induction on terms M containing only strongly computable
constants we show thatMθ is strongly computable for every substitution θ
such that θ(x) is strongly computable for all variables x in the domain of θ.
The assertion then follows with the empty substitution and lemma 3.2 (a).

For variables and constants the assertion holds by assumption. For
constructor terms and applications we use the induction hypothesis and
the definition of strong computability. Abstractions are taken care of by
the induction hypothesis and lemma 3.4.

8 ULRICH BERGER DRAFT, July 7, 2004

a

Proposition 3.6. Gödel’s system T is strongly normalizing.

Proof. By proposition 3.5 it suffices to show that all constants, i.e. the
recursors are strongly normalizing. We only carry out in detail the proof
for recursion on lists and only sketch the general case since later we will
prove a more general result (that does not depend on this proposition).
We have to show that Rσ∗,ρMNK is strongly computable for all strongly
computable terms M,N,K of appropriate types. Using lemma 3.2 (a)
and lemma 3.1 (a) we argue by induction on SN(M,N,K). We also use
a side induction on K. Since Rσ∗,ρMNK is a neutral term it suffices, by
lemma 3.3, to show SCρ(P) for all P such that Rσ∗,ρMNK →1 P . If the
conversion took place within one of the terms in M,N,K, then we use
the main induction hypothesis and lemma 3.1 (a). Otherwise the visible
recursor was involved in the conversion. IfK = [] and P = M , then we are
done since, by assumption, M is strongly computable. If K = cons(H,T)
and P = NHT (Rσ∗,ρMNT), then H and T are strongly computable and
hence we know SCρ(Rσ∗,ρMNT) by the side induction hypothesis. Again
it follows that P is strongly computable.

In the general case, when constructors with recursive arguments of a
type ~σ → ι with nonempty ~σ may occur, one must replace the term in-
duction on K by an induction on the value of K in, e.g. in the model
Ĉ of partial continuous functionals (w.r.t. to an arbitrary but fixed vari-

able environment). More precisely, in Ĉ every term of an inductive type
denotes some wellfounded labeled tree, and one does induction on the
(wellfounded) subtree relation. a

§4. Stratified terms. For the rest of this paper we will only consider
conversion rules of the form

cP1 . . . Pn 7→ R

where FV(cP1 . . . Pn) ⊆ FV(R) and the Pi are constructor patterns, i.e.
terms built from variables and constructors only. More precisely, a term

is a constructor pattern iff it is a variable or of the form co(~P) where all
the arguments Pi are constructor patterns.

The set of stratified terms is defined inductively as follows: Every vari-
able is stratified; a constant c is stratified if for every rule cP1 . . . Pn 7→ R

CONTINUOUS SEMANTICS FOR TERMINATION PROOFS 9

the term R is stratified; a composite term is stratified if all its immediate
subterms are.

Clearly a term is stratified iff it contains stratified constants only.
Note that stratification is a severe restriction. For example any constant

with a recursive conversion rule, i.e. the constant reappears on the right
hand side of the rule, is not stratified. We do not claim that stratified
terms are of particular interest as such. We will use them as a technical
tool in our termination proof based on strict semantics (section 6).

Proposition 4.1. Every stratified term is strongly normalizing.

Proof. We proceed similar as in the proof of proposition 3.5. By
induction on the stratification of M we show that Mθ is strongly com-
putable for every substitution θ such that θ(x) is strongly computable for
all variables x ∈ FV(M).

Only the case that M is a constant is interesting. All other cases are
as in proposition 3.5, that is, we use the induction hypothesis.

Let c be a constant. Without loss of generality we assume that all rules
for c are of the form cP1 . . . Pn 7→ R with the number n of arguments
being the same for all rules. Let M1, . . . ,Mn be strongly computable.
We have to show that cM1 . . .Mn is strongly computable. We do a side
induction on the strong normalizability of the Mi. Since cM1 . . . Mn is
neutral it suffices that all one step reducts of this term are strongly com-
putable. If one of the Mi is reduced, we apply the side induction hy-
pothesis. Otherwise there is a rule cP1 . . . Pn 7→ R and a substitution θ
with (cP1 . . . Pn)θ = cM1 . . .Mn and the reduct is Rθ. Since the Pi are
constructor patterns, it clearly follows from the strong computability of
the Mi that θ(x) is strongly computable for each variable x ∈ FV(M).
Hence Rθ is strongly computable, by the main induction hypothesis. a

§5. Bar recursion. We now prove that the extension of system T by
a suitable formulation of Spector’s bar recursion is strongly normalizing
using domain theoretic semantics with totality. We work with the example
type system discussed in section 2.

