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Abstract. We explain topological properties of the embedding-based
approach to computability on topological spaces [10–12]. With this ap-
proach, a special kind of embeddings of topological spaces into Plotkin’sTω, which is the set of infinite sequences of T = {0, 1,⊥}, are consid-
ered. Such an embedding can also be characterized by a dyadic sub-
base, which is a countable subbase S = (S0

0 , S1

0 , S0

1 , S1

1 , . . .) such that
Sj

n(n = 0, 1, 2, . . . , j = 0, 1) are regular open and S0

n and S1

n are exteriors
of each other. We survey, based on [12], properties of dyadic subbases
which are related to efficiency properties of the representation corre-
sponding to the embedding.
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1 Introduction

In order to define computation over a countably-based Hausdorff space X , we
need to represent each x ∈ X as a sequence of characters. The sequence can be
infinite because we can consider a machine which makes stream input/output ac-
cess on infinite sequences. In this case, the machine continues to work infinitely,
and produces longer and longer prefix of the output (i.e. better and better ap-
proximation of the output) based on longer and longer prefix of the input (i.e.
better and better approximation of the input). This kind machine is nothing
but a program which makes stream input and output, and is widely used in ac-
tual ’real’ programming applications. It is also the foundation of computability
analysis, where such a machine is called a Type-2 machine [13].

For such a computation ofX , the choice of a representation is very important.
A representation of X is a surjective partial function from Σω to X , with Σω the
set of infinite sequences of a finite alphabet Σ. For example, binary expansion
δbin is a representation of I = [0, 1] for Σ = {0, 1}. However, it is known that the
computational notion on real numbers induced by δbin and Type-2 machines is
an odd one in that even the simple function to multiply by 3 is not computable.

⋆ An earlier version of this paper appeared in Feasibility of Theoretical Arguments

of Mathematical Analysis on Computer, Kokyuroku 1381, RIMS, Kyoto University,
2004.
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There is a class of representations, called admissible representations [13],
which connect the continuity notion ofX to that ofΣω, and which induce natural
computational notion on the set X with respect to Type-2 machines. Admissible
representations are usually considered as the natural representations, and is the
main research topic in computability analysis. One example of an admissible
representation is an expansion of [0, η] with the golden number η = (1 +

√
5)/2

[4]. That is, δη(p) = x if Σ∞
n=0

1
ηn+1 p[n] = x. In this case, when p is a name

for x, every sequence obtained by substituting an occurrence of 011 in p with
100 is also a name for x, because 1 = 1

η
+ 1

η2 . Therefore, this representation
is very redundant. It is known that every admissible representation of I are
’very’ redundant. More precisely, when ρ is an admissible representation of I,
{x ∈ I | ρ−1(x) is an infinite set} is a fat and dense subset of I [2].

In this article, we consider different kind of representations, which are less
redundant and which induce the same computability notion onX with a machine
different from the Type-2 machine. We fix the alphabet to be {0, 1} and consider
a representation ρ such that for each x, ρ−1(x) has the form A0A1A2 . . . for
Ai an one point set (i.e. {0} or {1}), or the whole space {0, 1}. That is, our
representation has the property that the value of each cell of a name of x is
defined independently. For the binary representation, when p is a name of 1/2,
p[n] (n ≥ 1) has the possibility of both 0 and 1, but p[n] is 0 or 1 depending
on whether p[0] = 1 or 0, respectively. It is also the case for the expansion by
the golden number. On the other hand, with our representation, there are three
cases for p[n]: determined as 0, determined as 1, or has both possibility. These
three cases are determined not depending on other bits of p, but only on x.
Therefore, when An is {0, 1} and p ∈ ρ−1(x) has the n-th bit 0, then this bit
does not contribute to the fact that p denotes x, because p[n = 1], which is p
with the value of the n-th bit substituted to 1, also denotes x. Therefore, only
the locations n with An 6= {0, 1} specify that ρ(p) = x.

Such a representation can also be expressed as an injective function ϕ from X
to Plotkin’s T

ω, which is the set of infinite sequences of T = {0, 1,⊥}. The symbol
⊥ means undefinedness, and when ρ−1(x) = A0A1A2 . . ., we define ϕ(x)[n] as 0
or 1 when An is {0} or {1}, respectively, and ⊥ when An is {0, 1}.

