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1 Introduction: Mutual Exclusion Models

Already in 1968, E.W. Dijkstra [Dij68] proposed to apply a geometric point of
view in the consideration of coordination situations in concurrency. His progress
graphs were the basis of the Higher Dimensional Automata (HDA) introduced
by V. Pratt[Pra91] and developed in the thesis of É. Goubault[Gou95] and in
later research (cf. [FGR99]).

In this abstract, we stick to a simple continuous geometric model. A system
of n concurrent processes will be represented as a subset of Euclidean space IRn

with the usual partial order. Each coordinate axis corresponds to one of the
processes performing a linear programme1; a state of the system is a point in
IRn with its ith coordinate describing “local time” of the ith processor. A run
of a concurrent program is modelled by a continuous increasing path – time
increases for every participating processor – between two states.

Shared resources can often only be used by one or a limited number of proces-
sors at the same time. As a consequence, certain hyperrectangles – corresponding
to conflict in the access to such a resource – have to be removed from the model;
together, they form the forbidden region.

The resulting mutual exclusion models are more general than those modelling
semaphore programs. They allow us to consider also k-semaphores, where a
shared object may be accessed by k, but not by k + 1 processors.

To get more formal, let I = [0, 1] denote the unit interval, and let I
n ⊂ IRn

denote the unit hypercube. An (open) isothetic hyperrectangle is a subset

R = (a1, b1) × · · · × (an, bn) ⊂ In;

closed or half-open coordinate intervals are exceptionally allowed in the forms
[0, b), (a, 1], resp. [0, 1]. The forbidden region F =

⋃r

1
Ri is then a finite union of

n-hyperrectangles Ri = (ai
1
, bi

1
)×· · ·× (ai

n, bi
n), and the state space has the form

X = In \F . We assume that 0 = (0, . . . , 0) and 1 = (1, . . . , 1) are not contained
in the forbidden region F .

1 More general progams can be included by replacing an axis by a graph and the state
space by a product of graphs, cf. [FS00].
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In this abstract, we address two questions: How can one use the geomet-
ric/combinatorial description of the forbidden region to

1. detect deadlocks and associated unsafe, resp. unreachable regions? This is a
survey of the results obtained in [FGR98].

2. obtain information on the number of “essentially different” schedules be-
tween two states; these results are new and will be explained in Sect. 4.

2 Deadlock Detection in Mutual Exclusion Models

The “Swiss flag” example from Fig. 1 below (the forbidden region is dashed)
conveys the idea, that deadlocks – with no possible legal move – in such mu-
tual exclusion models are associated to n-dimensional “lower corners” below the
forbidden region.
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Fig. 1. ”Swiss flag”

To make this formal, we call a continuous path2 α : I → X ⊂ I
n from

x = α(0) to y = α(1) a dipath (directed path) if every composition pri ◦ α is
increasing. We introduce a new partial order � on X by

x � y ⇔ there is a dipath α from x to y in X.

As can be seen e.g. in Fig. 1, this partial order is in general finer than the one
X inherits from the usual partial order on IRn.

An element x ∈ X is called admissible if x � 1 and unsafe else. An element
y ∈ X is called reachable if 0 � y and unreachable else. An element x ∈ X is
called a deadlock if x � y ⇒ y = x; cf. Fig. 1.

To formulate results, we need to introduce k-element intersections of the
hyperrectangles Ri forming part of the forbidden region F =

⋃r

1
Ri: For any

2 In the rest of this note we distinguish between the interval I with the usual order
as partial order and the interval I with the equality relation as partial order.
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non-empty index set J = {i1, . . . , ik} ⊂ {1, . . . , r} let RJ = Ri1 ∩ · · · ∩ Rik .

Unless RJ = ∅, it is again a hyperrectangle RJ = (aJ
1
, bJ

1
) × · · · × (aJ

n, bJ
n) with

aJ
j = max{ai

j | i ∈ J} and bJ
j = min{bi

j | i ∈ J}. The minimal vertex of RJ is

given by aJ = (aJ
1 , . . . , aJ

n). Moreover, let ãJ
j denote the “second largest” of the j-

th coordinates ai
j ; we consider also the “corner” UsJ = (ãJ

1 , aJ
1 ]×· · · (ãJ

n, aJ
n] ⊂ X .