We will write ρω for nat → ρ, if B thenM elseN for if BMN , |M | for

lhM , M∗N for M ++ 〈N〉 where 〈N〉 := cons(N, []), and M̂ for getM .
Spector’s bar recursion in finite types is given (for each pair of types ρ, σ)
by a constant

Φ : (ρω → nat) → (ρ∗ → σ) → (ρ∗ → (ρ→ σ) → σ) → ρ∗ → σ

10 ULRICH BERGER DRAFT, July 7, 2004

with the following defining equation

Φyghs= if yŝ < |s| then gs else hs(λx.Φygh(s∗x))

Turning this into a conversion rule would clearly not be strongly normal-
izing. Therefore we replace the right hand side by a call of an auxiliary
constant Ψ with an extra boolean argument in order to force evaluation of
the test yŝ < |s| before the subterm Φygh(s∗x)) may be reduced further
(Vogel’s trick).

Φyghs 7→ Ψyghs(yŝ < |s|)

ΨyghsT 7→ gs

ΨyghsF 7→ hs(λx.Φygh(s∗x))

In the proof that Φ and Ψ are strongly computable we will make use of the
interpretation of terms as total elements in the model domain theoretic
model Ĉ of partial continuous functionals (for our type system). The

model Ĉ assigns to every type ρ a Scott domain Ĉ(ρ) such that Ĉ(ρ →

σ) ≡ [Ĉ(ρ) → Ĉ(σ)], the domain of continuous functions form Ĉ(ρ) to

Ĉ(σ) where ’≡’ means ‘isomorphic’, and for every inductive type ι with
defining equation ι = co1(~ρ1) | . . . | con(~ρn)

Ĉ(ι) ≡ co1(Ĉ(~ρ1)) + . . .+ con(Ĉ(~ρn))

where ‘+’ means the domain theoretic disjoint sum (adding a new bot-

tom element) with injections coi and Ĉ(~ρi) is the domain theoretic product

of the domains Ĉ(ρij). Since the operations, continuous function space,
disjoint sum, and product are continuous co-variant functors on the cat-
egory of domains with embedding/projection pairs the family of domains

(Ĉρ)ρ∈T can be obtained as the least fixed point of a continuous functor.
The stratifying level function is not needed here. We do need stratifica-
tion, however, for defining the total elements. The definition is parallel to
the definition of strong computability. The only differences are that term
application is replaced by function application, and, of course there is no
rule concerning reduction. We define what the total elements in Ĉ(ρ) are
by recursion on size(ρ). For types of the same size totality is defined by a

simultaneous inductive definition. A continuous function f ∈ Ĉ(ρ→ σ) is

total if f(a) is total for all total arguments a. An element of Ĉ(ι) where
ι is an inductive type with defining equation as given above is total if it
is of the form coi(~a) where all aj are total.

CONTINUOUS SEMANTICS FOR TERMINATION PROOFS 11

Let CEnv the domain of all constant environments, that is, families α
assigning to each constant cρ ∈ C some α(c) ∈ Ĉ(ρ). Similarly, VEnv is
the domain of all variable environments, i.e. families η assigning to each
variable xρ ∈ C some η(x) ∈ Ĉ(ρ). For each term M ρ the denotational
semantics

[M] : CEnv → VEnv → Ĉ(ρ)

is defined by recursion on M as follows.

[[x]]αη = η(x)

[[c]]αη = α(c)

[[λxM]]αη(a) = [[M]]αηa
x

[[MN]]αη = [[M]]αη[[N]]αη

[[co(M1, . . . ,Mk)]]αη = co([[M1]]
αη, . . . , [[M1]]

αη)

where ηa
x(x) := a and ηa

x(y) := η(y) for variables y different from x.

Lemma 5.1. If the constant environment α and the variable environ-
ment η are total, then [[M]]αη is total for every term M .

Proof. Induction on terms (fundamental lemma on logical relations).
a

In this section we set [[M]]η := [[M]]αBη where M is a barrecursive term,
i.e. constants are either Gödel primitive recursive or the barrecursors Φ,
Ψ above, and αB interprets constants as the (simultaneous) least fixed
points of the functionals defined by their conversion rules in the obvious
way. In the following we will write c for αB(c).

Lemma 5.2. All Gödel primitive recursive constants are total.