Among such representations, we are particularly interested in the case that
the cardinality of{k | ϕ(x)[k] = ⊥} is less than a finite number n for every x.
We will write T

ω
⊥,n (n = 0, 1, . . .) for the subspace of T

ω such that the number of
bottoms which appear in a sequence is not more than n. When ϕ is an injective
function from X to T

ω
⊥,n, for the corresponding representation function ρ, the

cardinality of the fiber ρ−1(x) is upper-bounded by 2n for every x. Since a
sequence in T

ω may contain some undefined cells, we cannot make ordinary
stream input/output on such a sequence. However, we can consider an extended
stream access which skips bottom cells and continue the input/output of the
rest of the stream. The author defined an IM2-machine (indeterministic multi-
head Type-2 machine) which makes multi-head access to input/output bottomed
streams and which has indeterministic behavior depending on the head used for
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input. This machine is defined naturally when the stream is T
ω
⊥,n-stream. In this

case, a machine has n+ 1 heads.
In order that the computational notion induced by ϕ and IM2-machines is

natural, we require that ϕ is a topological embedding of X in T
ω. In the next

section, we show an example of such an embedding for the unit closed interval
I = [0, 1], and in Section 3, we explain in which sense an embedding of X in T

ω

induces a natural computational notion, and we consider further conditions on
an embedding and define the notion of representing embedding. In Section 4, we
reformulate the notion of representing embedding through a subbase structure,
and define the notion of a dyadic subbase. Then, in Section 5, consider the case
that the induced representation is a total function, and define a full-representing
dyadic subbase and overview some properties of such subbases following [12].

2 Gray-code embedding of I

First, we give an example of an embedding of I in T
ω
⊥,1, which is called the

Gray-code embedding. Gray-code embedding ϕG is a function from I to T
ω
⊥,1

defined as ϕG(x)[n] = P (tn(x)) (n = 0, 1, . . .) for t : I → I the tent function

t(x) =

{

2x (0 ≤ x ≤ 1/2)
2(1 − x) (1/2 < x ≤ 1)

and P : I → T the function

P (x) =







0 (x < 1/2)
⊥ (x = 1/2)
1 (x > 1/2)

.

One can see that, when ⊥ appears in a sequence, the remainder always has the
form 1000 . . .. Therefore, ⊥ appears at most once in each sequence and thus ϕG

is a function to T
ω
⊥,1.

Figure 1 shows this embedding. Here, a horizontal line means that the cor-
responding bit has value 1, and the edges of each line corresponds to the value
⊥. Thus, for example, ϕG(3/4) = 1⊥1000 . . .. Therefore, when we consider the
corresponding representation ρ : Σω → I, 3/4 has two names 111000 . . . and
101000 . . .. Note that with the usual binary representation, 3/4 has two names
110000 . . . and 101111 . . ., which are different at all but one bits.

Gray-code embedding is equal to the itinerary of the tent function, which
is essential for symbolic dynamical systems [6]. It is also the expansion of [0, 1]
with binary reflected Gray-code, which is a binary coding of natural numbers
other than the ordinary one [5].

3 Embeddings in T
!

As I said, ϕ is an embedding of X in T
ω , not merely an injective function. We

study what does it mean for the induced computation of X , and consider further
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Fig. 1. Gray code Embedding of real numbers.

properties ϕ must have so that it is a ’good’ representation of X . The function
ϕ is determined by the sets S0

n = {x | ϕ(x)[n] = 0} and S1
n = {x | ϕ(x)[n] = 1}

(n = 0, 1, . . .). Therefore, we sometimes consider conditions of these families of
sets, instead. We also define Bn = {x | ϕ(x)[n] = ⊥}. We consider the topology
of T

ω defined by the subbase {p | p[n] = 0} and {p | p[n] = 1} (n = 0, 1, . . .). It
is equal to the Scott topology on T

ω considered as a domain, and also equal to
the product topology of T

ω for the topology on T generated by {{0}, {1}}. Note
that S0

n = ϕ−1({p | p[n] = 0}) and S1
n = ϕ−1({p | p[n] = 1}) (n = 0, 1, . . .).