Proposition 1. 1. An element x 6= 1 in the interior of I
n is a deadlock if and

only if there is an n-element index set J = {i1, . . . , in} with RJ 6= ∅ and

x = aJ = min RJ .

2. If x = min RJ is a deadlock, then all elements of the n-hyperrectangle UsJ

are unsafe.

A simple trick allows to detect deadlock points that are contained in the
boundary of In as well; cf. [FGR98] and also Sect. 6. In a similar way, one can
find an unreachable region UrJ “above” the maximal element of an n-intersection
RJ .

In [FGR98], we describe a fast incremental algorithm, that detects the entire

unsafe region (consisting of all unsafe elements in X) in few steps – usually, many
(discrete) states are detected in one single step. One has to take into account the
(order) combinatorics of intersections of forbidden hyperrectangles and of those
hyperrectangles that have found to be unsafe in previous steps. An implementa-
tion of this algorithm can be found on the URL http://www.ens.fr/̃goubault.

3 The Dihomotopy Concept

An execution of a concurrent proces corresponds to a dipath (cf. Sect. 2) in
the state space X . The most interesting dipaths are those starting at 0 and
terminating at 1 (a complete run), but also dipaths starting and/or terminating
at other elements need to be considered; both for practical purposes in state
space analysis and as intermediate steps in theoretical calculations.

Many executions will “automatically” be equivalent; this means that all con-
ceivable concurrent calculations along the corresponding schedules/paths yield
the same result. In geometric language, this is the case when the dipaths corre-
sponding to the executions are dihomotopic. Dihomotopy is a modification of the
notion homotopy – which is fundamental and well-studied in Algebraic Topology
– taking into account partial order. There are several definitions for dihomotopy,
all of which are equivalent in the case of our simple partially ordered state space,
cf. [Faj03]. We need to work with two of these definitions:

Definition 1. Two continuous dipaths α0, α1 : I → X from x ∈ X to y ∈ X

are called dihomotopic if there exists a continuous 1-parameter deformation (di-
homotopy) H : I × I → X with H(0, t) = x, H(1, t) = y for all t ∈ I and

H(s, 0) = α0(s), H(s, 1) = α1(s) for all s ∈ I and such that for all t, the “inter-

polating” paths αs : t 7→ H(s, t) are dipaths.
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Only the last requirement is characteristic for a dihomotopy compared to a
homotopy (with fixed ends). Examples (cf. [FGR99] or Example 1 below) show,
that dihomotopy in general is a finer relation than homotopy of dipaths. It is
important to notice, that dihomotopy in general does not satify a cancellation
property: α ∗ β1 dihomotopic to α ∗ β2 does not always imply that β1 is dihomo-
topic to β2. Examples are given in [FGR99]; you may also construct one from
Example 1 below.

In the case of the state space of a mutual exclusion model (more generally,
for a cubical complex), one may restrict attention to dipaths on the 1-skeleton

of X and to combinatorial dihomotopies [FGR99]. To explain these terms in
our simple case, one considers the projections of all hyperrectangles within the
forbidden region to the coordinate axes. These axes are then subdivided into
intervals. The 1-skeleton corresponding to the subdivision consists of the line
sections parallel to one of the axes and constant at one of the subdivision points
for all other directions. A (locally serial) dipath along this 1-skeleton proceeds at
every time along one of these line sections. An elementary dipath proceeding “one
step” parallel to the xi-axis will be denoted σi (This notation is not unambiguous,
but good enough for our purposes). Two such dipaths σi, σj can be concatenated
to yield σi ∗ σj if the target of the first agrees with the source of the second.