Proof. Obvious. a

In order to prove the totality of the constants Φ and Ψ we use the
following continuity property of total functionals y of type ρω → nat: For
any total argument α there is a number n such that y(α) = y(β) for all
total β coinciding with α at all arguments k < n. Now let us define for
every total y ∈ Ĉ(ρω → nat) a binary relation �y on the total elements
of type ρ∗ (these are finite lists of total elements of type ρ):

s�y t : ≡ y(ŝ) ≥ |s| ∧ s∗a = t for some total a

Lemma 5.3. For every total y the relation �y is wellfounded.

12 ULRICH BERGER DRAFT, July 7, 2004

Proof. If not, we would have a total list s, of length n say, and an

infinite sequence of total elements a0, a1, . . . such that y(ŝi) ≥ n+ i + 1
where si := s∗a0 . . . ∗ai for all i. Set α(k) := sk if k < n and := ak−n if

k ≥ n. this defines a total element of Ĉ(ρω). By continuity of y there is

some k such that y(α) = y(ŝi) for all i ≥ k which is a contradiction. a

Lemma 5.4. Φ and Ψ are total.

Proof. Easy using previous lemma. a

Theorem 5.5. The extension of system T by the bar recursive con-
stants Φ and Ψ is strongly normalizing.

Proof. It suffices to show that Φ and Ψ are strongly computable. We
only show the strong computability of Φ since SC(Ψ) follows then easily.
Let Y,G,H,M be strongly computable. We have to show that ΦY GHM
is strongly computable. We do this by induction on SN(Y,G,H,M). Let
the environment η0 be defined by η0(x

τ) := 0τ and set y := [[Y]]η0. By the
previous lemmas the relation �y is wellfounded, hence we may do a �y-
side induction on [[M]]η0. Since the term ΦY GHM is neutral it suffices
to show that all its one step reducts are strongly computable. If one of
Y,G,H,M is reduced we use the main induction hypothesis. It remains

to prove that ΨY GHM(Y M̂ < |M |) is strongly computable. Let b :=

[[Y M̂ < |M |]]η0. We show that ΨY GHMB is strongly computable for all
strongly computable terms B with [[B]]η0 = b. We employ a second side
induction on SN(B). Again the term ΨY GHMB is neutral, so it suffices
to consider its one step reducts P . Reducing one of Y,G,H,M,B is dealt
with by either the main or the second side induction hypothesis. Two
cases remain. If B = T and P = MK we are done. If however B = F and
P = HM(λx.ΦY GH(M∗x)), then b is false which means that y(ŝ) ≥ |s|
where s := [[M]]η0. We have to show that λx.ΦY GH(M∗x) is strongly
computable. Assume SCρ(N). We have to show that ΦY GH(M∗N) is
strongly computable. Set t := [[M∗N]]η0 = s∗[[M]]η0. Since y(ŝ) ≥ |s| we
have s �y t. Hence the strong computability of ΦY GH(M∗N) follows
from the first side induction hypothesis. a

Remark . Tait [4], Vogel [5], Luckhardt [3] and Bezem [2] proved strong
normalization for barrecursive functionals formulated in a combinatorial
calculus. Our result seems to be slightly stronger since we work in a λ-
calculus framework which allows more reductions. From a logical point of

CONTINUOUS SEMANTICS FOR TERMINATION PROOFS 13

view our proof is roughly equivalent to the proofs in the work cited, since
the partial continuous functionals can be defined primitive recursively
(finite neighborhoods, or compact elements of Scott domains) and totality

in Ĉ(ρ) has the same logical complexity as, say the definition of strong
computability for infinite terms of type ρ.

Another form of bar recursion was suggested by Berardi, Bezem and
Coquand [1]:

Φ : (ρω → nat) → (nat → (ρ→ nat) → ρ) → ρ∗ → nat

with the defining equation

Φygs= y(λk.if k < |s| then sk else gk(λx.Φyg(s∗x)))

where

MK := Rρ∗,ρω(λk 0ρ)(λhλtλfλk if k < |t| then fk elseh)MK

so ([]∗N0∗ . . . ∗Nk−1)i →∗
1 Ni for i < k. One can attempt to make this

strongly normalizing by applying Vogel’s trick again:

Φygs 7→ y(λk.Ψygsk(k < |s|))

ΨygskT 7→ sk

ΨygskF 7→ gk(λx.Φyg(s∗x))

In the next section we will prove a general strong normalization theorem
(theorem 6.2) that will us allow to show that system T plus Φ and Ψ
above is strongly normalizing as well.