Consider the property that ϕ is an embedding of X in T
ω. The continuity

of ϕ is equivalent to saying that S0
n and S1

n (n = 0, 1, 2, . . .) are open sets.
Therefore, when ϕ(x)[n] is 0 (or 1), for some open neighbourhood Z ⊂ X ,
ϕ(y)[n] = 0 (or 1) for y ∈ Z. Furthermore, since ϕ is an embedding, the family
of sets S0

n and S1
n (n = 0, 1, . . .) form a subbase of X . Thus, when x ∈ Z for

some open set Z, Sc0
n0

∩ . . . Sck

nk
⊂ Z for some n0, . . . , nk and c0, . . . , ck such

that ϕ(x)[ni] = ci (i = 0, . . . , k). . Therefore, only finite number of bits of ϕ(x)
determines that x ∈ Z. Consider that there is a tape whose cells are filled with
⊥ at the beginning, and a machine computing x fills the tape with ϕ(x). More
precisely, when ϕ(x)[i] = 0 (or 1), the machine obtains this information in some
finite time and fills the i-th cell of the tape with 0 (or 1) at some time, and when
ϕ(x)[i] = ⊥, it does not fill the i-th cell eternally, and the value of the cell is lest
as ⊥. Then, at some time of computation, we can observe on the tape enough
information to infer that x is in R for each open set R. For the above example,
it is just the time the machine fills all the cells with the index n0, . . . , nk.

The above fact is sometimes called open sets as finitely observable properties
[8], and it links observability, which is a computational notion, in a topological
term. Note that, though we have explained it with an embedding ϕ of X in
T

ω, it is not properties of embeddings in T
ω and the same properties hold for

an embedding ϕ̂ of X in {1}ω
⊥
, which is defined for each countable subbase
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b0, b1, . . . as ϕ̂(x)[n] = 1 if x ∈ bn. Now, we consider additional conditions of the
embedding ϕ which makes use of the fact that the target space is {0, 1}ω

⊥
, not

{1}ω
⊥
.

The first one is that Bn is a nowhere-dense closed subset. Since Bn, S0
n, and

S1
n are disjoint sets such that Bn ∪ S0

n ∪ S1
n = X , Bn is always a closed set. If it

is not nowhere-dense, it means that there is an open subset R of Bn. Then, from
the above observation, when x ∈ R, this fact is determined in a finite time by
a machine which computes x and outputs ϕ(x) on a tape. That is, it can write
the character ⊥. This contradicts our interpretation of ⊥ as a non-terminating
computation, which is widely accepted in computer science.

Secondary, we consider here the condition that x is on the boundary of both
S0

n and S1
n when ϕ(x)[n] = ⊥. The fact that Bn is nowhere-dense and closed

means that when ϕ(x)[n] = ⊥, x must be on the boundary of S0
n ∪ S1

n. If x
is on the boundary of S1

n but not on the boundary of S0
n, then there is an

open neighbourhood R of x which is disjoint from S0
n. This means that we can

determine, in a finite time, that ϕ(x)[n] is not 0. Therefore, we can assign 1 to
that cell in a finite time, in order to obtain a ρ-name of x for ρ the corresponding
representation. Thus, it is more natural to erase the name p of x which satisfies
p[n] = 0, and define ϕ(x)[n] = 1. It means to define a new representation defined

as Ŝa
n = int(cl(Sa

n)) ⊃ Sa
n (a = 0, 1). For this representation, Ŝ0

n and Ŝ1
n are

disjoint regular open sets, which are exteriors of each other. In this case, Bn

comes to be a nowhere-dense closed subset and this condition subsumes the first
one. Thus, we define as follows.

Definition 1. An embedding ϕ of X in T
ω is representing if S0

n and S1
n are

regular open sets such that S0
n is the exterior of S1

n.

In [9], it is shown that every separable metric space of dimension n can be
embedded in T

ω
⊥,n. With a small modification to this construction, we can show

that every separable metric space of dimension n has a representing embedding
in T

ω
⊥,n.

4 Dyadic subbase

As we have noted, when ϕ is an embedding of X in T
ω, the family of sets S0

n

and S1
n (n = 0, 1, . . .) forms a subbase of X . Thus, we define as follows.