Definition 2. 1. Two dipaths α0 = σi ∗ σj and α1 = σj ∗ σi in X with the

same source x and target y are called elementarily dihomotopic if the 2-

dimensional rectangle with lower vertex in x and upper vertex in y is con-

tained in X.

2. Dihomotopy is obtained from elementary dihomotopy via concatenation and

reflexive and transitive closure.

An elementary dihomotopy (given by such a rectangle in the state space) re-
flects the fact that the result of the compound execution of σi and σj is indepen-
dent of the order in which these are performed (even after a possible subdivision
into smaller parts).

In the “Swiss flag” example from Fig. 1 in Sect. 2, there are two dihomotopy
classes of dipaths connecting 0 and 1. A complete classification algorithm for
dipaths up to dihomotopy in 2 -dimensional models had been given in [Rau00].

4 Dihomotopy and Deadlocks in Mutual Exclusion

Models

The purpose of this section is to make a link between the detection of dead-
locks and unsafe regions in mutual exclusion models and the occurence of non-
dihomotopic dipaths in such models. It had been conjectured for a long time, that
(n−1) intersecting n-rectangles should likewise give rise to non-trivial non-local
dihomotopy.3 We discuss here when and why this in fact is the case.

3 Even a single n-rectangle in the forbidden region creates dihomotopy, but only be-
tween points that are “sufficiently close” to that n-rectangle, cf. the discussion in
dimension 3 in [FGHR04].
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Forgetting about the last coordinate (processor) amounts to projecting the
forbidden hyperrectangles and the forbidden region under π : IRn → IRn−1,

(x1, . . . , xn) 7→ (x1, . . . , xn−1), arriving at a forbidden region F̄ = π(F ) and a
state space X̄ = I

n−1 \ F̄ (different from π(X), in general!)
Let us compare the forbidden regions in X and in X̄: Consider an (n − 1)-

element index set J with non-empty intersection hyperrectangle RJ ⊂ F . If the
participating hyperrectangles intersect generically – in particular, if RJ 6= RK

for every smaller index set K ⊂ J – then every of the (n − 1) hyperrectangles
Ri will “contribute” at least one coordinate to the minimum aJ of RJ – and
similarly to its maximum bJ . We may then suppose without restriction, that

aJ
1 = a1

1, . . . , a
J
n−2 = an−2

n−2
, aJ

n−1 = an−1

n−1
, aJ

n = an−1

n .

The (n − 1) hyperrectangles π(Ri) in I
n−1 intersect in π(RJ ) = π(R)J , a

hyperrectangle with minimal vertex π(aJ ) = (aJ
1
, . . . , aJ

n−1
), which is a deadlock

for the model space X̄ . The intersection π(RJ) gives furthermore rise to an
unsafe region Us(π(RJ)) ⊂ X̄. In a similar way, we can consider the projection
π′ : IRn → IRn−1, (x1, . . . , xn) 7→ (x1, . . . , xn−2, xn), giving rise to the deadlock
π′(aJ ) = (aJ

1
, . . . , aJ

n−2
, aJ

n) and the unsafe region Us(π′(RJ)) ⊂ I
n−1 \ π′(F ).

Lemma 1. Let x,y ∈ X satisfy

(x1, . . . , xn−1) ∈ Us(π(R)J ) or (x1, . . . , xn−2, xn) ∈ Us(π′(R)J ),x � aJ ,bJ � y.

Then there exist at least two non-dihomotopic dipaths from x to y in X.

An instructive example is given by two dipaths from aJ to bJ : While all
the other coordinates remain fixed, for the first dipath we let first an−1 grow
to bn−1 and after that an to bn; in the second, the nth coordinate grows before
the (n− 1)st. Remark that there are no upward restrictions for the end point y.
There is a similar result for non-dihomotopic dipaths with the only restriction
that (n − 1) of the end point’s coordinates are contained in the unreachable

region of a projected arrangement of (n − 1) hyperrectangles.
A single arrangement of (n − 1) intersecting hyperrectangles will in general

not lead to non-dihomotopic dipaths from 0 to 1. This can be seen e.g. for
the state space with a single wedge (cf. Example 1 below) as the forbidden
region. We have to consider (at least) two arrangements consisting of (n − 1)
intersecting n-rectangles each within the forbidden region F ; as usual, X =
I

n \ F . Suppose that those intersect in n-rectangles RJ = π(RJ) × (an, bn),
resp. RK = π(RK) × (cn, dn) such that an < dn.