§6. Termination based on strict semantics. Our leading idea for
a general termination theorem based on totality is to deduce the termi-
nation of a term M from the totality of the constants in M . As we saw,
this works for Vogel’s variant of bar recursion, but it would clearly fail
for Spector’s original bar recursion written as the conversion rule

Φygs 7→ y(λk.if k < |s| then sk else gk(λx.Φyg(s∗x)))

Despite the totality of Φ’s denotation as the least fixed point of the con-
tinuous operator defined by this rule, the corresponding rewrite system is
not strongly normalizing. The intuitive reason for this is that the totality
hinges on the non-strictness of the if then else construct while for strong
normalization we also require termination of reduction sequences that ig-
nore this non-strictness (i.e. a branch of the case analysis may be reduced

14 ULRICH BERGER DRAFT, July 7, 2004

before reducing the test). On the other hand the operator defined by
Vogel’s variant

Φyghs 7→ Ψyghs(yŝ < |s|)

ΨyghsT 7→ gs

ΨyghsF 7→ hs(λx.Φygh(s∗x))

which has a total least fixed point as well, does not rely on on non-strict
constructs. This suggests to separate the two versions of bar recursion
by a modified denotational semantics [M] that interprets all constructs
in a strict way and derive termination from totality with respect to this
strict semantics. The strictness of the modified semantics means that
[M]αη = ⊥ if M contains a constant c with α(c) = ⊥. We will achieve this
by interpreting the application function and the constructors in a strict
way. To this end we define recursively continuous functions δρ : Ĉ(ρ) →

Ĉ(boole) by δρ→σ(f) := δσ(f0ρ), δι(co(a1, . . . , an)) := δ(a1) ∧ . . . ∧ δ(an),

δι(⊥) := ⊥. It can be easily shown that δ(a) = T for all total a ∈ Ĉ(ρ)
and δ(⊥) = ⊥ (and these are the only properties we will use of δ). We
use δ to define strict variants of application and the constructors (at all
appropriate types).

ã(f, a) := if δ(a) then f(a) else⊥

c̃o(a1, . . . , ak) := if δ(a1) ∧ . . . ∧ δ(ak) then co(a1, . . . , ak) else⊥

Clearly the functions ã(., .) and c̃o(., .) are continuous, strict, and coincide
for total arguments with the application function and the constructors,
respectively. The strict semantics, [M], is now defined by recursion on
M as follows. We now define for each term M ρ the strict denotational
semantics [M] : CEnv → VEnv → Ĉ(ρ) by

[x]αη = η(x)

[c]αη = α(c)

[λxM]αη(a) = [M]αηa
x

[MN]αη = ã([M]αη, [N]αη)

[co(M1, . . . ,Mk)]
αη = c̃o([M1]

αη, . . . , [M1]
αη)

Lemma 6.1. (a) If α(c) is total for all constants c in M and η(x) is
total for all x ∈ FV(M), then [M]αη is total.

(b) If α(c) = ⊥ for some constant c occurring in M , then [M]αη = ⊥.

CONTINUOUS SEMANTICS FOR TERMINATION PROOFS 15

(c) [M]α([θ]αη) = [Mθ]αη where ([θ]αη)(x) := [θ(x)]αη.

(d) [M][ζ]αηη = [Mζ]αη where ζ is a ‘constant substitution’, i.e. ζ(cρ) is
a term of type ρ for each constant cρ, and ([ζ]αη)(c) := [ζ(c)]αη.

Proof. Easy induction on M . a

We now consider rewrite systems in general that induce a denotational
semantics of the constants in a canonical way. A functional rewrite system
is a system of rules

cP1 . . . Pn 7→ R

which are left linear, i.e. a variable occurs at most once in the left hand
side of a rule, and mutually disjoint, i.e. the left hand sides of two different
rules are non-unifiable (and of course the Pi are constructor patterns and
FV(cP1 . . . Pn) ⊆ FV(R)). All rewrite systems considered so did satisfy
these conditions.

We let ⊥ denote the ‘undefined’ variable environment, i.e. ⊥(x) = ⊥ρ

for all variables xρ.
For a vector ~P : ~ρ of constructor patterns containing each variable at at

most one place and ~a ∈ Ĉ(~ρ) we define the ~P -predecessor of ~a, pred ~P
(~a) ∈

CEnv, by recursion on the number of constructors occurring in ~P .

pred~x(~a) = ⊥~a
~x

pred
~x,co(~Q), ~P

(~a, co(~b),~c) = pred
~x, ~Q,~P

(~a,~b,~c)

pred
~x,co(~Q), ~P (~a, b,~c) = ⊥ if b is not of the form co(~b)

We say ~a matches ~P if in the definition of pred ~P
(~α) the last clause has

never been used. Let F be a functional rewrite system. For a given vector

~a ∈ Ĉ there can be at most one rule c ~P 7→ R ∈ F such that ~a matches
~P , because the rules in F are mutually disjoint. Therefore the following
operator ΓF : CEnv → CEnv is welldefined and continuous.

