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1. Introduction

This extended abstract should be considered as an overview of some results,
and the more precise statements and proofs are found in the references. Hence the
approach here is less rigorous than in the references. The new results presented
at Dagstuhl are in [1] and [3].

The subject is directed topology in spaces which have been subdivided into
cubes. Such spaces are used as the geometric model of Higher Dimensional Au-
tomata [6] and for Dijkstras PV-models [2], and going back and forth between
the algebraic and the geometric representation is a very concrete example of a
geometrization/discretization process or a discrete - continuous correspondence.

2. Local partial orders and d-spaces.

In the geometric model of for instance an HDA, there is an underlying time
direction, which should be preserved, when manipulating the geometric object.
There are different approaches to how one should encode that extra structure.
M. Grandis in [5] does it by taking out a subset of the set of continuous paths
and specifying, that these are the increasing paths; this defines a d-space. In [4],
we define a local partial order on a topological space; this is an open cover of the
space by partially ordered open sets such that the partial orders are closed and
they are compatible on intersections. A directed path is then a path, which is
locally increasing.

Equivalence of executions coming from local commutativity or independence
relations modeled by the HDA, has a geometric counterpart, namely dihomotopy
or d-homotopy in Grandis’ approach.

Two directed paths γ1, γ2 :
→

I→ X are dihomotopic, if there is a continuous

family H : I×
→

I→ X of dipaths connecting one to another. In the d-space
approach, the equivalence relation is the transitive hull of the relation defined

by a continuous family H :
→

I ×
→

I→ X - preserving local partial order in both
parameters. It is clear that d-homotopy implies dihomotopy, but the converse is
not true in general.
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3. Cubical complexes and cubicalized spaces.

The algebraic version of a 3-cube is a graded set: M3 = {Q} (1 3-dimensional
object), M2 = {A, B, C, D, E, F} (Representing the 2- dimensional faces), M1 =
{a, b, c, d, e, f, g, h, i, j, k, l} (12 edges) and M0 = {p, q, r, s, t, u, v, x} (8 vertices),
and boundary maps ∂k

i : Mn → Mn−1, k ∈ {0, 1}, i ∈ {1, 2, 3, . . . , n} such that

∂k
i ∂l

j = ∂l
j−1∂

k
i (i < j)

The boundary maps reflect the attaching of the n− 1 dimensional faces onto the
n-dimensional objects, and since these are cubes, there is both an upper, k = 1,
and a lower, k = 0, face in each coordinate direction - indexed by i.

The general construction with a graded set and boundary maps satisfying the
above relations is called a semi-cubical set, and geometrically one may think of
this as several cubes glued along common faces. Indeed, there is a geometric
realization of such a semi-cubical set, which glues cubes following the underlying
recipe given by the boundary maps. When the semi-cubical complex is non-

selfintersecting, the geometric realization is a locally partially ordered space, [4].
The local partial order on each cube is induced by the coordinatewise po on IRn:
(x1, . . . , xn) ≤ (y1, . . . , yn) if xi ≤ yi for all i, and we takte the transitive hull of
this locally (i.e., in the star of each vertex).

A Higher Dimensional Automaton is an example of a semi-cubical set.

4. Approximation in a directed setting.

In an HDA, the computational paths representing executions are sequences of
edges e1, . . . , em such that ∂1

1(ek) = ∂0
1(ek+1). If there is a 2-cube F such that

ek = ∂0
2(F ) and ek+1 = ∂1

1(F ), then e1, . . . , em is equivalent to the sequence
where ek, ek+1 is replaced by ∂0

1(F ), ∂1
2(F ). The equivalence relation on execution

paths is the transitive hull of this relation. This equivalence relation is denoted
combinatorial equivalence. The geometric realization of such dipaths are called
combinatorial dipaths.

In the geometric model of an HDA, the natural paths to study are the directed
paths and the equivalence relation should be dihomotopy (or d-homotopy). It is
immediate that the combinatorially equivalent execution paths are geometrically
realized as dipaths, which are dihomotopic and also d-equivalent. However, it
takes some work to see, that there is a converse to this:

Let γ :
→

I→ X, where X is the geometric realization of a geometric1 Then there
is a combinatorial dipath γ̃ which is dihomotopic to γ.

Suppose γ1 and γ2 are combinatorial dipaths, which are dihomotopic. Then
they are also combinatorially equivalent.

1In a geometric complex, the intersection of two cubes is a unique face in both [1] cubical
complex.
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5. Cubicalized spaces and directed cubicalizations.

So how complicated can the geometry of a space be, when we demand that
it is subdivided into cubes - geometrically- and that there is a partial order
on each cube induced by the standard po on IRn and such that these agree on
common faces. Even if there is a cubical subdivision of a space, there may not
be a consistent ordering of the edges, as one can see in a standard Möbius band,
but in fact, this twodimensional obstruction is the only obstruction there is, so
a cubicalized space without immersed cubical Möbius bands has a cubical local
partial order. And moreover, If a cubicalization is barycentrically subdivided
once, the resulting cubical subdivision has a cubical local partial order. These
results are both in [3]
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