An application of Marco Grandis’ version of the van Kampen theorem for
the fundamental category in directed homotopy [Gra03] yields

Proposition 2. Suppose that the intersection hyperrectangle

C = Ur(π(R)J ) ∩ Us(π(R)K) ⊂ X̄ ⊂ I
n−1

is disconnected (no continuous path!) from both 0 and 1. If there is a dipath

α : I → X, such that an < αn(t) < dn ⇒ π(α((t)) ∈ C, then there are at least

two non-dihomotopic dipaths from 0 to 1 in X.



6 Raußen

From an application point ov view, this implies the existence of different termi-
nating schedules that can yield different results of distributed calculations.

Example 1. The situation from Prop. 2 arises in 3 dimensions, when the forbid-
den region is a cylinder (with a quadrangle as cross-section). More strikingly,
there are state spaces with trivial fundamental group, that allow non-dihomotopic
dipaths: It suffices to consider a forbidden region consisting of two “wedges”, one
behind the other and not connected to each other; one of them yields a deadlock
after projection (to the “front”) and the other unreachable points; cf. Fig. 2
below.

Fig. 2. Two wedges

5 Trivial dihomotopy for models with less complicated

constraints

In contrast, for a model space with a less complicated forbidden region, we can
show by a simple essentially combinatorial argument and using the characteri-
sation of dihomotopy from Def. 2:

Proposition 3. For a model space X with the property that RJ = ∅ for all

index sets J of cardinality n− 1, every two dipaths from 0 to 1 are dihomotopic

to each other.

A similar result holds also in the classical non-directed case: Using duality
and Čech-type cohomology, it is easy to see that the complement of a forbidden
region with RJ = ∅ for all index sets J of cardinality n − 1 has a trivial first
homology group.

From an application point of view, the criterion from Prop. 3 is easy to check
and ensures that all runs in such a distributed calculation will yield the same

result. This should also be interesting for data base scheduling; compare [Gun94]
and [FGR99], Sect. 8.
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6 Concluding Remarks. Future Work

As said earlier, there may be non-trivial dihomotopy between intermediate states
although dihomotopy between the initial and the terminal state is trivial. But
it is not difficult to find criteria for when this happens and when not: If one
considers dihomotopy between y ∈ X and z ∈ X , one looks at a restricted
state space, i.e., what is left in the hypercube with these two points as its lower,
resp. upper vertex after removal of the forbidden region F . As in [FGR98] or
[Rau00], one may instead introduce the 2n additional n-hyperrectangles given
by xi < yi, resp. xi > zi, to adjust (enlarge) the forbidden region in the original

hypercube I
n. This yields, in general, more complicated intersections, unsafe

regions etc., which are “responsible” for extra “local” dihomotopy.

It should then also be interesting to see how the components of the funda-
mental category of X from [FGHR04] relate to this approach.

The ultimate goal for the work initiated here is the construction of an al-
gorithm determining the set of dihomotopy classes between two given states,
building on the deadlock algorithm from [FGR98] and generalising the algorithm
given in [Rau00] in the two-dimensional case. To this end, one has to investigate
the “directed combinatorics” between situations as they arise in Prop. 2 more
closely. Moreover, the (non-orientable) (non)connectivity of C from Prop. 2 has
to be determined algorithmically. But this relies merely on a determination of
(non)-reachability between certain deadlocking, resp. unreachable states. Never-
theless, it can be complicated to determine (the existence of) a path connecting
a point in central C with 0, resp. 1, as you can see in Fig. 3 below.

C

Fig. 3. A labyrinth state space

All proofs and an outline of the algorithm above are deferred to a later paper.
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