ΓF (α)(c)(~a) :=
⊔

{[R]αpred ~P
(~a) | c ~P 7→ R ∈ F , ~a matches ~P}

We define the constant environment αF as the least fixed point of the
operator ΓF .

It follows the main the result of this paper.

Theorem 6.2. Let F be a functional rewrite system. If αF (c) is total
for every constant in M , then M is strongly normalizing.

16 ULRICH BERGER DRAFT, July 7, 2004

The proof of this theorem needs some preparation. In the following we
fix a functional rewrite system F .

Lemma 6.3. Let c ~P 7→ R ∈ F be a rule, θ a substitution and η a

variable environment. Then ~a := [~Pθ]αFη matches ~P and αF (c)(~a) =
[R]αF pred ~P

(~a).

Proof. That [~Pθ]αFη matches ~P is easily shown by induction on the

number of constructors in ~P . The rest follows immediately from the
definition of ΓF . a

Lemma 6.4. If M →1 N , then [M]αF η v [N]αF η.

Proof. Induction on M .
Case (λxM)N →1 M [N/x]. Set a := [N]αF η. [(λxM)N]αF η =

ã([λxM]αF η, a) = if δ(a) then [M]αF ηa
x else⊥ v [M]αF ηa

x = [M [N/x]]αF η.
The last equation holds by lemma 6.1 (c).

Case c ~Pθ →1 Rθ for some rule c ~P 7→ R ∈ F . [c ~P θ]αFη = ã(αF (c),~a) v
αF (c)(~a) = [R]αF pred ~P

(~a) = [Rθ]αFη, where we wrote ã(αF (c),~a) as an
abbreviation for ã(. . . ã(αF (c), a1), . . . ak), and the last two equations hold
by lemma 6.3 and lemma 6.1 (c).

All other cases (i.e. conversion of a proper subterm) follow immediately
from the induction hypothesis and the fact that the functions ã(., .) and
c̃o(., .) are monotone. a

We now introduce a stratified variant Fω of F . Let C be the set of
constants of F . For each c ∈ C and every natural number we introduce
a new constant cn. Set Cω := {cn | c ∈ C, n ∈ ω} For any C-term M
let M[n] be the Cω-term obtained from M by replacing every occurring
constant c by cn. We set

Fω := {cn+1
~P 7→ R[n] | c ~P 7→ R ∈ F , n ∈ ω}

Clearly Fω is again a functional rewrite system. Furthermore all constants
cn are stratified (induction on n). Hence we have, by proposition 4.1

Lemma 6.5. Every Cω-term is strongly normalizing.

We write A � M if M is a C-term and A is a Cω-term obtained from
M by replacing every occurrence of a constant c by some cn (different
occurrences of the same constant may receive different indices).

CONTINUOUS SEMANTICS FOR TERMINATION PROOFS 17

Lemma 6.6. If A �M and A contains no constant of the form c0, then
to every C-term M ′ such that M →1 M

′ there is a Cω-term A′ such that
A→1 A

′ and A′ �M ′.

Proof. Easy induction on M . a

We define the Cω-constant environment αFω
like the C-constant envi-

ronment αFω
, but with F replaced by Fω. Hence

αFω
(cn+1)(~a) =

⊔
{[R[n]]

αFω pred ~P
(~a) | c ~P 7→ R ∈ F , ~a matches ~P}

and αFω
(c0) = ⊥ (there is no rule for c0).

Lemma 6.7. αF (c) =
⊔

n∈ω αFω
(cn) for every constant c ∈ C.

Proof. Set αn(c) := αFω
(cn). Since αF =

⊔
n∈ω Γn

F
⊥, it suffices to

show αn = Γn
F
⊥ for all n. We prove this by induction on n. For n = 0

both sides are ⊥.