Definition 2. Let X be a Hausdorff space. We call a countable subbase S =
(S0

0 , S
1
0 , S

0
1 , S

1
1 . . .) of X with a pairing and an enumeration of the pairs a dyadic

subbase when Sj
n(n = 0, 1, 2, . . . , j = 0, 1) are regular open and S0

n and S1
n are

exteriors of each other.

When a dyadic subbase is given, we can define an embedding ϕS : X →
T

ω defined as ϕS(x)[n] = 0, 1 or ⊥, when x ∈ S0
n, x ∈ S1

n, or x is on the
boundary of S0

n (and also of S1
n), respectively. Therefore, there is an one-to-one

correspondence between a dyadic subbase and a representing embedding. Since
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ϕS is an embedding, we have a corresponding representation ρS :⊆ Σω ⇀ X

defined as ρS(p) = x iff x ∈ S
p[n]
n for all n such that p[n] 6= ⊥.

Definition 3. We define ψS , ψS : T
ω → P(X) as follows

ψS(p) =
⋂

S
p[n]
n ,

ψS(p) =
⋂

S
p[n]
n .

Here, S⊥
n is defined as X.

These two functions give two interpretations of an infinite sequence p in T
ω

as a specification of points in X . ψS and ψS correspond to thinking about each
digit a of the n-th cell of p as giving the information that the point is in Sa

n and
Sa

n, respectively. For our study, we place one more condition on dyadic subbases
which connects these two interpretations.

Definition 4. A dyadic subbase is proper if ψS(d) = ψS(d) for d ∈ K(Tω).

Here,K(Tω) is the set of finite elements of T
ω , that is, the set of elements with

finite number of 0 and 1. {ψS(d) | d ∈ K(Tω)} forms a base of T
ω , corresponding

to the subbase.

5 Full-representing dyadic subbases

Suppose that a dyadic subbase S is given. As we have said, we can consider
that a program which outputs ϕS(x) is computing x. However, if ψS(q) = {x}
for some string q < ϕS(x), then, we can consider that q is also specifying x.
That is, those bits which are 0 or 1 in ϕS(x) but ⊥ in q are providing redundant
information, which can be obtained by the sequence q. For example, the following
dyadic subbase is redundant in this sense, but the dyadic subbase corresponding
to the Gray-code embedding is not.

Example 1 (Dedekind subbase). Fix a numbering qi of rational numbers in (0, 1).
Define the dyadic subbase D = (D0

0, D
1
0, D

0
1 , D

1
1, . . .) as D0

n = [0, qn) and D1
n =

(qn, 1]. The induced representation ϕD : [0, 1] → T
ω is ϕD(x)[n] = 0,⊥, and 1

iff x < qn, x = qn, and x > qn, respectively.

Therefore, we define as follows.

Definition 5. A proper dyadic subbase S is canonically representing iff ψS(q) =
{x} implies q ≥ ϕS(x).

We define related properties as follows.

Definition 6. A dyadic subbase S is full-representing iff the corresponding rep-
resentation ρS is a total function.
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Definition 7. A dyadic subbase S is independent iff ψS(d) 6= ∅ for all d ∈
K(Tω).

Definition 8. A dyadic subbase is minimal if any proper subset is not a dyadic
subbase.

In [12], the author has proved the following two theorems.

Theorem 1. (1) When S is a proper dyadic subbase, S is full-representing ⇒
canonically-representing ⇒ independent ⇒ minimal.

(2) When the space X is compact, S is full-representing ⇔ canonically-
representing ⇔ independent.

Theorem 2. Suppose that S is a full-representing subbase of a space X, the
following are equivalent.
1) X is compact.
2) X is regular.
3) ρS is continuous.

Thus, when we only consider regular spaces, the existence of a full-representing
subbase ensures that X is compact, and thus the three properties of Theorem
1(1) become equivalent.

Now, the next problem is to characterize spaces with independent subbases,
(or to characterize compact spaces with full-representing subbases.) We can eas-
ily show that if X has an independent subbase, then X has no isolated points
(i.e., X is dense in itself). Therefore, every countable compact Hausdorff space
does not have an independent subbase. On the other hand, Professor Yamada
of Kyoto Sangyo University and the current author have recently proved that
every dense-in-itself separable metric space has an independent subbase, (and
thus every dense-in-itself compact metric space has a canonically-representing
subbase.)
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