αn+1(c)(~a)

= αFω
(cn+1)(~a)

=
⊔

{[R[n]]
αFω pred ~P

(~a) | c ~P 7→ R ∈ F , ~a matches ~P}

=
⊔

{[R]αnpred ~P
(~a) | c ~P 7→ R ∈ F , ~a matches ~P} (lemma 6.1 (d))

= ΓF (αn)(c)(α)

= (Γn+1
F

⊥)(c)(α) (induction hypothesis)

a

Lemma 6.8. [M]αF η =
⊔

n∈ω[M[n]]
αFω η for every C-term M and every

variable environment η.

Proof. Set, as in the previous proof, αn(c) := αFω
(cn). By the

lemma 6.7 we have αF =
⊔

n∈ω αn. Hence, because [M] is a continu-
ous function,

[M]αF η =
⊔

n∈ω

[M]αnη
6.1 (d)

=
⊔

n∈ω

[M[n]]
αFω η

a

Now we are ready to prove theorem 6.2. Let M be a (C-)term such that
αF (c) is total for every constant in M . Let η be any total environment.
Then [M]αF η is total, by lemma 6.1 (a), and therefore different from ⊥.

18 ULRICH BERGER DRAFT, July 7, 2004

By lemma 6.8 it follows that there is some n such that [M[n]]
αFω η 6= ⊥.

Clearly M[n] �M . Therefore it suffices to show that whenever A � N and
[A]αFω η 6= ⊥, then N is strongly normalizing. We prove this by induction
on the strong normalizability of the Cω-term A, using lemma 6.5. We
need to show that all one step reducts of M are strongly normalizing. So,
assume N →1 N

′. Since [A]αFω η 6= ⊥ we know, by lemma 6.1 (b), that A
does not contain a constant of the form c0. It follows with lemma 6.6 that
A→1 A

′ with A′ � N ′ for some Cω-term A′. By lemma 6.4 [A′]αFω η 6= ⊥,
hence we can apply the induction hypothesis to A′ and N ′.

Let us now apply theorem 6.2 to prove the strong normalization results
announced at the end of section 5.

Theorem 6.9. Gödel’s system T plus the constant Φ and Ψ with the
conversion rules

Φygs 7→ y(λk.Ψygsk(k < |s|))

ΨygskT 7→ sk

ΨygskF 7→ gk(λxρ.Φyg(s∗x))

above is strongly normalizing.

Proof. Our strict semantics interprets the constants Φ and Ψ as con-
tinuous functionals ϕ and ψ which satisfy for total arguments y, g, s, k (in

Ĉ) the equations

ϕygs= if δ(ψygs0(0 < |s|)) then y(λk.ψygsk(k < |s|)) else⊥

ψygskT = sk

ψygskF = if δ(ϕyg(s∗0ρ)) then gk(λx.ϕyg(s∗x)) else⊥

By bar induction on the wellfounded tree of unsecured sequences of the
total continuous functional y it follows that ϕ and ψ are total. This
completes the proof. a

It is instructive to see why the constant Φ with the conversion rule

Φygs= y(λk.if k < |s| then sk else gk(λx.Φyg(s∗x)))

is not interpreted as a total functional (it shouldn’t because the rule isn’t
strongly normalizing). The strict semantics interprets the constant Φ
with the above rule as the least solution ϕ of an recursive equation of the
form

ϕygs = if δ(ϕyg(s∗0ρ)) then . . . else . . .

CONTINUOUS SEMANTICS FOR TERMINATION PROOFS 19

which, because of the strictness of δ, clearly has ϕ = ⊥ as solution.

REFERENCES

[1] Stefano Berardi, Marc Bezem, and Thierry Coquand, On the computa-

tional content of the axiom of choice, The Journal of Symbolic Logic, vol. 63 (1998),
no. 2, pp. 600–622.

[2] M. Bezem, Strong normalization of barrecursive terms without using infinite

terms, Archive for Mathematical Logic, vol. 25 (1985), pp. 175–181.
[3] H. Luckhardt, Extensional Gödel functional interpretation – a consis-

tency proof of classical analysis, Lecture Notes in Mathematics, vol. 306, Springer,
1973.

[4] W.W. Tait, Normal form theorem for barrecursive functions of finite type, Pro-

ceedings of the second scandinavian logic symposium (J.E. Fenstad, editor),
North–Holland, Amsterdam, 1971, pp. 353–367.

[5] H. Vogel, Ein starker normalisationssatz für die barrekursiven funktionale,
Archive for Mathematical Logic, vol. 18 (1985), pp. 81–84.

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF WALES SWANSEA

SINGLETON PARK

SWANSEA

SA2 8PP, UNITED KINGDOM

E-mail : u.berger@swan.ac.uk

